
UNIVERSITY OF OSLO
Department of Informatics

Relaxing Goodness
is Still Good for
SPDIs

Research Report No.
372

Gordon J. Pace

Gerardo Schneider

ISBN 82-7368-331-1
ISSN 0806-3036

February 2008 (Updated:
Aug. 2008)



Relaxing Goodness is Still Good for SPDIs

Gordon J. Pace∗ Gerardo Schneider†

February 2008

Abstract

Polygonal hybrid systems (SPDIs) are planar hybrid systems, whose
dynamics are defined in terms of constant differential inclusions, one
for each of a number of polygonal regions partitioning the plane. The
reachability problem for SPDIs is known to be decidable, but depends
on the goodness assumption — which states that the dynamics do not
allow a trajectory to both enter and leave a region through the same
edge. In this paper we extend the decidability result to generalised

SPDIs (GSPDI), SPDIs not satisfying the goodness property, and give
an algorithmic solution to decide reachability of such systems.

1 Introduction

A hybrid system is one in which discrete and continuous behaviours interact.
Some systems are inherently hybrid — consider a robot, with differential
equations determining, for instance, its speed, together with an embedded
computer taking discrete decisions based on the continuous input values com-
ing from sensors. In other cases, a system consisting only of continuous
behaviour, can be hybridised, introducing discrete behaviour in order to fa-
cilitate the analysis. For example, exact solutions can be difficult to obtain
for a non-linear differential equation, making a qualitative and approximative
analysis necessary.
In general, the main problem with the analysis of hybrid systems is that for
properties such as reachability, their verification is undecidable. For instance,

∗Dept. of Computer Science and AI, University of Malta, Msida, Malta. E-mail:
gordon.pace@um.edu.mt

†Dept. of Informatics – Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail: gerardo@ifi.uio.no

1



Good region Bad region

e2

e3

e6

e1

e2

e5

e6

e4
e3

e4

P P
e5

e1

R3

R7

R1R5

e3R4

R6

e4

e5

e2

e6 e7

e8

e1

R8

(a)

b

a

b

a

(b)

R2

Figure 1: (a) Example of an SPDI; (b) Good and bad regions.

the reachability problem for planar PCDs (deterministic systems with Piece-
wise Constant Derivatives) is known to be decidable [MP93], but becomes
undecidable in three and higher dimensions [AMP95]. Slight extensions of
such decidable classes have been proved to be undecidable or equivalent to
problems for which decidability or undecidability is not known [AS02, MP05].
An interesting class of hybrid systems for which the reachability question is
known to be decidable, is the class of Polygonal Hybrid Systems (SPDIs)
— a subclass of hybrid systems on the plane whose dynamics is defined by
constant differential inclusions [ASY01, ASY07, Sch02]. Informally, an SPDI
consists of a partition of the plane into polygonal regions, each of which
enforces different dynamics given by two vectors determining the possible
directions a trajectory might take; a simple SPDI is depicted in figure 1-
(a). A constructive proof for deciding reachability on SPDIs can be found in
[ASY07]. The proof is restricted to SPDIs which have the so-called goodness
property — the dynamics of any region of the SPDI do not allow a trajectory
to traverse any edge of the polygonal region in opposite directions (see figure
1-(b)). Technically this is equivalent to the property that the direction vector
of each edge cannot be obtained as a positive linear combination of the vectors
defining the dynamics. An SPDI without the goodness property is called
Generalised SPDI (GSPDI).
In this paper, we present a constructive decidable algorithm for solving the
reachability problem for GSPDIs. This decidability result contributes to-
wards narrowing the undecidability frontier of low dimension hybrid systems
[AS02, MP05]. At the same time our positive result allows GSPDIs to be
used to approximate planar non-linear differential equations.
The paper is organised as follows. In the next section, we informally dis-
cuss the motivation behind relaxing goodness, and explain what technical
problems arise when doing so. In section 3 we define the notation used, and
outline definitions and results about SPDIs. Section 4 is concerned with the
extension of these results to enable analysis of GSPDIs, including the decision
algorithm for reachability. We conclude in the last section.

