SolAqua project
Innovative Photovoltaics on Water

Luciano Mule’Stagno
ISE Conference 2013
SolAqua project

- Current National 2020 RE plan calls for ~27MWp of PVs installed
- 0.7% gross energy (~1.75% of electricity)

- Now there is talk for 100MWp or more.
- Rooftops and some empty land can accommodate this but how much more?
- Beyond 2020?
SolAqua project

- A 1 MWp farm occupies ~3 football fields.

Size of 10 MWp farm
SolAqua project

Issues
- Impermeability, Corrosion
- Weather
- Salt, biological growth

Advantages
- Unlimited space
- Possible cooling effect
SolAqua

- Most of the existing (experimental) installations are either simple rafts with PVs on top or in lakes/ponds

[Images of SolAqua installations in Italy, USA, and Japan]
SolAqua

- Problems with this approach

- Cost - Same cost as land based systems + cost of pontoon and water impermeability.
- Slightly lower productivity than optimized land based due to angle – but possible gain due to cooling of panels.
- LCE with such systems will likely be higher than land based systems.
SolAqua project

- 3 year project funded by 2012 MCST R&I grant

- **Partners**
 University of Malta (ISE)
 Pandia Energy (Malta) Ltd.,
 General Membrane Ltd.,

3 streams of research run sequentially
SolAqua

- Stream 1 – test existing (patented) technologies of floating panels on water in a cost effective way

- Stream 2 – (being patented) innovative ways of floating conventional panels on water

- Stream 3 – (being patented) innovative PVs designed specifically for water.