
Correct Hardware Compilation with VerilogHDLGordon J. PaceChalmers University of Technnology, Swedengpace@cs.chalmers.se
Abstract. Hardware description languages usually include features whichdo not have a direct hardware interpretation. Recently, synthesis algo-rithms allowing some of these features to be compiled into circuits havebeen developed and implemented. Using a formal semantics of Verilogbased on Relational Duration Calculus, we give a number of algebraiclaws which Verilog programs obey, using which, we then prove the cor-rectness of a hardware compilation procedure.1 IntroductionHardware description languages were originally designed to allow simulation ofhardware components to enable the engineer to compare an implementation withthe speci�cation in a relatively cheap way. To make this comparison even more ef-�cient, HDLs began to allow procedural modules which described the behaviourin an imperative language style. Unfortunately, these modules were meant forcomparing the output of the hardware description without actually having ahardware interpretation from such modules to hardware. Recently, transforma-tions have been implemented in synthesis tools, allowing certain types of be-havioural modules to be automatically compiled into hardware.In [Pac98,PH98] we have de�ned the semantics of Verilog HDL [Ope93,IEE95],a commercial HDL, widely used in industry. As one of the bene�ts of this for-malisation, was the veri�cation of a compilation procedure from a subset ofprocedural Verilog code to a more hardware oriented subset of the language.The semantics of Verilog have been speci�ed in terms of Relational DurationCalculus | a temporal logic. They thus emphasise timing issues in the language.This is the main di�erence from other similar work, which tend to emphasisethe event aspect of the language. Mainly because of this reason, the compilationprocedure is not based on any of the ones used by commercial synthesis tools butis rather similar to [HJ94,PL91,May90], except that the output is not a circuit,but another program in the same language.

2 The Semantics of Verilog2.1 ModulesThe semantics of Verilog are given in terms of Relational Duration Calculus[PH98]. A more complete presentation of these semantics can also be found in[Pac98]. We assume the reader to be familiar with Duration Calculus [ZHRR91].We assume that each module P has a number of output wires out(P) to whichno other module may write. Also, the assignments to the outputs of a modulemust take some time. All modules are allowed to read the output variables ofother modules, but reading and writing to and from the same global wires atthe same time is not permitted to avoid non-determinism.The assumption that module outputs are disjoint gives us the opportunity tode�ne parallel composition1 as:[[P k Q]] def= [[P]] ^ [[Q]]Continuous assignment: assign v=e forces v to the value of expression e:[[assign v=e]] def= dv = ee�where dP e� = dP e _ de. Mutually dependant continuous assignments are notallowed in the language subset for which we de�ne the semantics.Procedural behaviour: initial P behaves like the sequential program P:[[initial P]] def= [[P]]out(P)(Const(out(P)))[[P]]W (D) describes the behaviour of an individual program module P whose out-put wires are given in set W and which will, upon termination, behave as de-scribed by the duration formula D. Const(W) is de�ned as follows:Const(W) def= 8w 2W � 9b � (�w = b) ^ (�!w = b) ^ dw = be�2.2 Imperative Programming StatementsVerilog statements can be split into two sets: imperative programming-like con-structs which take no simulation time, and timing control instructions, whichare closer to hardware concepts and may take simulation time to execute.Skip: [[skip]]W (D) def= DAssignments: [[v=e]]W (D) def= (�!v = �e ^ Const(W � fvg) ^ de) Wo9 DConditionals: [[if b then P else Q]]W (D) def= [[P]]W (D) / �b . [[Q]]W (D)Sequential composition: [[P;Q]]W (D) def= [[P]]W ([[Q]]W (D))Loops: [[while b do P]]W (D) def= �X � ([[P]]W (X) / �b . D)Fork . . . join: [[fork P; Q join]]W def=([[P]]WP (D) ^ [[Q]]WQ (Const(WQ) WQo9 D))_([[Q]]WQ (D) ^ [[P]]WP (Const(WP) WPo9 D))1 Note that in Verilog, no symbol is used to denote the parallel composition of modules.We use this notation to make the semantics easier to read and follow.