2



2 On Goodness

In this section we discuss informally why goodness is good for deciding the
reachability problem of SPDI and what are the problems when relaxing it.
More formal definitions will be given in section 3.
See figure 1-(b) for an example of a good and a ‘bad’ region (here ‘bad’
indicates that the region does not satisfy the goodness criterion). In the
figure on the left we can see a good region, where the two vectors a and b

make it impossible for a trajectory to enter and leave the region P through
the same edge of the polygon delimiting the region. On the other hand, the
figure on the right shows a bad region: Both e2 and e5 can be crossed in both
directions by a trajectory entering and leaving P , as shown in the figure.

2.1 On Why Goodness is Good

The algorithm presented in [ASY07] for deciding reachability on SPDI de-
pends on pre-processing of trajectory segments and a qualitative analysis to
guarantee that it is possible to review the behaviour of all the possible sig-
natures1, by looking at only a finite set of abstract signatures. Informally,
this is achieved as follows:

1. Trajectory segments are simplified — it is sufficient to look at trajec-
tories made up of straight segments across regions, and which do not
cross themselves.

2. Trajectory segments are abstracted into signatures, consisting of just
the sequence of traversed edges. This result is based on the Poincaré
map [HS74], that relates n-dimensional continuous-time systems with
(n − 1)-dimensional discrete-time systems.

3. It is shown that it is sufficient to look at signatures which consist only
of sequences of edges and simple cycles.

4. Such signatures can be abstracted into types of signatures — signatures
which do not take into account the number of times each simple cycle
is iterated.

Many of the lemmas for proving that the above guarantee the finiteness
of types of signatures critically depend on the goodness assumption, which
propagate this dependency to the constructive proof given for deciding reach-
ability of SPDIs which satisfies the goodness assumption.

1We call signature the sequence of traversed edges by the trajectory. A more formal
definition will be given in a later section.

3



2.2 On Why We’d Rather Not be Good

Restricting oneself only to SPDIs satisfying the goodness assumption makes it
very difficult to model real-life examples. Unfortunately, extending the SPDI
model in most ways, such as allowing jumps with resets (from one edge to
another remote one), increasing the number of dimensions and allowing non-
linear differential inclusions, have been shown to make the model undecidable
[AS02].
A potentially interesting and useful application of SPDIs is that of the ap-
proximation and analysis of two-dimensional non-linear differential equa-
tions. By splitting the plane into polygons, and by setting the dynamics of
each polygon to be over-approximations of the non-linear differential equa-
tion in that region, one can ask reachability questions about the equation,
and obtain answers accordingly. When over-approximating the dynamics, a
negative reachability answer implies a negative answer in the exact equation.
Using more and smaller polygons enables more precise approximations.
The problem with using this approach is that for most differential equations,
using a fixed partition breaks the goodness assumption, since almost invari-
ably, some edges of some regions will lie within the differential inclusion of
that region. One solution would be to try to derive an intelligent partition
of the plane which maintains goodness, which in some cases may be impossi-
ble, or by extending the SPDI analysis algorithms by relaxing the goodness
assumption, thus enabling the modelling of non-linear differential equations
in a straightforward manner.
As a simple example, consider a pendulum with friction coefficient k, mass M ,
pendulum length R and gravitational constant g. If θ is the angle subtended
with the vertical, the behaviour of such a pendulum is described by the
differential equation: MR2θ̈ + kθ̇ + MgR sin θ = 0. By taking x = θ, and
y = θ̇, we get ẋ = y and ẏ = − ky

MR2 −
g sin(x)

R
.

Using these formulae, we can produce SPDIs expressing these constraints,
possibly with different plane partitions. Figure 2 gives two such partitions
for k = 1, R = 10, M = 10, and g = −10. Visual inspection of the SPDIs,
shows that various polygons fail the goodness assumption. By presenting an
algorithm showing the decidability of reachability on Generalised SPDIs, we
can automatically analyse such systems.
The main question is how much do we need to depend on the goodness as-
sumption to prove decidability of reachability of SPDIs? In other words, let
us consider GSPDIs, which are SPDIs without the goodness assumption. Is
reachability still decidable? Reusing the decidability argument and algorithm
for SPDIs to use directly on GSPDIs may appear to be the most straightfor-
ward approach to solve the problem. However, as it was proved in [Sch07]

4



Figure 2: Approximating a non-linear differential equation describing a pen-
dulum using different partitioning of the plane.

