
A Technique for Automatically Reprogramming an
Embedded Linux System

Gianluca Valentino
Department of Communications

and Computer Engineering
University of Malta
Msida 2080, Malta

Email: gval0001@um.edu.mt

Saviour Zammit
Department of Communications

and Computer Engineering
University of Malta
Msida 2080, Malta

Email: saviour.zammit@um.edu.mt

Abstract—This paper presents a method used to automatically
reprogram an embedded Linux system using a USB (Universal
Serial Bus) pen drive. New software stored on the pen drive can
be automatically transferred and installed into the embedded
Linux System on insertion of the pen drive. The technique was
developed with the aim of creating a multi-purpose device that
could be easily reprogrammed at will. This device would then
allow a user to bypass a computer in order to transfer data
between USB peripherals.

Index Terms—USB pen drive, Automatic reprogrammability,
Embedded Linux.

I. INTRODUCTION

The method of automatic reprogramming was developed
as part of the implementation of an Intelligent Peripheral
Controller (IPC) [1]. This reprogrammable device is capable
of automatically detecting USB peripherals on insertion and
performing various tasks accordingly. Examples include the
automatic transfer of data between pen drives or the automatic
printing of a file located on a pen drive. The IPC would be
automatically reprogrammed by inserting a USB pen drive
containing the new software to be installed.

Existing methods for automatically reprogramming embed-
ded systems tend to consider the updating of low-level code
(firmware), rather than high-level programs. Yao et al. [2]
maintain that as embedded devices are achieving network
connectivity, online-update of their software is becoming more
of an issue. They present an extended form of the normal boot
loader. The new software is obtained from a TFTP server, and
is installed by writing it to flash memory.

The risks involved in updating embedded system software
are discussed in [3]. In critical systems that have to run
continuously, stopping the system for an update is not the ideal
way to do things. The contribution made in [3] is the design
of a software framework in which an application program can
be updated ‘dynamically’ while running.

Li et al. have applied the automounting technique to develop
an automatic software install/update system for Linux [4].
They placed an executable shell script file into a RPM package,
which in turn was transferred to a USB Mass Storage device.
When the device was inserted into the embedded system,
it was mounted automatically, and the shell script file was

Fig. 1. The various peripherals that can be interconnected via the IPC

executed. The disadvantage of their approach is that their im-
plementation can only detect and automatically install software
from a pen drive if only one such device is connected. The
automatic software installation procedure that they claim is
quasi-automatic, since the name of the new software package
is actually hard-coded into the software and thus the procedure
cannot be used to install software packages with different
names without modifiying the software each time.

The concept of the Intelligent Peripheral Controller (IPC)
shown in Figure 1 and developed in [1] is that of a repro-
grammable device that can detect connected USB peripherals
and automatically perform an action accordingly, without re-
quiring the intervention of a Personal Computer. The example
illustrated in Figure 1 shows the connection of a USB pen drive
to a USB printer, thus allowing a user to print a file located
on the pen drive on connection of both devices to the IPC.
Other examples include the transferring of data between two
smart phones, or the transferring of data located on a digital
camera to a USB pen drive. The IPC can be automatically
reprogrammed or the amount of tasks it can perform can be
increased by inserting a USB pen drive containing the new
software to be installed.

The automatic techniques reported in the literature and



discussed above do not fulfil the criteria of a user-friendly
plug-and-play system, thereby motivating this work. A detailed
description of features involving the data transfers between
USB peripherals mediated by the IPC is beyond the scope of
this paper, and can be found in [1].

This paper is organized into three sections. Section II
discusses the design parameters and hardware/software issues
involved. An overview of the technique implementation is
given in Section III, and evaluation and testing results are
provided in Section IV.

II. DESIGN CONSIDERATIONS

A. Hardware

The automatic reprogrammable mechanism was imple-
mented and tested on the BeagleBoard [5]. The selection of
this development board was made because of its popular usage
in prototyping embedded system applications. Its features in-
clude an OMAP 3530 ARM Cortex-A8 based microprocessor
(720 MHz), 256 MB of RAM as well as support for a
substantial number of peripherals, such as USB, HDMI, SD
Card and audio devices.

B. Software

Ubuntu was chosen as an embedded Linux OS because of
its wide support for the BeagleBoard. A kernel and a root
file system were built for the Ubuntu 9.10 distribution using
rootstock [6]. The C language is ideal for implementation of
the technique since it results in efficient, portable code, and
can easily provide access to the underlying hardware [7].

III. IMPLEMENTATION OF THE TECHNIQUE

A. USB Pen Drive Detection Mechanism

A peripheral insertion detection mechanism is required in
order to determine whether a pen drive has been inserted into
the system. One such mechanism is udev [8]. Its features
include the ability to execute programs when certain device
events occur (such as insertion or removal), as well as allowing
access to information about currently attached devices. Thus,
the automatic reprogramming software resident in the perma-
nent memory on the board would not need to continuously
poll the device for any activity.

B. Program Implementation

In order to keep production costs low, the current implemen-
tation assumes a device (such as the IPC) that is devoid of any
user interface, such as a screen. Since this denies the user the
option of manually selecting the new software to be installed,
the user is therefore required to place the new software in a
certain pre-established folder on the pen drive, for example
‘New Software’. The insertion of the pen drive triggers udev,
which in turn runs the program (written in C).

This program, termed auto-install, searches for and copies
any new software packages on the pen drive to the
/usr/local/packages directory on the board. The software is
determined to be ‘new’ by checking whether a software
package of the same name already exists in the directory. The

software package consists of two files, namely the executable
binary and an installer script.

