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Abstract. Given the complementary nature of static and dynamic anal-
ysis, there has been much work on identifying means of combining the
two. In particular, the use of static analysis as a means of alleviating
the overheads induced by dynamic analysis, typically by trying to prove
parts of the properties, which would then not need to be verified at run-
time. In this paper, we propose a novel framework which combines static
with dynamic verification using a model-based approach. The approach
allows the support of applications running on untrusted devices whilst
using centralised sensitive services whose use is to be tightly regulated.
In particular, we discuss how this approach is being adopted in the con-
text of the Open Payments Ecosystem (OPE) — an ecosystem meant to
support the development of payment and financial transaction applica-
tions with strong compliance verification to enable adoption by payment
institutions.

1 Introduction

Analysis of the dynamic behaviour of systems has long been used to ensure the
correct behaviour of software. By adding monitors, for instance in the form of as-
sertions, throughout the system, one can react accordingly whenever unexpected
behaviour occurs. One issue with this is that of monitoring overheads. Monitors
impose a temporal burden on the system, and in the case of properties which
go beyond the well-formedness of the system state at a particular point in time
(an example of such a property would be ‘File access can only occur between a
login and a logout’), such checks also require additional space overheads to store
the state of the monitor. One prevalent approach in addressing these overheads
has been that of applying static analysis techniques, typically in an attempt to
prove parts of the specification which would not need to be checked at runtime.

Dynamic verification also fails to address certain verification scenarios. Con-
sider a situation in which a service would need to be matched with an appropriate
co-service. For example, an online sales application providing its services via an
e-commerce portal may need to be paired with a postal service provider and
a payment institution to perform payment transactions . However, some postal
service providers may only provide their services to e-commerce applications
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whose customers are from a particular geographic region, and certain payment
institutions may only allow applications which store certain information about
customers and have a guaranteed minimum payment throughput. Since the al-
location of postal and payment service providers has to take place before the
application is deployed, dynamic verification provides such information too late.
In such a situation, static analysis can be used to address the issue of matching
appropriate service providers with the application. However, one would typically
expect such applications to run on the user’s machine, making it hard to ensure
that the analysed application is the one actually deployed.

Model-based approaches for the analysis of computer systems have long been
adopted in various settings. In these settings, the notion of what constitutes a
model is rather fluid, but is typically taken to be a description of the system
such that: (i) it behaves in a manner which is faithful (with respect to certain
features) to the system itself; but (ii) it abstracts away other unnecessary detail,
hence making it more amenable to analysis. Typically, whether it is used for
simulation, testing or model checking, the approach allows the analysis of the
model prior to deployment. The underlying degree of trust that the model is
similar to the actual system means that conclusions can be carried over from
the model to the actual system. However, models do not always carry the same
degree of trust — while a model deduced from a system using a verified-correct
algorithm (e.g., extracting the control-flow graph of a system) can be guaranteed
to be correct with respect to the information retained, other models (e.g., a UML
model based on which a system is developed in an ad hoc manner) may not be
faithful to the actual system.

In this paper, we present a model-based framework for the verification of sys-
tems which require analysis before deployment. An example of such a scenario
is when one is required to match a system with compatible co-services (hence-
forth referred to as service providers) based on a model of the system as given
by the developer (and thus not verified). To ensure behavioural correctness one
thus also needs to runtime verify compliance of the actual application behaviour
against the model.

This need for such an approach arose in the context of a platform for the
deployment of financial systems which require services provided by financial in-
stitutions such as banks [3]. This brings in various constraints from the service
providers: (i) capabilities e.g., which credit cards they can handle; (ii) legislation
in countries they operate in e.g., anti-money laundering legislation places limits
on individual spending depending on how much knowledge about the customer
the financial institution has acquired (usually referred to as customer due dili-
gence); and (iii) what risks they are willing to take (risk appetite). Applications
submitted by registered developers to the payments platform would thus need
to be analysed prior to deployment to ensure they are paired up with an appro-
priate service provider and also checked for regulatory compliance. However, an
additional challenge is that developers are not constrained to a particular tech-
nology, and applications access the financial platform through a generic API,
meaning that analysis and verification techniques cannot be technology-specific.



The solution adopted is to have developers submit a model of their application’s
use of API calls which (i) is analysed to allow pairing up the application with a
service provider; (ii) is used to (usually partially) verify the application against
regulatory compliance. However, since the implementation cannot be trusted,
the application behaviour is verified at runtime to ensure that it adheres to the
model the developer submitted.