it is not possible to answer GSPDI reachability simply by using the SPDI
reachability algorithm, since the algorithm is not complete and may give
false negatives. The counter-example given in [Sch07] demonstrates that the
SPDI algorithm fails to take into account certain trajectories entering and
leaving a given region through the same edge. This indicates that simply by
relaxing the goodness assumption and extending the proof for decidability of
SPDIs cannot be achieved through such an approach.
One of the main problems when relaxing goodness is that a region can no
longer be bi-partitioned into two sub-polygons were all the edges of the region
in one sub-polygon can only be traversed in one direction, and all the edges
in the other sub-polygon can be traversed only in the other direction. The
goodness assumption permits a certain ‘contiguity’ of entry-only edges and
exit-only edges belonging to two disjoint sub-regions. Certain lemmas and
proofs of soundness of the reachability algorithm depend on this contiguity.
If we relax goodness, we should be able to re-prove all such results without
assuming the contiguity of entry-only and exit-only edges. Following this
approach Schneider [Sch07] gives a terminating semi-decision algorithm for
reachability analysis on GSPDIs.
In this paper, we take a different approach. Rather than try to reduce GSPDI
reachability to SPDI reachability, augment the proof (and hence the algo-
rithm) to work for cases not found in SPDIs. We give techniques to deal
with these problematic cases, and prove that the number of abstract signa-
tures (cases) to analyse can still be reduced to a finite one.

5



3 Polygonal Hybrid Systems (SPDIs)

In this section we recall the main definitions and concepts required in the
rest of the paper, and give an outline of the results for SPDIs, upon which
the results presented in this paper are built. For a more detailed presentation
see [ASY07, Sch02].
In the rest of this section, we will use a = (a1, a2) and x = (x1, x2) to
represent 2-dimensional vectors (a,x ∈ R

2). An angle ∠
b

a
on the plane,

defined by two non-zero vectors a and b is the set of all vectors lying between
vector a and vector b in a counter-clockwise direction, and defined to be
{x | θ(a,x) ≤ θ(a,b)}, where θ(a,b) is the angle between non-zero vectors
a and b in the counter-clockwise direction.

Definition 1. A polygonal hybrid system (SPDI) is a pair H = 〈P, F〉,
where P is a finite partition of the plane (with each P ∈ P being a convex
polygon), called the regions of the SPDI, and F is a function which associates
a pair of vectors to each polygon: F(P ) = (aP ,bP ).
In an SPDI every point on the plane has its dynamics defined according to
which polygon it belongs to: if x ∈ P , then ẋ ∈ ∠

bP
aP

.

Example 1. Consider the SPDI illustrated in figure 1-(a), with eight regions
R1, R2, . . . , R8. A pair of vectors (ai,bi) is also associated to each region
Ri: a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2
), a3 = (−1, 11

60
) and b3 = (−1,−1

4
),

a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0),
a8 = b8 = (1, 1).

We define E(P ) to be the set of edges of region P . We say that an edge
e (e ∈ E(P )) is an entry-only of P if for all x ∈ e and for all c ∈ ∠

bP
aP

,
x + cǫ ∈ P for some ǫ > 0. We say that e is an exit-only of P if the same
condition holds for some ǫ < 0. Intuitively, an entry-only (exit-only) edge of
a region P allows at least a trajectory in P starting (terminating) on edge e,
but allows no trajectories in P terminating (starting) on edge e. We write
In(P ) (In(P ) ⊆ E(P )) to denote the set of all entry-only edges of P and
Out(P )(Out(P ) ⊆ E(P )) to denote the set of exit-only edges of P . From
the definition, it follows immediately that no edge can be both an entry-only
and an exit-only edge of a region: In(P ) ∩ Out(P ) = ∅.
A region P is said to be good, if all the edges of that region are either
entry-only or exit-only: E(P ) = In(P ) ∪ Out(P ). An SPDI is said to be
good, or satisfy the goodness property, if it consists of only good regions:
∀P ∈ P · E(P ) = In(P ) ∪ Out(P ).

Assumption 1. In the rest of this section, we will consider only good SPDIs.

6



Example 2. In figure 1-(b), the region P shown on the left is good since
all edges are either entry-only or exit-only. The region depicted on the right
shows a region that is not good, since neither edge e2 nor edge e5 are in
In(P ) ∪ Out(P ).

We will use the notation eP
� to indicate the directed edge e such that it follows

a clockwise direction in region P , and similarly eP
	 to indicate the directed

edge e following an anticlockwise direction in region P . Given a directed
edge e, its inverse will be written as e−1.