WP and WQ must be disjoint.The semantics of do while loops, forever loops, case statements, etc can bespeci�ed in terms of these constructs.2.3 Timing Control InstructionsBlocking Assignments. Assignments can be delayed by using guards, whichblock time until a certain condition is satis�ed. The assignment v=guard e readsthe value of expression e and assigns it to v as soon as the guard is lowered:[[v=guard e]]W (D) def= 9� � [[�=e ; guard ; v=�]]W[f�g(D)The assignment guard v=e waits until the guard is lowered, reads the value ofexpression e and assigns it to v:[[guard v=e]]W (D) def= [[guard ; v=e]]W (D)Guards. Guards control the ow of time by blocking further execution un-til they are lowered. Two types of guards are treated here: time delay guardsand level triggered guards. Other types of guards can be described in a similarmanner.#n blocks the execution of a module by n time units:[[#n]]W (D) def= (l < n ^ Const(W))_(l = n ^ Const(W)) Wo9 Dwait v blocks execution until v carries the value 1.[[wait v]]W (D) def= (d:ve� ^ :�!v ^ Const(W))_(d:ve� ^ �!v ^ Const(W)) Wo9 DSpikes on communication variables are considered to be undesirable behaviourand are not captured by wait statements. A syntactic check su�ces to ensurethat no spikes will appear on a global variable in the system.2.4 Non-blocking AssignmentsThe semantics of non-blocking assignment are de�ned by:[[v<=guard e]]W (D) def= [[v=guard e]]fvg(Const(v)) kfvgDSince both processes running in parallel can control the variable v, they arecomposed together using a merging parallel composition operator. Whenever avariable is assigned to by both processes it non-deterministically takes one ofthe values it is assigned to2.2 Note that this is weaker than the simulation semantics of Verilog, which performsnon-blocking assignments only once no enabled threads remain. Our method is toonon-deterministic | thus it permits us to make only sound judegments with respectto the simulation semantics of Verilog.

It is also necessary to maintain an extra boolean state for every Verilog variablev: �v, which holds in those time slots when variable v has just been assigned avalue. [[P kfvgQ]]W (D) def= 9vP ; vQ; �vP ; �vQ �P [vP ; �vP =v; �v] ^Q[vQ; �vQ=v; �v] ^Join(vP ; vQ; v)Join(v1; v2; v) def= d�v = �v1 _ �v2e� ^266666 (�v1 ^ :�v2) v = v1)^ (�v2 ^ :�v1) v = v2)^ (�v1 ^ �v2) v = v1 _ v = v2)^ (:�v1 ^ :�v2) v = 1� v) 377777�Where (P � n)(t) = P (t � n). Obviously, the state variables �v need to bemaintained by the model. This is done by adding the information that �v is trueimmediately after assignments [Pac98].2.5 Other IssuesTo avoid unnecessarily long program descriptions, we will write while b do Pas b�P, do P while b as P�b, if b then P else Q by P / b . Q and fork P;Q join as P k Q. Overriding the k symbol is justi�ed by the following algebraiclaw: initial Pk initial Q = initial fork P; Q joinTo avoid problems with programs such as while true do skip, we insist thatbodies of loops must take time to terminate. A simple syntactic check is su�cientto ensure this. If dur(P) holds, we can prove that P must always takes time toexecute. dur(P) is de�ned as follows:dur(wait v) def= false dur(skip) def= falsedur(v=e) def= false dur(v<=g e) def= falsedur(v=g e) def= dur(g) dur(g v=e) def= dur(g)dur(#0) def= false dur(#(n+ 1)) def= truedur(b � P) def= false dur(P � b) def= dur(P)dur(P ;Q) def= dur(P) _ dur(Q) dur(PkQ) def= dur(P) _ dur(Q)dur(P / b . Q) def= dur(P) ^ dur(Q)3 Algebraic Laws3.1 NotationThe laws given in this section state an equality (or inequality) between pairsof programs. It is obviously important to state what we mean by P v Q (Pis re�ned by Q). For P and Q to be comparable, they have to share the same

alphabet. The other condition is that for any possible continuation, the P canalways exhibit (at least) all behaviours of Q. Equality then follows from thisde�nition. Formally, this may be written as:P v Q def= [[Q]]V (D)) [[P]]V (D)P = Q def= P v Q ^ Q v Pwhere D can range over all valid relational duration formulae and V is thealphabet of P and Q.3.2 MonotonicityThe �rst laws state that the programming constructs in Verilog are monotonic |if we selectively re�ne portions of the program, we are guaranteed a re�nementof the whole program. If we have a program context C, then we can guaranteethat if P v Q then C(P) v C(Q)if P = Q then C(P) = C(Q)To guarantee monotonicity, programs may not use non-blocking assignments.This constraint is somewhat weakened later in the paper.3.3 Parallel and Sequential CompositionSequential composition is associative:P ; (Q;R) = (P ;Q);RParallel composition is commutative and associative. Also, if dur(P) holds, then#1 is a unit of parallel composition:P k Q = Q k PP k (Q k R) = (P k Q) k RP k #1 = PIn fact #1 distributes in and out of parallel composition:#1;P k #1;Q = #1; (P k Q)3.4 Non-determinism and AssumptionsIt will be found useful to introduce new Verilog constructs. These will featurein our proofs but will eventually be removed to reduce the program back to astandard Verilog program.One useful construct is non-deterministic composition. The non-deterministiccomposition of two programs can behave as either of the two. More formally, wede�ne it as:

[[P uQ]]W (D) def= [[P]]W (D) _ [[Q]]W (D)From this de�nition it immediately follows that non-determinism is commuta-tive, associative, idempotent and monotonic.Non-determinism also distributes over sequential composition:P ; (Q u R) = (P ;Q) u (P ;R)(P uQ);R = (P ;R) u (Q;R)Another useful statement is the assumption. The statement assume b, expressedas b>, claims that expression b has to be true at that point in the program:[[b>]]W (D) def= (de _ dbe; true) ^DConjunction of two conditions results in sequential composition of the conditions.Two corollaries of this are commutativity and idempotency of assumptions withrespect to sequential composition:(b ^ c)> = b>; c>b> = b>; b>b>; c> = c>; b>Disjunction of two conditions acts like non-determinism:(b _ c)>;P = (b>;P) u (c>;P)Assumptions make a program more deterministic:P v b>;P3.5 ConditionalSequential, parallel and non-deterministic composition distributes out of condi-tionals: (P / b . Q);R = (P ;R) / b . (Q;R)P u (Q / b . R) = (P uQ) / b . (P u R)P k (Q / b . R) = (P k Q) / b . (P k R)Provided that the values of the variables in expression b are not changed im-mediately by programs P and Q, a conditional can be expressed in terms ofnon-determinism and assumptions:P / b . Q = (b>;P) u (:b>;Q)The precondition is satis�ed if P has a pre�x P1 such that dur(P1) and thevariables of b are not assigned in P1. Similarly for Q.

3.6 LoopsThe recursive nature of loops can be expressed quite succinctly in terms ofalgebraic laws:Unique least �xed point: Q = (P ;Q) / b . skip if and only if Q = b � P .As immediate corollaries of this law, we have:(b � P) / b . skip = b � PQ = P ;Q if and only if Q = forever PQ = P ; (Q / b . skip) if and only if Q = P � bThe �rst law can be strengthened to:Q = (P ;Q) / b . R if and only if Q = (b � P);R.The following law allows us to move part of a loop body outside:If Q;P ;Q = Q;Q then (P ;Q) � b = P ; (Q � b)3.7 Continuous AssignmentsFor convenient presentation of certain properties, we will allow programs of theform P; assign v=e. This will act like:[[P]]W ([[assign v=e]] ^ Const(W � fvg))Similarly, P; (assign v=e k Q) acts like:[[P]]W ([[assign v=e k initial Q]])3.8 CommunicationThe use of synchronisation signals can greatly increase the readability of code.These `channels' can be implemented as global variables which normally carrya value of zero, but briey go up to one when a signal is sent over them. `Waitfor signal s', s?, is thus easily implemented as:s? def= wait sTo send a signal, without blocking the rest of the program for any measurablesimulation time but leaving the signal on for a non-zero time measure, the non-blocking assignment statement can be rather handy:s! def= s=1 ; s<= #� 0What value of � is to be used? Obviously, � has to be larger than zero. However,taking a value of 1 or larger leads to a conict in the program: s! ; #� ; s!The solution is to use a value of 0.5 for �. This does not invalidate previousreasoning based on discrete time. E�ectively, what we have done is to reduce thesize of the smallest time step to a level which normal Verilog programs will nothave direct access to.If non-blocking assignments are only used for signals, and signals are accessedonly using s! and f(s)?, we can guarantee the monotonicity of any programcontext despite the presence of non-blocking assignments.

3.9 Algebraic Laws for CommunicationSignal Output We will say that s! 2 P is command s! occurs somewhere inprogram P . Similarly, s! =2 P means that s! does not occur anywhere in programP . In both cases, we assume that s is a signal in the output alphabet of P .Signals start o� as false, provided that they are not initially written to. Also,between any two time consuming programs which do not output on the signal,the signal is false. If dur(P), dur(Q) and s! =2 P , s! =2 Q:initial P ;R = initial :s>;P ;RP ;Q = P ;:s>;Qs! sets signal s to true: s! = s!; s>Output on a signal can be moved out of parallel composition:(s!;P) k Q = s!; (P k Q)Signalling and assumptions commute:s!; b> = b>; s!Wait on Signal Waiting stops once the condition is satis�ed:(s>;P) k (s?;Q) = (s>;P) k QExecution continues in parallel components until the condition is satis�ed. If nosignal is sent during the initial part of the program, we can a�ord an extra timeunit. Provided that s! =2 P :(:s>;P ;Q) k (s?;R) = :s>;P ; (Q k s?;R)(:s>;P ;Q) k (#1; s?;R) = :s>;P ; (Q k s?;R) provided that dur(P)Furthermore, if P is the process controlling a signal s, and s starts o� with a value0, the value of f(s) will remain that of f(0) until P takes over. If s 2 out(P):(s=0)>; f(s)?;P = (s=0)>; f(0)?;PContinuous Assignment Signals It will be found useful write to some sig-nals using continuous assignments. The laws given to handle signal reading andwriting no longer apply directly to these signals and hence need modi�cation.The following laws thus allow algebraic reasoning about a signal s written to bya continuous assignment of the form:assign s = f(s1; : : : ; sn)where all variables s1 to sn are signals. For s to behave like a normal signal(normally zero except for half unit long phases with value one), f(0; 0; : : :0)