The solution we present in this paper uses a model-based approach to achieve
various goals. Firstly, we ensure technology independence — by using the model
for static verification instead of the actual system itself. Secondly, we also use
the model to attempt to verify compliance properties statically, and although
the model is typically too weak to ensure full compliance, it can serve to prove
parts of them, reducing overheads induced due to runtime verification of these
properties. Finally, since the system might not be a correct refinement of the
model, we also verify the model at runtime.

The paper is organised as follows. We start by presenting static and dynamic
analysis approaches in Section 2. Next, Section 3 provides an overview of our
proposed solution, while Section 4 delves into an instantiation of our framework
as a case study. Finally, we frame our work in the context of the OPE project
in Section 5, and conclude in the last section.

2 Combining Static and Dynamic Verification Techniques

Much of the literature combining static and dynamic verification decomposes
the specification π of a system P in such a way that part of the specification is
statically verified at compile time, leaving the rest to be verified at runtime. At
a most basic level, one takes conjuncts and sees which of these can be verified
statically e.g., [2, 4], leaving the rest to be verified at runtime:

SA(P, π1)
P ` π1

RV
P ` π2

P ` π1 ∧ π2

In the pseudo-rule above, we abuse notation and use a family of static-analysis
pseudo-axioms SA(P , π) which asserts that by using a static analysis technique
to check whether program P satisfies property π, we manage to automatically
prove the entailment of the proof rule1. Similarly, we use the pseudo-axiom RV
to indicate that the entailment will be verified at runtime.

The approach is thus to separate the conjuncts of the property which are
verifiable statically (property π1) from those which are not, and thus have to
be verified at runtime (property π2). In most cases, monitoring the structurally
smaller formula π2 induces less overheads than π1 ∧ π2, which is desirable. Note
that there are cases where this is not necessarily true. For instance, monitoring

1 We show P and π as parameters to specify exactly what the verification question
posed to the static analysis tool is.



a predicate P =⇒ Q might be more costly than monitoring (P =⇒ Q) ∧ ¬P
which a pre-processor might simplify to ¬P .

In fact, what is required to be monitored can be weakened to take into account
that there may lie an overlap between the conjuncts. As we will show, if we know
that π1 is satisfied by the system, and we want to ensure that π1 ∧ π2 holds,
it suffices to monitor any predicate α which satisfies (i) π1 ∧ π2 =⇒ α; and
(ii) α =⇒ ¬π1 ∨ π2. Trivial solutions for α include π1 ∧ π2 and π2, but other
solutions might be better suited for dynamic verification.

This view of the combination of static and dynamic analysis can be somewhat
generalised so as not to be limited to static analysis, which can prove a sub-
conjunct of the specification. In this case, if when trying to verify a specification
π, the static verifier manages to prove property π′, the runtime verification tool
will have to verify what remains of the original specification modulo what was
proved. This can be expressed using the notion of property quotients.

Definition 1. Given predicates α and β, a predicate γ is said to be a quotient
of α with respect to β, written as γ ∈ α÷ β, if β =⇒ (α ⇐⇒ γ).

Quotients are defined in such a way that if γ ∈ α÷ β, then to prove α when
knowing β, it suffices to prove γ. Furthermore, knowing γ is necessary for α to
hold (under β). For instance, if γ ∈ P ∧Q÷R ∨Q would mean that γ satisfies
(R ∨Q) =⇒ ((P ∧Q) ⇐⇒ γ) — with P ∧Q and P ∧ (R =⇒ Q) being two
possible solutions for γ.

The following proposition gives us two inequalities (implications) specifying
the possible values, which the quotient of a specification with respect to a known
property can take.

Proposition 1. Given a specification S and known property π, if π′ ∈ S ÷ π,
then it follows that: (i) S∧π =⇒ π′; and (ii) π′ =⇒ S∨¬π. Furthermore, for
these implications to hold, it is necessary that π′ is a quotient of S with respect
to π.

Proof. Since π′ is a quotient of S with respect to π, we know that: π =⇒
(S ⇐⇒ π′). From this, it is straightforward to prove that S ∧ π =⇒ π′. The
second implication π′ =⇒ S ∨ ¬π also holds by case analysis on π′.

For the second part of the proof, assume that these two implications hold. If
π holds, from the first we obtain that S =⇒ π′, and from the second we get
π′ =⇒ S, from which we conclude that S ⇐⇒ π′.