Definition 2. The set of directed edges of an SPDI H with partition P,
written Ed(H), is defined to be:

Ed(H) = {eP
� | P ∈ P, e ∈ In(P )} ∪ {eP

	 | P ∈ P, e ∈ Out(P )}.

Similarly, we define Ind(P ) and Outd(P ) to correspond to In(P ) and Out(P )
but with directed edges.

Since an edge typically appears in two adjacent regions, the direction induced
in the two regions may be different. However, it was proved that edges which
are entry-only in one region, and exit-only in the other result in matching
induced directions: e ∈ Ed(H) or e−1 ∈ Ed(H), but not both [MP93, Sch02].
In an SPDI satisfying goodness, the only case where one can have both e

and e−1 is when the dynamics of the regions result in e being either both an
entry-only or an exit-only edge in the two adjacent regions it belongs to.
A trajectory segment of an SPDI H, is a continuous function ξ ∈ [0, T ] → R

2

such that for all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈
∠

bP
aP

. The signature of a trajectory segment ξ, written Sig(ξ), is the ordered
sequence of edges traversed by the trajectory, that is, e1, e2, . . . en resulting
from ξ ∩ Ed(H).
One of the more important results presented in [ASY07] is that the behaviour
of any trajectory is equivalent to the behaviour of some trajectory which does
not cross itself and follows straight-line segments within regions.

Lemma 1. Given a trajectory segment ξ ∈ [0, T ] → R
2, there exists another

trajectory segment ξ′ ∈ [0, T ′] → R
2 starting and finishing at the same points

as ξ (ξ(0) = ξ′(0) and ξ(T ) = ξ′(T ′)) such that (i) ξ′ does not cross itself (ξ
is injective); and (ii) ξ′ follows straight-line segments inside regions.

This result shows that to decide reachability, it is sufficient to look at non-self-
crossing trajectories consisting of straight-line segments. In the rest of the
discussion, we will restrict our use of trajectory to mean ‘a non-self-crossing
trajectory composed of straight-line segments between edges’. Similarly, the

7



term signature will be used to indicate the signature of a trajectory with
these constraints. Note that the result is true of any SPDI, not only ones
satisfying the goodness constraint.

3.1 Truncated Affine Multi-Valued Functions

An affine function f ∈ R → R is such that f(x) = ax + b. If a > 0 we say
that f is positive affine, and if a < 0 we say that f is negative affine; we call
this the parity of the affine function.
An affine multivalued function (AMF) F ∈ R → 2R, written F = 〈fl, fu〉, is
defined by F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes
an interval. For notational convenience, we do not make explicit whether
intervals are open, closed, left-open or right-open, unless required for com-
prehension. For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉.
An inverted affine multivalued function F ∈ R → 2R, written F = 〈fl, fu〉,
is defined by F (x) = 〈fu(x), fl(x)〉 where fl and fu are both negative affine
and 〈·, ·〉 denotes an interval.
Given an AMF F and two intervals S ⊆ R

+ and J ⊆ R
+, a truncated

affine multivalued function (TAMF) FF,S,J ∈ R → 2R is defined as follows:
FF,S,J(x) = F (x) ∩ J if x ∈ S, otherwise FF,S,J(x) = ∅. In what follows we
will write F instead of FF,S,J whenever no confusion may arise. Moreover,
in the rest of the paper F will always denote an AMF and F a TAMF. For
convenience we write F(x) = F ({x} ∩ S) ∩ J instead of F(x) = F (x) ∩ J

if x ∈ S. We overload the application of a TAMF on an interval I: F(I) =
F (I ∩S)∩J . We say that F is normalised if S = Dom(F) = {x | F (x)∩J 6=
∅} and J = Im(F) = F(S).
As in the case of affine multivalued functions, an inverted truncated affine
multivalued function (inverted TAMF) is similar to a TAMF, but defined in
terms of an inverted affine multivalued function as opposed to a normal one.
An important result is that normal TAMFs are closed under composition.

Theorem 2. The composition of two normal TAMFs F1(I) = F1(I∩S1)∩J1

and F2(I) = F2(I∩S2)∩J2, is the TAMF (F2◦F1)(I) = F(I) = F (I∩S)∩J ,
where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).

The following corollary extends the above result.

Corollary 3. The composition of two inverted TAMFs gives a normal TAMF.
Conversely, the composition of one normal and one inverted TAMF (in either
order) gives an inverted TAMF.