has to take value 0. These laws allow us to transform a signal assigned to by acontinuous assignment to one controlled by a sequential program (or vice-versa):If b) f(s) then:assign s=f(s) k b>;P = b>; s!; (assign s=f(s) k P)If b) :f(s) and for all i, si =2 P then:assign s=f(s) k b>;P ;Q = b>;P ; (assign s=f(s) k Q)Furthermore, instances of a signal controlled by a continuous assignment can beremoved using the following law:assign s=f(s) k P (s?) = assign s=f(s) k P (f(s)?)3.10 Signals and MergeSignals now allow us to transform a process to use a di�erent set of variables.The trick used is to de�ne a merging process which merges the assignments ona number of variables to a new variable.The �rst thing to do is to make sure that we know whenever a variable has beenassigned to. The technique we use is simply to send a signal on �v to make itknown that v has just been assigned a value. Note that we will only allow thisprocedure to be used on global variables, which guarantees that no more thanone assignment on a particular variable can take place at the same time.We thus replace all assignments: v=g e by (v=g e; �v!) and similarly g v=e by(g v=e; �v !)The program Merge will collapse the variables v1 and v2 into a single variable v,provided that they are never assigned to at the same time:Merge def= assign �v=�v1 _ �v2k assign v=(v1 / �v1 . v2) / �v . v�k assign v�=#0.5 vThe following laws relate Merge with parallel composition and conditional:P ;Q v (P [v1=v];Q[v2=v]) k MergeP / b . Q v (P [v1=v] / b . Q[v2=v]) k MergeNote that these laws can be strengthened to equalities if we hide the extravariables appearing on the right hand side.4 Triggered Imperative ProgramsWe will not be compiling just any program, but only ones which are triggeredby a start signal and upon termination issue a �nish signal. The environmentis assumed not to interfere with the program by issuing a further start signalbefore the program has terminated.

Triggered programs can be constructed from general imperative programs: fs (P) def= forever (s?; P ; f !)At the topmost level, these programs also ensure that the termination signal isinitialised to zero: i fs (P) def= initial f = 0; fs (P)The environment constraint for two signals s and f may now be easily expressed:�fs w forever (s!; #1; f?;�0)where �0 is a statement which, once triggered, waits for an arbitrary length oftime (possibly zero or in�nite) before allowing execution to resume.[[�0]]W (D) def= Const(W) _ Const(W) Wo9 DThe unit delay ensures that if a start signal is sent immediately upon receivinga �nish signal, we do not interpret the old �nish signal as another �nish signal.Now, we ensure that if we start o� with a non-zero delay, the start signal isinitially o�: i�fs w ((:s>;�) u skip) ; �fs� is a statement almost identical to �0 but which, once triggered, waits for anon-zero arbitrary length of time (possibly in�nite) before allowing execution toresume. [[�]]W (D) def= Const(W) _ (l > 0 ^ Const(W)) Wo9 D� obeys a number of laws which we will �nd useful later:�0 = skip u �If dur(P) then � v PIf s is a signal then its behaviour is a re�nement of:(skip u :s>;�); forever s!;�The results which follow usually state a re�nement which holds if a particularenvironment condition holds. Hence, these are of the form:environment condition) (P) Q)To avoid confusion with nested implications, we de�ne the conditional re�nementi�fs ` P v Q as follows:i�fs ` P v Q def= ` i�fs) (Q) P)i�fs ` P = Q def= (i�fs ` P v Q) ^ (i�fs ` Q v P)The following proofs assume that all programs (and sub-programs) satisfy dur(P)(hence programs take time to execute). We also add the constraint that programsdo not read or write as soon as they a executed (P = Q;R such that Q does notread or write data). Note that if all primitive programs we use satisfy these con-ditions, so do programs constructed using sequential composition, conditionals,fork join and do while loops.

