
Abstract
A framework is described that can assist game developers in using biometric (psychophysiological)

methods while playtesting. Biometric methods can give developers a valuable additional window
on the playtester's experience.

Requirements
Our long-term goal is to make the use of biometrics just as straightforward as the use of game
metrics. In this paper, we will focus on the cornerstone of all data acquisition: the data collection
framework.

The Use of Biometrics
When developing a game (or any other media product), it is important to collect as much feedback
from users as possible. After all, users will determine the success or failure of the game and their

decision to play, buy and recommend a game depends partially on having a smooth and satisfying

play experience.

A biometric data collection framework for games should, to our mind, have the following

properties:

"' Simple and straightforward interface for programmers

Several methods for collecting data during playtests have been developed, with interviews and
observation still being the most popular ones. Newer methods include logging game metrics and
collecting data about the physical state of the player, called biometrics or psychophysiology.

"' As much overlap between game metrics logging and biometrics logging as possible

"' Functioning truly cross platform

Both game metrics and biometrics add objective measurements to the subjective results from

interviews and player observation. The industry has widely recognized the role of game metrics in

playtesting and in the continuous evaluation of a game after it has gone live.

"' Independent of the biometrics hardware provider

"' Usable in a multiplayer setting

"' Automated test running and data aggregation

Game metrics are often used for marketing (conversion rate), but it feed into user experience

analysis [5]. In a large number of studies over the past years, the value of the biometric approach
has been demonstrated, see reviews in [1] and [2], but the methods is infrequently used in practice.

"' Automatic generation of aggregated data over levels, maps, or whichever unit of analysis is

indicated

"' Easily reusable output in the form of PDF figures and spreadsheet files

"' Using a widely accepted data storage format
We think the low rate of adoption of the biometrics method has to do with a number of factors, the
most important one being lack of a widely adopted and generic framework for measuring this data.

For game metrics, several commercial frameworks exist (plavtomic.com, mochibot.com,
flurry. com) and it is relatively easy to program a proprietary system. Implementation
Although expertise is required for the successful in-depth analysis of game metrics, a number of

widely accepted measures can be automatically computed by the existing frameworks (conversion

rate, time on game, heatmap of player deaths, etc.). A framework has been developed for emotion

In essence, our framework is a collection of small programs that each do one dedicated task
related to data collection. An overview of the various building blocks is given in the figure below.

The assignment of these blocks to one or many computers is completely up to the user.

t Microphone � Delayed Copy
o video D Annotated Video Audiocapture Copier Pre-Processing -Artifact Detection

lil1 Camera 1 + 2
- Mediaconverter - -Feature Review

'W" ELAN Videocapture

II � Biometric Sensors
Biom. Data Collection Conclusion

(\J Game
oO Immediate Copy

Controller D Log Message
Pre-Processing D Statistics & Features

- Game Analytics

� Logging Dispatcher -Readlog - -Region Detection

The four most important blocks acquire a
type of data (biometrics, audio, video,

logging) and either store this data locally

or transmit it to the server. We commonly

work with local storage of video and
audio data and server storage of logging

and biometrics data. Nightly jobs ensure
that a II data ends up on the server

eventually. A small extension that we are

working on now will allow low-res video
to be sent to the network directly (for

monitoring), while using delayed copy for
the full resolution.

The biometric data collection program is

responsible for interfacing with the

hardware. This is the only part of the
framework which is hardware dependent:
it will initialize the biometrics hardware,

pull and transmit data to the server.

The audiocapture and videocapture programs do just what their names

imply. Both programs create two types of output: A common audio file
(wav format) or video file (avi format), and a stream of synchronization

messages that are sent to the server.

The logging dispatcher is a DLL that is loaded by the game under test. The

DLL will take care of synchronizing with the server and sending the
messages over the wire. We have alternative implementations for
scenarios in which a DLL cannot be used, and which use ports or
HTIP-GET requests (but provide less accurate timing).

A logging message is a simple text string, adhering to this standard:

Words are separated by spaces; the first word is the command. (COLLECT,
JUMP, FIRE, etc.); each of the following words is a key-value pair, written

with an equal sign (object=coin, x=40, bullet=l, etc.).

Once the data arrives on the server, they are stored in the Hierarchical

Data Format (version 5) [4]. This format, which was developed by NCSA
and NASA, is specifically designed for storing numerical data in matrix

format. All data files from one player are kept together to facilitate
archiving.

Stats

Two pre-processing steps are required
before the data can be analyzed: A first

program will align the data onsets of the
streams by trimming data. It will also

convert the video data from its raw avi

format to compressed mp4, adjusting it
to be exactly in sync with the other
streams as it is processed.

The second program will extend the

event-based logging data as received

from the game. We require game-state

information to answer analysis

questions like "which actions do players
use in this area". The logging

pre-processor adds such information,

marks regions of interest, and introduces
new logging messages to facilitate
analysis.

To check the integrity of the data and to manually
mark stretches of time for exclusion, we turn to a

multimedia annotation tool ELAN [6]. This

program will show multiple video tracks, the
audio track, and annotation tiers. We can include

a biometric signal in the display too. ELAN is
used to give the analyst feedback on when
episodes, levels, and events occurred, and it is

used to mark artifacts (sneezing, coughing, etc.)

for exclusion.

Finally, a statistics module will aggregate metrics

and biometrics data over the requested regions,
time spans, levels, or any combination of the

above. We use Python as a flexible and

accessible query language to formulate such

aggregations. A number of standard graphs and
tables are produced. The metric and biometrics
data is also written to a CSV spreadsheet format,

so it can be further processed and analyzed.

Limitations Conclusion
A limitation of the current implementation is that the statistics module produces mainly descriptive

statistics, the inferential statistics are still under development. We do not have found the need for
machine learning algorithms, although interesting approaches exist and we will certainly consider
including these in the future [7]. This would also open the framework to more extensive player
modelling [8].

In conclusion, our framework covers most of the requirements for running biometrics analysis on

playtesters. We will soon be making it available for interested commercial parties.

[1] R. Mandryk. Physiological measures for game evaluation. InK. Isbister and N. Shaffer", editors, Game Usability:}

Advice from the Experts for Advancing the Player Experience. Morgan Kaufmann, 2008.

[2] M. Seif EI-Nasr, A. Drachen, and A. Canossa, editors. "Game Analytics: Maximizing the Value of Player Data".

Springer, 2013.

[3] J. Wagner, F. Lingenfelser, B. Nikolaus and E. Andre. Social Signal Interpretation (SSI) - A Framework for Real-time
Sensing of Affective and Social Signals. Kunstliche lntelligenz, Springer, 2011, 25.

14] The HDF Group. The HDF5 User's Guide, November 2012. www.hdfgroup.org/HDF5/doc/UG/index.html.

[5] B. Weber, M. Mateas, and A. Jhala. Using data mining to model player experience. In FDG Workshop on

Evaluating Player Experience (EPEX 2011), Bordeaux, France, 2011.

[6] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes. Elan: a professional framework for

multimodality research. In Proceedings of the Fifth International Conference on Language Resources and

Evaluation, 2006. Produced by the Max Planck Institute, tla.mpi.nl/tools/tla-tools/elan.

[7] G. N. Yannakakis, H. P. Martinez, and A. Jhala. Towards Affective Camera Control in Games User Modeling and

User-Adapted Interaction, Springer, 2010.

[8] N. Shaker, G. N. Yannakakis and J. Togelius. Towards Player-Driven Procedural Content Generation. In Proceedings

of ACM Computing Frontiers Conference, pp. 237-240, 2012.