To avoid having to reason about the length of every edge, we normalise every
edge e such that its TAMF has the domain [0, 1] (that is, the normalised

8



version of e has length 1, with 0 corresponding to the starting point of the
directed edge, and 1 to the end point).

3.2 Successors

Given an SPDI, we fix a one-dimensional coordinate system on each edge
to represent points lying on edges. For notational convenience, we will use
e to denote both the directed edge and its one-dimensional representation.
Accordingly, we write x ∈ e and x ∈ e, to mean “point x lies on edge e” and
“coordinate x in the one-dimensional coordinate system of e” respectively.
The same convention applied to sets of points of e represented as intervals
(for example, x ∈ I and x ∈ I, where I ⊆ e) and to trajectories (for example,
“ξ starting at x” or “ξ starting at x”).
Consider a polygon P ∈ P, with e0 ∈ Ind(P ) and e1 ∈ Outd(P ). For I ⊆ e0,
Succe0e1

(I) is defined to be the set of all points lying on e1 reachable from
some point in I by a trajectory segment ξ ∈ [0, t] → R

2 in P (that is, ξ(0) ∈
I∧ξ(t) ∈ e1∧Sig(ξ) = e0e1). Given I = [l, u], Succe0e1

(I) = F (I∩Se0e1
)∩Je0e1

,
where Se0e1

and Je0e1
are intervals, F ([l, u]) = 〈fl(l), fu(u)〉 and fl and fu are

positive affine functions. Successors are thus normal TAMFs.

3.3 Qualitative analysis of simple edge-cycles

Let σ = (e1 . . . ek) be a simple edge-cycle — that is, a signature that can be
repeated a number of times, and such that all edges are distinct (ei 6= ej for
all 1 ≤ i < j ≤ k). Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with F = 〈fl, fu〉.
We assume that neither of the two functions fl, fu is the identity function.
The following analysis, taken from [ASY01], allows us to calculate the be-
haviour of cycles provided that the path along the cycle has a normal (not
inverted) TAMF. Since, in good SPDIs, the TAMF between a pair of edges is
normal, and the composition of two normal TAMFs is itself a normal TAMF,
this approach is universally applicable as long as the goodness assumption
holds.
Let σ be a simple cycle, and l∗ and u∗ be the fix-points2 of fl and fu, respec-
tively, and Sσ ∩Jσ = 〈L, U〉. It can be shown that σ is of one of the following
types:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U .

2The fix-point x∗ is the solution of f(x∗) = x∗, where f(·) is positive affine. The
existence and computation of such fix-points are detailed in [ASY07].

9



DIE. The rightmost trajectory exits the cycle through the left (consequently
the leftmost one also exits) or the leftmost trajectory exits the cycle
through the right (consequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and
the rightmost one through the right, that is, l∗ < L ∧ u∗ > U .

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but
the rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .

EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

The classification above provides useful information about the qualitative
behaviour of trajectories. Any trajectory that enters a cycle of type DIE
will eventually leave it after a finite number of turns. In the case of a cycle
is of type STAY, all trajectories that happen to enter it will keep turning
inside it forever. In all other cases, some trajectories will turn for a while
and then exit, and others will continue turning forever. This information is
crucial for solving the reachability problem for SPDIs. Also note that the
above analysis gives us a non-iterative solution of cycle behaviour for most
cycles. An important result to prove the decidability of SPDIs is that any
valid signature can be expressed in a normal form, consisting of alternating
sequential paths and simple loops:

Theorem 4. Given an SPDI with the goodness constraint, any edge signature
σ = e1 . . . ep can be written as σA = r1s

k1

1 . . . rns
kn
n rn+1, where for any 1 ≤

i ≤ n + 1, ri is a sequence of pairwise different edges and for all 1 ≤ i ≤ n,
si is a simple cycle (no edges are repeated within si).

This representation of signatures is the base to obtain types of signatures
with the following properties:

Lemma 5. Given a good SPDI, let σ = e0 . . . ep be a feasible signature, then
its type, type(σ) = r1, s1, . . . , rn, sn, rn+1 satisfies the following properties:

P1 For every 1 ≤ i < j ≤ n + 1, ri and rj are disjoint;

P2 For every 1 ≤ i < j ≤ n, si and sj are different.

The finiteness of the different types of signatures is the basis of the proof
of decidability of (good) SPDI reachability, and of the termination of the
reachability algorithm (together with acceleration results for simple loops).