5 Hardware Compilation5.1 Basic ResultsWe start by establishing ways of decomposing our programs into a number ofsmaller ones running in parallel. The proofs of the following three theorems canbe found in the appendix.Theorem 1.1: Sequential composition can be thus decomposed:i�fs ` i fs (P ;Q) v i ms (P 0) k i fm(Q0) k Mergewhere for any program P , we will use P 0 to represent P [vP =v]. Merge has beende�ned in section 3.10.Theorem 1.2: Conditional statements can be thus decomposed:�fs ` fs (P / b . Q) v fPsP (P 0) k fQsQ (Q0) k Merge k Interfacewhere Interface = assign sP = s ^ b kassign sQ = s ^ :b kassign f = fP _ fQTheorem 1.3: Loops can be decomposed into their constituent parts.�fs ` fs (P � b) v fPsP (P) k Interfacewhere Interface = assign sP = s _ (fP ^ b) kassign f = fP ^ :b5.2 CompilationUsing these re�nements, we can now de�ne a compilation process:	fs (P ;Q) def= 	ms (P 0) k 	fm(Q0) k Merge	fs (P / b . Q) def= 	fPsP (P 0) k 	fQsQ (Q0) k Merge k InterfaceC	fs (P � b) def= 	fPsP (P) k InterfaceL	fs (P) def= fs (P) otherwiseWe know that the individual steps of the compilation process are correct. How-ever, it is not yet clear whether the topmost environment condition is su�cientto show that the compiled program is a re�nement of the topmost program.In fact, we prove that a stronger invariant holds thoughout the compilationprocess. This invariant is that for any start signal s and related �nish signal f :s f � s s� 1 and s f � s s � s f + 0:5We start by establishing that this invariant is su�cient to guarantee the en-vironment condition (lemma 2.1). Furthermore, i�fs and i fs (P) guarantee theinvariant (lemmata 2.2, 2.3).

Lemma 2.1: Provided that s and f are signals, if s f � s s� 1 and s f � s s �s f + 0:5 are valid duration formulae, then so is i�fs .Proof: The proof is given in the appendix.Lemma 2.2: i�fs) s s � s f + 0:5.Proof: The proof is given in the appendix.Lemma 2.3: Provided that dur(P):i fs (P)) s f � s s ^ s f � s s� 1Proof: The proof is given in the appendix.Using these results, we can now show that the invariant is guaranteed by thecompilation process.Lemma 2.4: The environment conditions follow along the compilation process:	fs (P)) s f � s sProof: The proof can be found in the appendix.Lemma 2.5: 	fs (P)) s f � s s� 1Proof: The proof follows almost identically to that of lemma 2.4 (see appendix).5.3 Compiler CorrectnessTheorem 2: If s is a signal, then:s s � s f + 0:5 ` fs (P) v 	fs (P)Proof: Assume that s s � s f + 0:5.	fs (P) guarantees that s f � s s (lemma 2.4) and that s f � s s � 1 (lemma2.5).Hence, by lemma 2.1, we know that i�fs .The proof now follows by induction on the structure of the program P .In the base case, when P is a simple program, 	fs (P) is just fs (P), and hencetrivially guarantees correctness.For the inductive case we consider the di�erent possibilities:Sequential composition: We need to prove that s s � s f +0:5 ` fs (Q;R) v	fs (Q;R)But, by de�nition of 	 , and the further application of lemma 2.4:	ms (Q0)k	fm(R0) ^ s m � s s ^ s f � s mHence, combining the above inequalities with the previous ones:s m � s f + 0:5 ^ s s � s m+ 0:5By the inductive hypothesis, we thus conclude that: ms (Q0) k fm(R0)But we also know that i�fs . Thus we can apply theorem 1.1 to conclude that fs (Q;R).Therefore, s s � s f + 0:5 ` fs (P ;Q) v 	fs (P ;Q).

Conditional: We need to prove that:s s � s f + 0:5 ` fs (Q / b . R) v 	fs (Q / b . R)As before, we know that: s f � s s � s f + 0:5.Also, by de�nition of 	 and lemma 2.4:	fQsQ (Q) k 	fRsR (R) k InterfaceCs fR � s sQs fR � s sRUsing simple duration calculus arguments on the interface part, we can con-clude that: s s = s sQ + s sRs f = s fQ + s fR � s(fQ ^ fR)Hence: s s � s f + 0:5) s sQ + s sR � s fQ + s fR + 0:5� s(fQ ^ fR)) s sQ � s fQ + 0:5� (s sR � s fR)� s(fQ ^ fR)) s sQ � s fQ + 0:5The last step is justi�ed since s sR � s fR.The same argument can be used to show that s sR � s fR + 0:5. Hence, wecan use the inductive hypothesis to conclude that: fQsQ (Q) k fRsR (R) k InterfaceCBut, since i�fs holds, we can use theorem 1.2 to conclude that:s s � s f + 0:5 ` fs (Q / b . R) v 	fs (Q / b . R).Loops: Finally, we need to prove that s s � s f + 0:5 ` fs (Q � b) v 	fs (Q � b).The argument is almost identical to the one given for the conditional state-ment, except that the equality we need to derive from the interface so as toenable us to complete the proof is that:s sP = s s+ s fP � s f � s s ^ fP ^ bHence, by induction, we can conclude that s s � s f + 0:5 ` fs (P) v 	fs (P). 2Corollary: i�fs ` i fs (P) v 	fs (P).Proof: Follows immediately from lemma 2.2 and theorem 2. 2

