
WICT PROCEEDINGS, NOVEMBER 2009 1

Offline Runtime Verification with Real-Time Properties: A Case Study

Christian Colombo
Dept. of Computer Science

University of Malta
christian.colombo@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Patrick Abela
Ixaris Ltd

Malta
patrick.abela@ixaris.com

Abstract

Online monitoring of software systems has lately been
gaining popularity. Yet, such monitoring interferes
with the system under observation, possibly causing
unexpected repercussions such as system slowdown.
In various cases, such as the financial sector, it is
still worth detecting a problem late. The awareness of
the problem might be useful to avert similar problems
from reoccurring in the future. TheLARVA monitoring
framework has been adapted to support offline moni-
toring of systems and has been applied to an industrial
case study — a financial transaction system. Various
interesting issues emerge: initialisation of monitors,
and the implementation of timestamp-driven clocks.

Index Terms

runtime verification, real-time properties, duration cal-
culus

1. Introduction

To date, the most widely used technique for software
quality assurance is testing. Yet, with testing in place,
we have grown accustomed to expect a newly released
software to contain bugs. This situation might be
acceptable for a word processor but not ideal for a
system which handles financial transactions. Model
checking [4] techniques, which guarantee that a system
adheres to its properties no matter what the inputs
are, is the golden grail. Unfortunately, it does not
scale up well for large systems. A possible solution
to this dilemma is runtime monitoring [5] where a
system is continuously being monitored to detect any
problems which might arise and possibly take some

This work is intended as an internal report.

remedy action. The idea of monitoring is not new and
has been used for decades to monitor critical systems
such as power plants. In our approach, instead of
installing sensors to detect malfunction of machinery,
we insert monitors in software detecting system calls
and variable changes. Instead of checking against fluid
leaks, we check that no data is given to unauthorised
users. Instead of shutting down part of the plant in
case of a fault, we block a malicious user from the
system. There are two modes of monitoring: online
and offline. Online monitoring is when monitoring is
done in synch with the observed system, i.e. the system
waits for the monitor to complete its verification before
progressing. In the case of offline monitoring, a log of
events is monitored, possibly much later than the actual
time the events occurred. This means that the monitor
cannot take recovery actions at the time when the
problem occurs. The advantage is that monitoring does
not interfere with the system except for the logging of
events, which is typically performed in any case.

In this paper, we present the adaptation of the runtime
monitoring system LARVA applied to an industrial case
study from Ixaris Ltd. The contributions of this work
are two-fold: (i) an offline monitoring architecture
supporting a highly expressive logic, initialisation of
monitors, and timestamp-driven clocks; (ii) the appli-
cation of the architecture on an industrial case study.

This paper is structured as follows: next we give
background information about LARVA and the Ixaris
system (on which the case study was carried out).
In Section 4 we give an overview of the architecture
— going into detail in certain interesting aspects. An
account of the properties of the case study is given
in the Section 5. Subsequently, we relate the work to
the literature in Section 6 and conclude, giving future
directions.



2 WICT PROCEEDINGS, NOVEMBER 2009

2. Background

2.1. LARVA

A runtime verification architecture normally involves
the following five components: (i) a system to be
monitored; (ii) a set of specifications written in some
formal notation; (iii) a stream of events extracted from
the system in (i); (iv) a monitoring system which
receives the events and verifies them according to the
specification in (ii); and (v) a feedback loop through
which the monitor may influence the system in case
of property violation. The LARVA architecture is no
exception and has the above five components. How-
ever, for the purposes of this paper, we will ignore the
feedback loop capability of LARVA .
A user who wants to monitor a system using LARVA

must supply the system itself — a Java program — and
a set of specifications in the form of a LARVA script
— a textual representation of DATEs [6], similar to
timed-automata enriched with stopwatches. Using the
LARVA compiler the specification is transformed into
the equivalent monitoring code, together with a number
of aspects which extract the events from the system.
Aspects are generated in AspectJ, one of the aspect-
oriented implementations for Java, enabling automatic
code injection without directly altering the actual code
of the system. If events are available in a database, (as
in the case of our case study), a simple Java program
is used to extract events from the database and replay
them for LARVA to detect and check.
As an example, consider a system where one needs
to monitor bad logins and the activity of a logged
in user. By having access tobadlogin, goodloginand
interact events (each of which corresponds to an entry
in the log database), one can keep a successive bad-
login counter and a clock to measure the time a user
is inactive. Fig. 1 shows the specification of a property
stating that there are no more than two successive
bad logins and 30 minutes of inactivity when logged
in, expressed as a DATE automaton [6]. Transitions
have three (backslash separated) labels: (i) the event
triggering it; (ii) the condition which is checked before
taking it; and (iii) the action performed when it is
taken. A total ordering on the transitions is used to
ensure determinism.