Theorem 6. The reachability problem in SPDIs satisfying the goodness con-
straint is decidable.

10



(b)(a)

?
R1

In

In

In

In

Out

Out

Out

Out

b

R2

In

a

In

Out

In

Out

R1

b

a

a

b

a

b

R2

OutIn

Out

Figure 3: (a) An SPDI with matching order of edges; (b) a GSPDI showing
that the order breaks the contiguity of the edge directions.

4 Relaxing Goodness: Generalised SPDIs

The original proof of the decidability of the reachability question for SPDIs,
depended on the concept of monotonicity of TAMFs and their composition.
Before starting the analysis, the algorithm fixed the direction of the edges
separating regions. An interesting result guaranteed that the orientation
of the edges resulted in each polygon split into two contiguous sequences
of paths — one being the input edges, the other being the output edges.
Furthermore, the orientation of an edge in one region is guaranteed to match
the orientation of the same edge in the adjacent region3, as shown in figure
3-(a). When one moves on to GSPDIs, inout edges (edges that may be
traversed in both directions) break this result, since the direction of an edge
when considered as an input edge clashes with the direction it is given when
used as an output edge in the same region. The previous result however, still
guaranteed that the entry-only edges and the exit-only edges can be assigned
in one fixed direction (see figure 3-(b)).
To solve this problem, we use directed edges, and differentiate between the
edge used as an input, and when it is used as an output, just as though they
were two different edges in the GSPDI. Figure 4-(a) shows how an inout
edge can be seen in this manner. Note that edge e1 is an input edge in

3As we have already pointed out, there are special cases when an edge is an entry-only
to a region and an exit-only to an adjacent regions. From the reachability point of view
this does not cause any problem as these cases can be identified and treated accordingly.

11



(a) (b)

In

In

In
Out

Out

b

R2

In

a

Out

R1

In

Out

Out

a

OutIn

b

e1

e
−1
1

In

In

In
Out

Out

b

R2

In

a

Out

R1

In

Out

Out

a

OutIn

b

Figure 4: (a) A GSPDI with a duplicated inout edge; (b) a path through the
GSPDI using edge e1 in both directions.

region R1, but an output edge in region R2, and similarly, e−1
1 is an output

edge in region R1 and an input edge in region R2. In other words, any path
passing through the edge such as σ = e0e1e2 . . . e3e

−1
1 e4 (see figure 4-(b)) can

be analysed as before, and through monotonicity, one can deduce that Succσ

is a positive TAMF. e1 and e−1
1 are considered distinct edges, and the above

path contains no loop.
It can be seen that the standard analysis for SPDIs works well for such cases.
However, paths can now ‘bounce’ off an edge. Recall that any pair of edges
e0e1 is part of a path if e0 is an input edge of a region, and e1 is an output
edge of the same region. One can calculate the TAMF for such a trajectory.
However, ee−1 can now be a valid path, whose behaviour cannot be expressed
as a normal TAMF. This breaks the analysis used in SPDIs, to accelerate
the analysis of loops. The standard SPDI analysis thus needs to be extended
to handle such ‘bounces’ in paths.

4.1 Preliminary Results

The goodness restriction (assumption 1) was originally introduced to simplify
treatment of trajectories and to guarantee, amongst other things, that each
region can be partitioned into entry-only and exit-only edges in an ordered
way, a fact used in the proof of decidability of the reachability problem. We
will introduce in this section further background, and provide new results
concerning GSPDIs, needed to prove our decidability result.

12



Definition 3. An edge e ∈ P is an inout edge of P if e is neither an entry-
only nor an exit-only edge of P .

An SPDI without the goodness restriction is called a Generalised SPDI
(GSPDI). Thus, in GSPDIs there are three kinds of edges: inouts, entry-
only and exit-only.
Self-crossing of trajectory segments of SPDIs can be eliminated which allow
us to consider only non-crossing trajectory (segments). Lemma 1 (the full
proof of which can be found in [ASY07]) also applies to GSPDIs. There-
fore, in what follows, we will consider only trajectory segments without self-
crossings.
Note that on GSPDIs, a trajectory can “intersect” an edge at an infinite
number of points by sliding along it. A trace is thus no longer a sequence of
points, but rather, a sequence of intervals.

Definition 4. The trace of a trajectory ξ is the sequence trace(ξ) = I0I1 . . . In

of the intersection intervals of ξ with the set of edges: Ii ⊆ ξ ∩ Ed(H).