The executable binary is extracted to /usr/local/bin, and is
run whenever the new feature is required, for example the
feature of automatically transferring files between two pen
drives. The installer script is extracted to /usr/local/install, and
is executed to update the udev rules file with new rules. This
ensures that the new devices to be supported by this feature
will be detected on insertion, and the corresponding executable
will be run by the udev rule. If one considers the new feature
to be that of being able to print directly from a pen drive, then
the new devices are the pen drive and the printer. Extraction of
both the executable binary and the installer script is performed
by copying the file with the standard C fread function.

The inner loop that checks whether the file name length is
greater than 7 ensures that the current directory and parent di-
rectory files are not processed. The automatic reprogramming
technique loops for as long as there are new software packages
present on the pen drive. A graphical depiction of the process
is shown in the flowchart in Figure 2.

IV. EVALUATION AND TESTING RESULTS

The evaluation and testing of the technique consisted of
observing whether new software updates stored on the pen
drive are correctly installed. In addition, a set of benchmarks
were developed to compare the speed of execution of the
automatic reprogramming technique when running on the
BeagleBoard with the same program re-compiled and running
on a MSI EX600 laptop [9], also running Ubuntu 9.10. The
purpose of the latter test was to evaluate the reduction in
performance, if any, of the embedded system against a fully
functional PC-based Linux system.

A. Verification of the Technique

A typical scenario consisting of a new feature supporting
the automatic transfer of data between two pen drives was
considered. On insertion of the pen drive with the ‘usb-to-
usb’ zip file located in the ‘New Software directory on the
pen drive, the executable binary usb-to-usb and the installer
script usb-to-usb install were verified to have been copied to
the appropriate locations by looking at the directory structure
on the board via a minicom terminal from the host computer.

The udev rules file was also verified to have been updated
with the following rules:

ACTION==“add”, KERNEL==“sd[a-z]*”,
RUN+=“/usr/local/bin/usb-to-usb %k 1”
ACTION==“remove”, KERNEL==“sd[a-z]*”,
RUN+=“/usr/local/bin/usb-to-usb %k 2”

The rule is therefore sensitive to changes in ‘/dev/sd[a-z]*’,
which is a regular expression indicating files in /dev associated
with USB pen drives. If a pen drive is added to the system,
the usb-to-usb program is executed. Parameters may also be
passed to the program. In the above example, ‘%k’ refers to
the kernel name (e.g. sda, sda1 etc.) while ‘1’ is a flag specific
to this example, indicating that the pen drive has been inserted.



Fig. 2. Flowchart of Program Execution

TABLE I
SOFTWARE PACKAGES USED IN TESTING

Software Package File Size (KB)
usb-backup 15.8

camera-backup 13.2
usb-to-usb 43.4

webcam-display 12.1
usb-to-printer 39.6
printer-config 45.8

wifi 14.1
wifi-config 44.5

Fig. 3. Comparison of auto-install Execution Duration

In the case of the second rule, ‘2’ is a flag that indicates that
the pen drive has been removed.

B. Performance Analysis of the Technique

The time taken for the automatic reprogramming of the IPC
to occur for a given feature was measured using time. This is
a standard Linux utility used to determine the time taken for a
program to execute. The MSI EX600 laptop supports a 2 GHz
Intel R© Core TM 2 Duo processor and 2 GB of DDR2 RAM.
A comparison of the times taken to install various programs
whose implementation is explained in [1] is shown in Table
1.

The comparison in execution duration illustrated in Figure
3 was made to establish whether it would be feasible from
a view-point of speed to implement the software technique
on a low-cost device which could support multiple features.
The results obtained show that the execution duration for the
automatic reprogramming technique when running on both
types of hardware is comparable. In addition, the time taken to
install the a new program is proportional to its size, which is as
expected. One must consider that these results were obtained
notwithstanding differences of approximately a factor of 8 in
the amount of RAM and a factor of 2.8 in the CPU speed of
the two types of hardware.



V. CONCLUSION

The contribution of this work was the design and im-
plementation of a method to automatically reprogram an
embedded Linux system with the use of a USB pen drive.
The current implementation runs a binary executable on top
of a Ubuntu Linux operating system, together with udev as
a hardware detection mechanism. Although Ubuntu was used
as an embedded Linux System, the technique can be extended
to any other distribution provided that udev is installed. The
software technique was verified to function correctly, and its
performance in terms of execution speed was found to be
comparable to the same implementation running on a MSI
EX600 laptop. The results of this research show that it is
feasible to implement such a technique on a small device,
which could then be used to bypass a desktop computer
in performing daily tasks involving the transferring of data
between USB peripherals.

REFERENCES

[1] G. Valentino and S. Zammit, Design and Implementation of an Intelligent
USB Peripheral Controller, presented at the 3rd National ICT conference,
WICT 2010, San Gwann Malta.

[2] G. Yao, W. Zhang and J. Wang, The design and implementation of online-
update on embedded devices, in Proc. of IEEE International Conference
on Computer Science and Software Engineeering, 2008, pp. 24-27.

[3] M. Hicks and S. Nettles, Dynamic software updating, in ACM Transac-
tions on Programming Languages and Systems, vol. 27, no. 6, November
2005, pp. 1049-1096.

[4] T. Li and H. Pei-wei, Automatic software install/update for embedded
linux, in Journal of Shanghai Jiaotong University (Science), vol. 13, no.
1, February 2008, pp. 107-109.

[5] BeagleBoard System Reference Manual Rev C4, December 2009.
[6] Rootstock project web page. [Online]. Available: https://launchpad.net/

projectrootstock
[7] M. Barr and A. Massa, Programming Embedded Systems with C and

GNU Development Tools, 2nd edition, O’Reilly, 2006.
[8] G. Kroah-Hartman, udev - a userspace implementation of devfs, in

Proceedings of the Linux Symposium, July 2003, pp. 263-271.
[9] MSI EX600 Manual, June 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/221290913