We can use quotients to extend the verification rule to take into account
whatever the static verification analysis managed to prove. When checking for
a specification S, if a property π1 is known (can be proved statically), we can
dynamically check any property which is (under the effect of π1) equivalent to
S — in other words, any quotient of S with respect to π1:

SA(P, π)
P ` π1

RV
P ` π2

P ` π
π2 ∈ π ÷ π1



Note that throughout this section, we have not committed ourselves to any
particular specification logic, as long as it has conjunction and negation opera-
tors, and forms a Boolean algebra.

2.1 Related Work

StaRVOOrs [2, 1, 5] is a tool that reflects most closely the framework presented.
In this framework, the static analysis tool KeY attempts to prove parts of spec-
ification by theorem proving pre-/post-conditions. The result of this analysis is
to either (i) completely discharge conjuncts of the specification (similar to the
initial approach we described in this section); or (ii) discharge parts of the speci-
fication along particular branches of execution (which corresponds to a quotient
as defined above).

A residual specification is not always explicit, for example in the Clara frame-
work [4], static analysis for finite-state properties are used to disable AspectJ
monitors at program locations that have been proven to be safe. This is thus
aimed at leveraging several static analyses to reduce monitoring overheads.

[8] illustrates the logic behind such an approach, wherein static analysis is
leveraged to specify regions of a program that are safe, i.e., within which in-
strumentation can be avoided. If a certain method call is always present in such
a safe region, then it is also removed from the specification, leaving a resid-
ual specification to be instrumented within the potentially unsafe regions of the
program.

Another approach allows avoiding monitoring overheads completely by sim-
ply replacing these execution points by halt statements instead of weaving moni-
tors at potentially unsafe locations [12]. This allows for the creation of a modified
program that is safe, and that has no added overheads during runtime, although
some (potentially unsafe) execution traces will simply halt the execution.

3 A Model-Based Approach

Under certain circumstances, it may be impractical if not impossible to have
access to the actual system to analyse statically. For instance, consider an ap-
plication accessing a sensitive central resource or service, which would itself be
deployed on an untrusted device. Since there is no guarantee that the code exe-
cuted is not tampered with, analysing the given code would be a futile exercise.
Another consideration is that one might want to allow an application to be
implemented using any of a wide range of technologies, accessing the sensitive
resource through an API. Developing static analysis for any source technology
would be prohibitively expensive and impractical. In both these examples, it is
interesting to note that the use of the sensitive resource through a centralised
server ensures that, provided that the properties are limited to the actual re-
source usage, dynamic analysis is still feasible, even if pre-deployment static
analysis is not, thus precluding the use of techniques such as the ones described
in the previous section.



One way of addressing this challenge is the use of models. By having access
to a model of the system — an abstract description of how the system will
behave with respect to the central resource — one can perform static analysis
of the properties using the model rather than the system itself. However, if the
property is verified statically against the model, we would still have no guarantee
that the system actually behaves as promised by the model, a guarantee which
for the reasons expounded earlier, we can only check dynamically at runtime.

We can extend the approaches presented in the previous section to enable
the use of a model M (of which system P is supposed to be a refinement, written
as P vM). If the model is sufficient to prove property π, at runtime it suffices
to verify that the system is a refinement of the model:

SA(M,π)
M ` π

RV
P vM

P ` π

In this approach, the model acts as both a description of the system (during
the static analysis) and the property (for the dynamic analysis).

This approach poses a number of challenges. The first challenge is the ob-
vious question of why we should put any weight on the promise of the model.
After all, nothing stops the developer from submitting a ‘perfect’ model and
then deploying an application which behaves in a completely different manner.
Although we would realise the misbehaviour at runtime, and stop the applica-
tion from proceeding once it diverges from what the model promised, what use
was the static analysis? Wouldn’t the alternative approach of just monitoring
the property have been equally effective? In practice, however, the justification
of the use of the model is twofold:

(i) In some scenarios, we would like to perform some pre-deployment static
analysis to match the application with an appropriate service provider.
Consider matching an application performing financial transactions, which
would need to be matched with a service provider able to handle transac-
tions of the size and volume that the application will produce, from the
geographical locations supported by the application, providing the right
financial instruments required by the application, etc. Unless we have a
model of the application based on which an appropriate service provider
can be found, we would not be able to proceed any further. Moreover, the
fact that some service providers are not willing to engage with an applica-
tion which does not promise to behave correctly, ensures that the developer
is willing to provide such a model.