Definition 5. An edge signature (or simply a signature) of a GSPDI is
a sequence of edges. The edge signature of a trajectory ξ, Sig(ξ), is the
ordered sequence of traversed edges by the trajectory segment, that is, Sig(ξ) =
e0e1 . . . en, with trace(ξ) = I0I1 . . . In and Ii ⊆ ei.

Note that, in many cases, the intervals of a trace are in fact points. We
say that a trajectory with edge signature Sig(ξ) = e0e1 . . . en and trace
trace(ξ) = I0I1 . . . In interval-crosses edge ei if Ii is not a point.
Given a trajectory segment, we will distinguish between proper inout edges
and sliding edges.

Definition 6. Let ξ be a trajectory segment from point x0 ∈ e0 to xf ∈ ef ,
with edge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P ) be an edge of P .
We say that ei is a sliding edge of P for ξ if ξ interval-crosses ei, otherwise
e is said to be a proper inout edge of P for ξ.

We say that a trajectory segment ξ slides along an edge e, if e is a sliding
edge of P for ξ, and that ξ is a sliding trajectory if it contains at least one
sliding edge.
The signatures that we will be analysing in GSPDIs are similar to ones in
SPDIs, except that they may include consecutive inverted edges of the form
ee−1. The behaviour between such edges does not correspond to a normal
TAMF, and thus has to be analysed separately.
One interesting property of inout edges is that the dynamics of the region
they are in allow us to slide along the edge to one of the end-points of the
edge.

13



Proposition 1. If e is an inout edge, then any trajectory reaching the edge
can always slide on the edge (in one or the other direction, or both).

Note that in GSPDIs successors are not positive affine TAMFs as for SPDIs.
A typical counter-example is a successor function Succee′ where e is an inout
edge and e′ is a parallel edge on the same region. It is clear that following
at least one of the leftmost or rightmost vector will not intersect the edge
e′, thus giving an underlying AMF of the form [ax + b, +∞] or [−∞, ax + b]
(or [−∞, +∞]). Extending successor to consider this kind of multi-valued
functions would also need the extension of defining inverse AMFs and thus
on how to compute the intervals S and J associated to the corresponding
TAMFs. Note that the problem is also present in case only one of e or e′ is
inout.
In what follow we will show that though the above is true, it is always
possible to find an equivalent successor expression (w.r.t. reachability) with
the positive affine property. We assume in what follows that all edges are
normalised (i.e., edges have local coordinates between 0 and 1).
The following lemma shows that the successor from e to e′, whenever the
dynamics is given by an angle greater than π, is indeed equal to the successor
whenever the angle is 2π. This, in turn, can be expressed as a positive TAMF.

Lemma 7. Let R be a region of a GSPDI H with dynamics given by ∠
b

a
, with

θ(a,b) > π, and edges e ∈ Inout(R) and e′ ∈ Out(R) (or e′ ∈ Inout(R)).

Then Succ
∠b

a

ee′ = Succ
∠2π

0

ee′ . Moreover, we can always express the successor as

follows: Succ
∠b

a

ee′ (x) = F ({x}∩S)∩J , with F = [x−α, x+α] (for any α > 1),
S = [0, 1], and J = [0, 1].

The following result concerns the qualitative analysis of simple cycles con-
taining at least one region with dynamics given by an angle greater than
π.

Lemma 8. Let R be a region of a GSPDI H with dynamics given by ∠
b

a
,

with θ(a,b) > π. Then for any cyclic signature σ including edges in R , the
cycle is EXIT-BOTH.

The above follows directly from the definition of EXIT-BOTH and the pre-
vious lemma.
We now show how we can define a successor function as a positive TAMF
which correctly describes the behavious between inout edges in regions with
the vectors describing the dynamics within an angle π of each other. We
start by defining a transformed successor with positive affine AMFs.