5.4 Basic InstructionsImplementation of a number of basic instructions in terms of continuous assign-ments can also be easily done. Consider, for example:	fs (#1) def= assign f = #0.5mk assign m = #0.5 s	fs (#1 v = e) def= 	fs (#1)k assign v� = #0.5 vk assign v = e / f . v�For a de�nition 	fs (P) def= Q, it is enough to verify that i�fs ` fs (P) v Q. Theresult of the corollary can then be extended to cater for these compilation rules.Hence, these laws can be veri�ed, allowing a total compilation of a programwritten in terms of these instructions and the given constructs into continuousassignments.5.5 Single RunsFinally, what if we are interested in running a compiled program just once? Itis easy to see the i�fs inequality is satis�ed by initial s!. Also, we can provethat: initial s! k fs (P) = initial s!;P ; f !Hence, for a single run of the program, we simply add an environment satisfyingthe desired property: initial s!.6 Comparisons and ConclusionsMost published Verilog and VHDL formal semantics are operational in style,mainly because this complements the event based nature of their simulationcycle, which is used to informally de�ne the semantics of the language in o�cialdocumentation. [KB95,Bor95] give a rather comprehensive (if dated) overview ofthe work done in formalising VHDL semantics. The need for the formalisation ofVerilog semantics was advocated in [Gor95], since when a number of semanticshave been published [GG98,SX98,Sas99,FLS99].This paper applies to Verilog a number of techniques already established inthe hardware compilation community [KW88,May90], giving us a number ofcompilation rules which translate a sequential program into a parallel one. Mostof the proof steps involve a number of applications of the laws of Verilog, andwould thus bene�t from machine veri�cation.One interesting result of the approach applied here is the separation placedbetween the control and data paths, which is clearly visible from the compilationprocedure.

The method used here is very similar to the compilation procedure used with Oc-cam in [May90] and Handel in [HJ94,PL91]. The transformation depends heavilyon the timing constraints | unlike the approach usually taken by commercialsynthesis tools which usually synchronise using global clock and reset signals[Pal96]. The main di�erence between the compilation of Verilog programs wede�ne with that of Occam or Handel is the fact that timing control can be ex-plicitly expressed in Verilog. It is thus not acceptable to assume that immediateassignments take a whole time unit to execute (as is done in the case of Occamand Handel). It was however necessary to impose the constraint that all com-piled programs take some time to execute. This limitation obviously allows us tocompile only a subset of Verilog programs. However, clever use of algebraic lawscan allow the designer to modify code so as to enable compilation. How muchof this can be done automatically and e�ciently by the compiler itself is still anopen question.References[Bor95] Editor Dominique Borrione. Formal methods in system design, special issueon VHDL semantics. Volume 7, Nos. 1/2, Aug 1995.[FLS99] John Fiskio-Lasseter and Amr Sabry. Putting operational techniques tothe test: A syntactic theory for behavioural verilog. In The Third Inter-national Workshop on Higher Order Operational Techniques in Semantics(HOOTS'99), 1999.[GG98] M.J.C. Gordon and A. Ghosh. Language independent RTL semantics. InProceedings of IEEE CS Annual Workshop on VLSI: System Level Design,Florida, USA, 1998.[Gor95] Mike Gordon. The semantic challenge of Verilog HDL. In Proceedings of thetenth annual IEEE symposium on Logic in Computer Science (LICS '95)San Diego, California, pages 136{145, June 1995.[HJ94] Jifeng He and Zheng Jianping. Simulation approach to provably correcthardware compilation. In Formal Techniques in Real-Time and Fault Tol-erant Systems, number 863 in Lecture Notes in Computer Science, pages336{350. Springer-Verlag, 1994.[IEE95] IEEE. Draft Standard Verilog HDL (IEEE 1364). 1995.[KB95] Carlo Delgado Kloos and Peter T. Breuer. Formal Semantics for VHDL.Number 307 in The Kluwer International Series in Engineering and Com-puter Science. Kluwer Academic Publishers, 1995.[KW88] K. Keutzer and W. Wolf. Anatomy of a hardware compiler. In David S.Wise, editor, Proceedings of the SIGPLAN '88 Conference on ProgrammingLanugage Design and Implementation (SIGPLAN '88), pages 95{104. ACMPress, June 1988.[May90] D. May. Compiling occam into silicon. In C. A. R. Hoare, editor, Develop-ments in Concurrency and Communication, University of Texas at AustinYear of Programming Series, chapter 3, pages 87{106. Addison-Wesley Pub-lishing Company, 1990.[Ope93] Open Verilog International. Verilog Hardware Description Language Refer-ence Manual (Version 2.0). Open Verilog, March 1993.