(ii) If an application fails to behave according to the model, appropriate action
can be immediately taken, stopping or rectifying the problem. However,
such misbehaviour can also be tagged; potentially leading, for instance, to
a service provider refusing to supply a service to applications by the same
developer in the future. This encourages developers to ensure that their
applications conform to submitted models.



Providing models of applications, would thus be feasible in a service-oriented
ecosystem. Another challenge is that the model abstracts detail without which
certain properties are impossible to verify completely. In such situations, we
would have to resort to techniques such as those described in the previous section
to runtime verify residual parts of the properties. Whereas before, parts of the
properties might have been unprovable due to limitations of the static analysis
techniques, in this case, unprovable properties may be the result of a weak model.

Using a more formal syntax, given a specification π which is not completely
provable from modelM , we will use the quotient of π with respect to the property
π1 which the static analyser manages to prove:

SA(M,π)
M ` π1

RV
P vM

RV
P ` π2

P ` π
π2 ∈ π ÷ π1

The architecture of this approach, when the system is potentially executed on
an external address space is shown in Fig. 1(a), in which the system is runtime
verified against the model and the residual specification by instrumenting the
server to arbitrate the system’s interaction with the central system.
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Fig. 1. (a) Architectures for model-based hybrid verification (top); (b) Extended ar-
chitecture (bottom)

Furthermore, since we are checking that the quotient (π2) holds, parts of the
model M might be discarded since they are being verified by checking for π2. If
the model has a semantics which is comparable to the property language (e.g.,
for a model M and property π, the formulae M ∧ π and M =⇒ π can be
computed in the form of a model), we can express this in terms of the quotient
operator:



SA(M,π)
M ` π1

RV
P vM ′

RV
P ` π2

P ` π
π2 ∈ π ÷ π1, M

′ ∈M ÷ π2

Such approaches have already been explored in other contexts such as [7].

The architecture of the resulting framework is shown in Fig. 1(b).

An example of this in action is [11], where model checking technology is
extended to allow the partitioning of a model into two parts, a part free of
errors and the rest. This allows for analyses to focus on the second part, further
refining it. In effect this can be seen as an implementation of a model quotient
with respect to the parts of the specification that the static analysis is able to
prove.

4 A Control-Flow-Based Use Case

We will now look at instances of the model-based approach described in the
previous section. In this section, we will be using automaton-based formalisms for
both the model and the property. We will model the system using a control-flow
graph of an application, while we will use a formalism based on the specification
language used by the runtime verification tool Larva to write the properties.
Despite the fact that both formalisms are given in terms of an automaton, it is
important to note that they have different semantics. Let us start by presenting
the formalism used to specify the model:

Definition 2. A simple control-flow model M is a quadruple 〈Σ,Q,Q0,→〉,
with initial states Q0 ⊆ Q and transition relation →⊆ Q × Σ × Q, and is
interpreted as a labelled transition system. We will write the reflexive transitive
closure of → as

w
=⇒ (with w ∈ Σ∗). The set of traces accepted by M , written

tracesM (M) is defined to be {w : Σ∗ | ∃q0 ∈ Q0, q ∈ Q · q0
w
=⇒ q}.

Model refinement is defined in terms of trace semantics: M vM ′ df= tracesM (M) ⊆
tracesM (M ′).

Fig. 2. Model M of the system showing no writes will be allowed during an anonymous
login.



For instance, the simple control-flow model, referred to in the rest of this
section as M given in Fig. 2, models the control-flow behaviour of the system
e.g. that the system will not write just after an anonymous login occurs, and
will not perform two consecutive logouts, etc. We will now discuss how various
properties can be checked for a system modelled by M .

Our properties in this section will be expressed using a simplified form of
dynamic automata with timers and events (DATEs) as used in the runtime
verification tool Larva [6]. These automata (which can be dynamically replicated)
will have a number of bad states (marked by a cross). Transitions are labelled
by triples: (i) a system event which triggers the transition; (ii) a condition which
is checked whenever the event is triggered — if the condition holds, then the
transition is enabled, otherwise it is not; and (iii) an action which is executed
just before the transition is taken. The semantics of such properties are taken
to be the set of traces which do not lead to a bad (crossed) state.

The full semantics of DATEs can be found in [6], but for the sake of this
example, we will use a semantics over traces of pairs of events and system state
snapshots (the latter, accessed through the use of aspect-oriented programming
techniques, are required in order to be able to reason about conditions and
actions which may refer to the state of the system), with the trace semantics of
a DATE property π being written as tracesD(π).

