BLUE OCEAN ENERGY® project

Luciano Mule’Stagno
ISE Conference 2013
BLUE OCEAN ENERGY® project

- Malta lacks the space to implement (many) large scale renewable energy projects.
- Only real-estate we have abundant supply of is ocean with a depth of >50m
- Suitable for:
 - Wave Energy
 - Floating Wind turbines
 - Floating PV
JUST AS IN THE CASE OF WIND THE RESOURCE IS NOT THE SAME EVERYWHERE
Wave Energy

Malta’s Potential

Table 3: Locations of the data collection points [18].

<table>
<thead>
<tr>
<th>Point</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14.3°E</td>
<td>35.75°N</td>
<td>North of Malta</td>
</tr>
<tr>
<td>B</td>
<td>14.7°E</td>
<td>38°N</td>
<td>East of Malta</td>
</tr>
<tr>
<td>C</td>
<td>14.3°E</td>
<td>36.25°N</td>
<td>South of Malta</td>
</tr>
<tr>
<td>D</td>
<td>13.9°E</td>
<td>36°N</td>
<td>West of Malta</td>
</tr>
</tbody>
</table>

Table 4: Percent exceedance of significant wave height [18].

<table>
<thead>
<tr>
<th>Significant Wave Height (m)</th>
<th>Percentage Exceedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Point A</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>68</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Scott Wilson 2003 report for MMA
BLUE OCEAN ENERGY® project

- The Dexawave system consisting of two rigid pontoons hinged down the middle with a hydraulic power take-off system placed in between.
- A simple design should result in a low Cost of ownership and robust system.
- Being a floating device it can be operated in deep waters which is suitable for Malta.
- A prototype device was also being tested in Denmark.
BLUE OCEAN ENERGY® project

- Funded by MCST 2010 R&I Grant

- Partnership between
 - DEXAWAVE Energy Malta Ltd.
 - UoM Institute for Sustainable Energy
 - IOI-Malta Operational Centre, UoM.

L. Mule' Stagno
ISE Conference
2013
AIMS of the Project

a. accurately gauge wave energy resource and use it to refine numerical model
b. Determine the suitability of the Dexawave converter and correct sizing for Maltese waters.
c. Assess suitability of location
d. Design a linear generator for the converter.
BLUE OCEAN ENERGY® project

- Converter was launched off Marsascala in early summer 2011
- Project in collaboration with The Dept. of Industrial Electric Power Conversion to design a linear generator to replace the current hydraulic system started.
Buoy was launched 2km off the NW of Gozo in and IOI-MOC has been collecting data since Sept 2011.
Various impact assessments were carried out including a study of the seabed in the area identified, and other preliminary investigations with aid from Enemalta and MEPA.

Discussions with MMA
Discussions with fishing interests in the area
Results

Based on the wave energy resource it was concluded that a point absorber type converter would be more appropriate for Maltese waters.

A linear generator is being designed for such a converter that would be suited for Maltese conditions.
Results

The wave resource at location has now been mapped for 18 months giving us much better information and allowing IOI-MOC to refine their model for the whole region.

Suitable area off Zebbug, Gozo has been identified as having an ideal seabed for anchoring and no protected species.

Area was also cleared in terms of fishing and shipping.
Future Work

- Seek funding for a design, testing of a point energy absorber
- Investigate the option to generate pressure (eg. For reverse osmosis plant) rather than generate electricity.