[Pac98] Gordon J. Pace. Hardware Design Based on Verilog HDL. PhD thesis,Computing Laboratory, University of Oxford, 1998.[Pal96] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis.Prentice Hall, New York, 1996.[PH98] Gordon J. Pace and Jifeng He. Formal reasoning with Verilog HDL. In Pro-ceedings of the Workshop on Formal Techniques in Hardware and Hardware-like Systems, Marstrand, Sweden, June 1998.[PL91] Ian Page and Wayne Luk. Compiling occam into �eld-programmable gatearrays. In Wayne Luk and Will Moore, editors, FPGAs, pages 271{283.Abingdon EE&CS books, 1991.[Sas99] H. Sasaki. A Formal Semantics for Verilog-VHDL Simulation Interoper-ability by Abstract State Machine. In Proceedings of DATE'99 (Design,Automation and Test in Europe), ICM Munich, Germany, March 1999.[SX98] G. Schneider and Q. Xu. Towards a formal semantics of verilog using dura-tion calculus. Lecture Notes in Computer Science, 1486:282{??, 1998.[ZHRR91] Chaochen Zhou, Michael R. Hansen, Anders Ravn, and Hans Rischel. Du-ration speci�cations for shared processors. In J. Vytopil, editor, FormalTechniques in Real Time and Fault Tolerant Systems, number 571 in Lec-ture Notes in Computer Science, pages 21{32. Springer-Verlag, 1991.A Compilation TheoremsTheorem 1.1: Sequential composition can be thus decomposed:i�fs ` i fs (P ;Q) v i ms (P 0) k i fm(Q0) k Mergewhere for any program P , we will use P 0 to represent P [vP =v]. Merge has beende�ned in section 3.10.Proof: First note the following result:i�fs k fs (P ;Q)= f communication laws g(:s>;� u skip); s!;P ;Q; f !;�0; (�fs k fs (P ;Q))= f by law of �0 g(:s>;� u skip); s!;P ;Q; f !; (:s>;� u skip); (�fs k fs (P ;Q))= f by de�nition of i� g(:s>;� u skip); s!;P ;Q; f !; (i�fs k fs (P ;Q))= f de�nition of forever gforever (:s>;� u skip); s!;P ;Q; f !v f new signal introduction and laws of signals gforever :m>; (:s>;� u skip); s!;P ;m!;Q; f !

Now consider the other side of the re�nement:i�fs k i ms (P 0) k fm(Q0)= f communication laws g:m>; (:s>;� u skip);P 0;m!;Q0; f !;:m>;�0; (�fs k ms (P 0) k fm(Q0))= f de�nition of i�, i and law of �0 g:m>; (:s>;� u skip);P 0;m!;Q0; f !; (i�fs k i ms (P 0) k fm(Q0))= f de�nition of forever gforever :m>; (:s>;� u skip);P 0;m!;Q0; f !We can now prove the desired re�nement:i�fs k i fs (P ;Q)v f de�nition of i and proved inequality g:f>; forever :m>; (:s>;� u skip); s!;P ;m!;Q; f != f laws of merge from section 3.10 gMerge k (:f>; forever :m>; (:s>;� u skip); s!;P 0;m!;Q0; f !)= f above claim gMerge k (:f>; (i�fs k i ms (P 0) k fm(Q0))= f de�nition of i and associativity of k gMerge k i�fs k i ms (P 0) k i fm(Q0) 2Theorem 1.2: Conditional statements can be thus decomposed:�fs ` fs (P / b . Q) v fPsP (P 0) k fQsQ (Q0) k Merge k Interfacewhere Interface = assign sP = s ^ b kassign sQ = s ^ :b kassign f = fP _ fQProof: The proof is similar to that of Theorem 1.1.Theorem 1.3: Loops can be decomposed into their constituent parts.�fs ` fs (P � b) v fPsP (P) k Interfacewhere Interface = assign sP = s _ (fP ^ b) kassign f = fP ^ :bProof: Again, the proof is similar to that of Theorem 1.1.Complete proofs of Theorems 1.2 and 1.3 can be found in [Pac98].