3. Technology

Ixaris Systems Ltd is a privately owned company
that operates EntroPay, an online prepaid payment
service. Entropay users deposit funds through funding
instruments types (such as their own personal credit

interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

GLOBAL {
VARIABLES {

int c = 0;
Clock t;

}
EVENTS {

badlogin() = { User.badlogin() }
clk() = { t@30*60 }
...

}
PROPERTY users {

STATES {
BAD { badlogins inactive }
NORMAL { loggedin }
STARTING { loggedout }

}
TRANSITIONS {

loggedout -> badlogins [badlogin\c>=2\]
loggedout -> loggedin [goodlogin\\t.reset();]
...
loggedout -> loggedout [badlogin\\c++;]
loggedin -> inactive [clk\\]

}
}
}

Figure 1. The automaton and LARVA code of the
bad logins scenario.

card or through a bank transfer mechanism) and spend
such funds through spending instruments (such as a
virtual VISA card or a Plastic Mastercard). The service
is used worldwide and thousands of transactions are
processed on a daily basis.

EntroPay is built on SmartPay, a technology framework
developed and maintained by Ixaris Systems (Malta)
Ltd. This framework addresses various data integrity
considerations which need to be taken in consideration
when dealing with financial transactions. Through the
work presented in this paper, Ixaris aims to extend
the Smartpay platform with a run-time verification
mechanism which, apart from monitoring against er-
rors due the system code, monitors also the integrity
of the system across the system’s runtime execution
environment which would include elements ranging
from the hardware and middleware configuration to
day-to-day manual processes run by operations staff.



COLOMBO et al.: OFFLINE RUNTIME VERIFICATION WITH REAL-TIME PROPERTIES 3

Monitor

Event Player

events

Monitor

System

events

actions

log

Figure 2. An online monitoring system (left) and
an offline monitoring system (right).

4. The Monitoring Architecture

The offline monitoring architecture is very similar to
the online counterpart. The main difference is that
rather than interfacing with the system, an additional
component is required to interface with the system
log (a database). In the case of online system, the
monitor receives events directly from the system in
synch, i.e. the system waits for the monitor to process
events before progressing further. In the case of an
offline system, an event player extracts events from the
system log and feeds them to the monitor, waiting for
the monitor to process each event. Therefore there is
no difference in the monitor, except that in the offline
mode it cannot take actions to remedy problems. Fig.
2 shows the difference between both architectures.

4.1. Generating Events

For our intents and purposes, an event can be consid-
ered as any interesting action which occurred within a
system. In a log database, an event is usually a record
in a table. However, in some cases, to locate all the
event details (parameters), several records need to be
consulted. Inversely, a record might feature in several
events. Considering the need for such flexibility, an
appropriate way of defining an event is by using
a select statement. Eachselect statement returns a
number of records — considered to be a list of events
of a particular type — where each record has a number
of fields considered to be the event parameters. It
is up to the designer of the properties to define an
event in terms of an SQLselect statement. Once a
select statement has been drawn up for each event
type, they are executed and all the events are sorted
in chronological order. Due to sorting, it is necessary
that every event has a timestamp field.

5. Properties

There are various properties which are currently being
monitored. These are by far not exhaustive but the

focus was on what is most sensitive and worth monitor-
ing. In general, the properties fall under two categories:
(i) checking that something occurs within the expected
time frame; and (ii) checking that something does
not occur when not expected to (commonly known
as bounded liveness and safety properties). To decide
whether something is expected or not, the system
requires some kind of context to take the decision.
Although a lot of properties overlap in the type of
context they use, we can roughly classify the properties
under four kinds of context (listed in order of the
number of properties):

• Life cycle A lot of properties depend on which
phase of the life-cycle an entity is. For example,
the current user state is crucial in determining the
subsequent user state.

• Real-time A good number of properties are real-
time properties. In most cases this is due to some
kind of expiration which triggers some activity in
the system.

• Rights User rights are a very important aspect of
the system’s security. A number of transactions
require the user to have particular rights before
the transaction is permitted.

• Amounts There are various limits (for security
reasons) on the frequency of certain transactions
and the total amount of money which these trans-
actions constitute. For example, a user who is
unexpectedly loading a lot of money and spending
it, might imply that the user account has been
hacked.