To avoid busy diagrams, we implicitly include reflexive transitions such that
if an action happens while in a state in which the action does not appear on any
outgoing transition from that state, the automaton allows it and remains in the
same state. Consider property π1 which states that ‘a login may only happen
while logged out’ which is described using the DATE in Fig. 3(a).

A straightforward way of statically model checking whether a simple-control
flow model satisfies a DATE property is by first (i) abstracting the DATE by
discarding conditions and actions, thus ending up with an over-approximation
of the property, and then (ii) taking the synchronous product of the property
automaton and the model (M) to statically verify that no paths in the language
of traces generated by the model lead to a bad state. This static analysis approach
algorithm can be shown to be sound, though obviously not complete.

This static analysis suffices to show that π1 is satisfied by M , which will
allow us to discard completely the monitoring of the property.

Let us consider a more complex property π2 which limits the total amount of
data transferred while anonymously logged in, as shown in Fig. 3(b). Clearly, the
model is not sufficient to guarantee the property. However, the model guarantees
that no writing will ever take place while anonymously logged in.

Consider the restriction of a DATE property π with respect to a simple-
control flow model M which works by discarding infeasible transitions through
the semi-synchronous composition of π with M , akin to the approach used in
[10, 9]. This can be shown to yield a quotient of M with respect to π.

We can thus use this quotient of the property with respect to what can be
proved based on the model. One solution allowed by our framework is to discard



Fig. 3. (a) π1 = A login may not happen when already logged in; (b) π2 = No more
than X bytes may be transferred while anonymously logged in; (c) π3 = Only logins
with full credentials are allowed; (d) π4 = The system should allow no more than 2
anonymous logins.

the property transitions tagged by write as shown in Fig. 4(a), an optimisation
which can have a substantial impact in reducing monitoring overheads.

Finally, consider the property π3 which states that ‘Anonymous logins are
not to be allowed’ as shown in Fig. 3(c). Based on the model, which does not
rule out anonymous logins, the property cannot be simplified using the static
analysis approach shown earlier. However, given that the DATE contains no
conditions or actions, it is possible to apply the restriction algorithm mentioned
earlier to restrict M to π3 (which will anyhow be dynamically verified). The
resulting model, shown in Fig. 4(b), ignores anonymous logins since these would
be detected as violations of the property anyway. At runtime, it still remains to
be verified that the system P is really modelled by M reduced with respect to
π3: P vM ′, where M ′ ∈M ÷ π3.

As a final example, consider property π4 stating that “The system should
allow no more than 2 anonymous logins”, shown in Fig. 3(d). As in the case of
π3, no part of the property can be verified with respect to the model. However,
when computing the quotient model as done before, we can calculate a number



Fig. 4. (a) Property π2 simplified with respect to model M ; (b) Model M simplified
with respect to property π3.

of possible quotients — from the trivial solution of keeping M to expanding
the model to keep count of transitions, obtaining a model as shown in Fig. 5.
Although the model is larger, it can permit switching off monitors for anonymous
logins after the first two of such logins. Depending on the way monitoring is
implemented, this might be beneficial.

Fig. 5. Model M simplified with respect to property π4.



5 Open Payments Ecosystem: A Real-Life Case Study

Businesses often find themselves needing diverse ways of affecting or enabling
payments in various contexts. As an example, consider a business providing a
payment service to a travel agency to purchase flights, hotel bookings, etc. Hav-
ing several such purchases from a single corporate card, particularly if that
same card is also used for other purchases, would make reconciliation non-
straightforward at best. On the other hand, providing one shot cards for use
by the travel agency, which are cards that can be used once and disabled after
the first purchase, makes reconciliation easier as only one purchase will be as-
sociated with any given card. However, for a business to set up such a payment
programme is quite complex (implement cards processes for provisioning, recon-
ciliation, dispute management, as well as creating a compliant application) and
the costs may be prohibitive.

Open Payments Ecosystem (OPE) aims at building an infrastructure to ad-
dress this need by building an execution environment for financial transactions
where the process of deploying custom payment applications is simplified. OPE,
thus brings together a number of players: (i) developers who create the payment
applications; (ii) service providers (typically banks) which affect the underly-
ing financial transactions; (iii) corporate customers (the travel agent in our ex-
ample) who in turn provide the payment applications to their customers; and
(iv) program managers who take responsibility of putting programs together —
combining applications to service providers — and provide them to corporate
customers.