B Envrionment TheoremsLemma 2.1: Provided that s and f are signals, if s f � s s� 1 and s f � s s �s f + 0:5 are valid duration formula, then so is i�fs .Proof: Since the inequality holds for all pre�x time intervals, and s and f areboth signals, we can use duration calculus reasoning to conclude that:2((dse ^ l = 0:5); true; (dse ^ l = 0:5)) l = 1; true; dfe; true)This allows us to deduce that s!;�; s!;�) s!; #1; f?;�0; s!;�.But s is a signal, and hence satis�es (:s>;� u skip); forever s!;�.forever s!;�= f de�nition of forever loops gs!;�; s!;�; forever s!;�) f by implication just given gs!; #1; f?;�0; s!;�; forever s!;�= f de�nition of forever loops gs!; #1; f?;�0; forever s!;�) f de�nition of forever loops gforever s!; #1; f?;�0Hence, from the fact that s is a signal, we can conclude the desired result:(:s>;� u skip); forever s!;�) (:s>;� u skip); forever s!; #1; f?;�0= i�fs 2Lemma 2.2: i�fs) s s � s f + 0:5.Proof: The proof of this lemma follows by induction on the number of timesthat the environment loop is performed. We �rst note that i�fs can be rewrittenas: (:s>;� u skip); s!; #1; forever (f?;�0; s!; #1)Using the law f? = f> u (:f>; #1; f?) and distributivity of non-deterministicchoice, it can be shown that this program is equivalent to:(:s>;� u skip); s!; #1; forever 0@ f>; s!; #1u f>;�; s!; #1u :f>; #1; f?;�0; s!; #11AUsing the laws of loops this is equivalent to:(:s>;� u skip); s!; #1; forever 0@ f>; s!; #1u :s>; f>;�; s!; #1u :s>;:f>; #1; f?;�0; s!; #11AThe semantic interpretation of this program takes the form:

P 0 _ 9n : N � P ;Qn;Q0where P 0 corresponds to the partial execution of (:s>;� u skip); s!; #1, and Pto its full execution. Similarly, Q0 and Q correspond to the partial and completeexecution of the loop body.P) d:se�; (dse ^ l = 0:5); d:se�Q) (true; dfe; true ^ d:se�; (dse ^ l = 0:5)); d:se�P 0) d:se� _ d:se�; (dse ^ l = 0:5); d:se�Q0) d:se� _ (d:se�; (dse ^ l = 0:5); d:se� ^ true; dfe; true)Since P 0) s s = 0:5, it immediately follows that P 0) s s � s f + 0:5.We can also show, by induction on n, that P ;Qn implies this invariant. Anoutline of the inductive case is given below:P ;Qn+1= P ;Qn;Q) (s s � s f + 0:5);Q) (s s � s f + 0:5); (s s = 0:5 ^ s f � 0:5)) s s � s f + 0:5Finally, we can use this result to show P ;Qn;Q0) s s � s f + 0:5.P ;Qn;Q0) (s s � s f + 0:5);Q0) (s s � s f + 0:5); s s = 0 _(s s � s f + 0:5); (s s = 0:5 ^ s f � 0:5)) s s � s f + 0:5This completes the required proof. 2Lemma 2.3: Provided that dur(P):i fs (P)) s f � s s ^ s f � s s� 1Proof: Note that i fs (P) is a re�nement of (:f>;� u skip); forever f !; s?;�which is almost identical to i�sf .The proof follows almost identically to that of lemma 2.2 except that, unlike theenvironment condition, i fs (P) cannot signal on f as soon as it receives a signalon s (since P must take some time to execute). This allows us to gain the extra0.5 time unit. 2Lemma 2.4: The environment conditions follow along the compilation process:	fs (P)) s f � s sProof: The proof uses structural induction on the program:In the base case, P cannot be decomposed any further, and hence 	fs (P) = fs (P). Therefore, by lemma 2.3, we can conclude that s f � s s.Inductive case: We proceed by considering the three possible cases: P = Q;R,P = Q / b . R and P = Q � b.

Sequential composition: P = Q;R	fs (P)= f by de�nition of 	 g	ms (Q) k 	fm(R)) f by inductive hypothesis gs f � s m ^ s m � s s) f � is transitive gs f � s sConditional: P = Q / b . R	fs (P)= f by de�nition of 	 g	fQsQ (Q) k 	fRsR (R) k InterfaceC) f by inductive hypothesis gs fQ � s sQ ^ s fR � s sR ^ InterfaceC) f by de�nition of InterfaceC gs fQ � s sQ ^ s fR � s sR ^ s sQ + s sR = s s ^s f = s fQ + s fR � s(fQ ^ fR)) f by properties of � and R gs f � s sLoops: P = Q � b	fs (P)= f by de�nition of 	 g	fQsQ (Q) k InterfaceL) f by inductive hypothesis gs fQ � s sQ ^ InterfaceL) f by de�nition of InterfaceL and integral reasoning gs fQ � s sQ ^ s f = s s� (s sQ � s fQ)� s(fQ ^ b ^ s)) f by properties of � gs f � s sThis completes the inductive step and hence the result holds by induction. 2Lemma 2.5: 	fs (P)) s f � s s� 1Proof: The proof follows almost identically to that of lemma 2.4. 2

View publication statsView publication stats

https://www.researchgate.net/publication/2367130