6. Related Work

In principle, any algorithm used for online monitoring
can be used for offline monitoring as long as all the in-
formation available at runtime is also available offline.
The inverse, however, is not always true because some
offline algorithms [10], [11] assume that the complete
trace is available at the time of checking.
There are numerous algorithms and tools [7], [8], [1],
[3], [2], [10], [9] which support offline monitoring —
sometimes also known as trace checking. However,
we are particularly interested in log analysers, i.e.
analysers which obtain the trace directly from the log
file. This technique is mostly used for the evaluation of
testing results. There are three works which are closest
to our approach [1], [3], [2], two of which come from
the area of testing [3], [2]. The Test Behaviour Lan-
guage (TBL) [3] allows a user to write specifications
in terms of patterns which are automatically translated
into executable scripts. TBL supports parametrisation



4 WICT PROCEEDINGS, NOVEMBER 2009

of events and a timeout construct. The use of the time-
out requires the validating script to run at the same time
of the system. Thus, although extracting information
from the logs, the monitoring is not purely offline. The
Log File Analysis Language (LFAL) [2], like TBL,
is a specification language which can be translated to
verify test results. LFAL does not support real-time and
is purely offline. Apart from parametrisation of events,
LFAL also supports parametrisation of states and uses
a state-machine-like notation. Both TBL and LFAL
are applied directly to textual logs. This approach is
highly susceptible to changes in the format of the log.
LOGSCOPE[1], on the other hand, base its specification
on an abstraction of the log. Although LOGSCOPEuses
uses a user friendly language, it is quite restrictive for
the general case. Properties for LOGSCOPEcan also be
defined in terms of∀-automata which are much more
expressive. The latter is by far the work closest to our
approach. The main difference is that LOGSCOPEdoes
not offer parametrised monitors, and explicit support
for real-time properties.

7. Conclusions and Future Work

In this paper we presented an offline monitoring archi-
tecture where the log of the system is verified asyn-
chronously with respect to a specification written in
LARVA . Various interesting issues emerge such as the
implementation of timestamp-driven clocks (TDCs),
and the initialisation and maintenance of the monitors.
The architecture has been applied to an industrial case
study and the preliminary results are encouraging.
The work presented here is intended to evolve into
a novel architecture where the online and the offline
approach can be combined using the notion of com-
pensations where actions of a system can be ‘undone’
to somewhat restore a previous state. Thus, even if
an error is detected late, (due to the non-synchronous
nature of offline monitoring) compensations can be
used to correct the state of the system.

References

[1] M. S. H. B. A. Groce, K. Havelund. Let’s look at
the logs: Low-impact runtime verification. Submitted
to the The Computer Journal special issue on the
COMPASS’09 ETAPS workshop.

[2] J. H. Andrews and Y. Zhang. General test result
checking with log file analysis. IEEE Trans. Softw.
Eng., 29(7):634–648, 2003.

[3] F. Chang and J. Ren. Validating system properties ex-
hibited in execution traces. InASE ’07: Proceedings of

the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 517–520.
ACM, 2007.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled.Model
checking. MIT Press, 2000.

[5] S. Colin and L. Mariani. Model-Based Testing of
Reactive Systems, volume 3472. Springer Berlin /
Heidelberg, 2005.

[6] C. Colombo, G. J. Pace, and G. Schneider. Dynamic
event-based runtime monitoring of real-time and con-
textual properties. InFMICS’08. To appear in LNCS,
2008.

[7] B. D’Angelo, S. Sankaranarayanan, C. Sánchez,
W. Robinson, B. Finkbeiner, H. B. Sipma, S. Mehrotra,
and Z. Manna. Lola: Runtime monitoring of syn-
chronous systems. In12th International Symposium
on Temporal Representation and Reasoning (TIME’05),
pages 166–174. IEEE Computer Society Press, June
2005.

[8] S. A. Ezust and G. v. Bochmann. An automatic
trace analysis tool generator for estelle specifications.
In SIGCOMM ’95: Proceedings of the conference on
Applications, technologies, architectures, and protocols
for computer communication, pages 175–184, 1995.

[9] K. Havelund and G. Rosu. Synthesizing monitors for
safety properties. InTACAS ’02: Proceedings of the
8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages
342–356, London, UK, 2002. Springer-Verlag.

[10] G. Roşu and K. Havelund. Rewriting-based techniques
for runtime verification. Automated Software Engg.,
12(2):151–197, 2005.

[11] G. Rosu and K. Havelund. Synthesizing dynamic
programming algorithms fromlinear temporal logic for-
mulae. Technical report, 2001.

Acknowledgements

The research work disclosed in this publication is
funded by the Malta National Research and Innovation
(R&I) Programme 2008 project number 052.

View publication statsView publication stats

https://www.researchgate.net/publication/228810711