In order to support developers, OPE provides a development environment
with the necessary APIs for application development and service provider inte-
gration. The OPE itself does not hold funds (which legally, can only be held by
a regulated institution). Therefore, applications developed are submitted to the
OPE, and can be adopted by programme managers who rely on an automated
compliance check to pair the adopted application with an integrated service
provider to enable its execution on the OPE platform. We note that ultimately,
service providers carry the financial and regulatory liability for the services of-
fered, and therefore having a reliable automated compliance process goes a long
way in enabling service providers to operate with more peace of mind.

The compliance subsystem at the core of OPE has multiple roles: (i) it is used
to support programme managers when matchmaking an application and a service
provider; (ii) it ensures that a programme does not violate national legislation
and regulations based on the location where it is planned to be deployed; and
(iii) provides runtime monitoring on the running programme to continually check
whether the monitored constraints are violated.

Since the OPE architecture envisages that the payment application is exe-
cuted outside the platform (typically on the end user’s device or a web server),
only accessing the OPE platform through API calls, it is possible that the
application submitted for validation and matched with an appropriate service
provider is compromised or tampered with. Furthermore, providing compliance



algorithms which support different programming languages and technologies,
which developers may adopt, is not scalable in the long run.

In this context, the approach presented earlier in the paper becomes useful:
developers are expected to submit a sufficiently detailed model of the application
behaviour, enabling matching with the service providers and preliminary check-
ing of compliance to applicable legislation. The Payment Application Modelling
Language (PAML) is a domain-specific language developed specifically to enable
the description of a model of a payments application — its components, their
attributes, and how the components can interact together.

Example 1 (Model). As a running example, consider a simple model of an appli-
cation allowing customers to have managed cards, with a total maximum trans-
actional value not exceeding £2,000 per month, with the possibility of depositing
and redeeming2 of funds.

This model is then subjected to the first round of checking, i.e., static analy-
sis, of two types of constraints: that it adheres to the applicable legislation and
that it is acceptable to the service provider who will run the application.

Example 2 (Static analysis). In the example model, according to legislation, the
customer should always have the possibility of redeeming the money remaining
in his or her account after closure. Using the model, we can statically check
that this possibility is in fact supported. At this point, we note that regulations
also state that money redemption should occur at par value and without delay.
However, it is not possible to statically verify that these hold as the model does
not contain this level of detail.

Once the application goes through the static analysis phase and is deployed,
we runtime verify that the implementation is indeed a refinement of the model,
and that it adheres to the regulations which could not be checked statically.

Example 3 (Runtime verification). Ensuring that the model is a true representa-
tion of the implementation in this example entails checking that the application
does not exceed the £2,000 monthly limit on the user’s transactions.

From the legal side, as noted earlier, we have to ensure that redemption
takes place at par value, i.e., the customer receives the right amount, and with-
out delay. These checks are both delegated to be carried out through runtime
monitoring.

These are the types of checks we have mostly encountered in the context
of OPE. We are currently looking into ways of enriching static analysis to be
able to check parts of properties which involve summing and counting values.
While the analysis techniques presented in the running example sound simple,
we believe that their extension can be effective in lowering the overheads in dy-
namic verification, while still ensuring safe matching of applications with service
providers.

2 Redeeming funds refers to the withdrawal of electronic money by the customer fol-
lowing the closure of his or her account.



6 Conclusions

The synergy afforded by the combination of static and dynamic analysis has
been well studied under the assumption that the implementation is available
during the static phase. As motivated by the OPE case study, this is not always
the case, particularly when the code is run by an untrusted third party. Even
when the analysis of the implementation is feasible, it might not be desirable to
support the analysis of a plethora of different technologies.

By statically checking a model of the implementation rather than the imple-
mentation itself, we bypass the issues of untrusted and technology-varied code,
requiring, however, the runtime checking of the adherence of the implementation
to the model. Using the interplay of static and dynamic analysis once more to our
advantage, we have shown how the checking of the model can also be simplified
by exploiting the residual checks which will anyway be checked at runtime.

To illustrate the proposed approach, we have provided an instantiation based
on control-flow models and properties, as well as how the theory is being used
in practise in the context of the OPE.

The presented work leaves a number of venues for future exploration, not
least how to calculate an efficiently monitorable residual both for checking the
compliance to the model and the checks which could not be statically verified
on the model. We also plan to implement the complete framework as part of the
OPE project, possibly integrating existing tools in the process.
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