14



(a) (b)

e

e
′ e

′

e

a

b b

a

Figure 5: Transforming successors as in Def. 7: (a) Succ
∠b

a

ee′ ; (b) Succ′
∠b

a

ee′

Definition 7. Let R be a region of a GSPDI H with dynamics given by ∠
b

a
,

with θ(a,b) ≤ π, with at least one of the edges e and e′ being an inout edge

of R. We define Succ′
∠b

a

ee′ (x), to be equal to F ({x} ∩ S) ∩ J , with S and J

computed as for SPDIs, and F a positive affine AMF defined as follows:

• [fb(x), x + α] if â · e ≤ 0 or b̂ · e′ ≤ 0 (for any α > 1 such that x + α

defines a vector situated in a clock-wise position w.r.t. vector b)

• [x − α, fa(x)] if b̂ · e ≤ 0 or â · e′ ≤ 0 (for any α > 1 such that x − α

defines a vector situated in an anticlock-wise position w.r.t. vector a)

• [x − α, x + α] if both conditions given in the previous items hold (for
any α > 1 such that x−α defines a vector situated in an anticlock-wise
position w.r.t. the vector defined by x + α)

• [fb(x), fa(x)] otherwise.

See Fig. 5 for an example of the transformation done. Based on this defini-
tion, we can give a characterisation of successors in terms of positive affine
AMFs:

Lemma 9. Under the conditions in definition 7, Succ
∠b

a

ee′ ({x}) = Succ′
∠b

a

ee′ ({x}).

In the rest of the article we will always write Succee′ though it should be
understood as being the primed version of the successor, in order to guarantee
working always with positive affine underlying AMFs.
From all the above lemmas, we get that given a signature σ of a GSPDI H,
the successors can always be written in such a way that the underlying AMFs
are positive affine. The argument is as follows. If the dynamics of region R

is given by an angle ∠
b

a
greater than π, then we use lemma 7. If not, we use

15



lemma 9 which allows us to obtain positive affine AMFs by analysing all the
different possible combinations of e and e′ as inout edges with the dynamics
under consideration.
We have then the following result.

Corollary 10. In GSPDIs, for any two edges e0 and e1, Succe0e1
can always

be written as a positive TAMF, whenever e1 6= e−1
0 .

A bounce is a part of a trajectory which crosses an edge twice in immediate
succession. We define bounces formally within a signature as follows:

Definition 8. Given a signature σ = e0e1 . . . en, a pair of edges eiei+1 is said
to be a bounce if ei+1 = e−1

i . We say that a signature e0e1 . . . en contains m

bounces, if there are exactly m distinct indices I = {i1, i2, . . . im} such for
every i ∈ I, ei = e−1

i+1.

Let Flip[l, u] = [1 − u, 1 − l] be an interval function. The following result
establishes that the successor function for bounces can be defined in terms
of the Flip function. The result follows directly from the definition of e−1:

Lemma 11. The behaviour of going from an edge e to its inverse e−1 is
equivalent to Flip: Succee−1 = Flip.

One of the useful properties of SPDIs is that the successor function of any
given signature is a normal TAMF. For GSPDIs, however, we need to take
into account bounces, and hence analyse the composition of normal TAMFs
with Flip:

Lemma 12. Composing Flip with an inverted TAMF gives a normal TAMF
and an inverted TAMF if we compose it with a normal TAMF.

The parity of the number of bounces occurring in a given signature influences
the form of the underlying TAMF, as shown in the following result, whose
proof follows immediately by induction on the number of bounces.

Corollary 13. Any signature with an even number of bounces has its be-
haviour characterised by a normal TAMF, while a signature with an odd
number of bounces is characterised by an inverted TAMF.

Given a simple cycle σ, let σ+ be the cycle iterated one or more times. Recall
that the analysis of simple cycle behaviour given for SPDIs depended only on
the assumption that the TAMF of the cycle body is a normal one. From the
previous result, it thus follows that whenever the number of bounces is even
on a given cyclic signature, the composed TAMF is a normal one, meaning
that the loop analysis can be conducted as for SPDIs:

16



Lemma 14. Given a loop σ containing an even number of bounces, its iter-
ated behaviour σ+ can be calculated as for SPDIs.

Since we slide along inout edges, and can only bounce off inout edges, we can
prove that loops which include at least one bounce are never STAY loops:

Lemma 15. Loops which include bounces are not STAY loops.

This leaves only simple cycles with an odd number of bounces to be analysed.
Considering the case when a bounce appears as the first pair of elements of a
loop body, we can accelerate the analysis by running through the loop only
once. The proof follows from the fact that the initial bounce enables a slide,
thus allowing us to identify the limits through only one application of the
loop body:

Lemma 16. Given a signature σ = e0(e1e
−1
1 e2 . . . en)ke1 (i) with only one

loop; (ii) with k > 0; (iii) which has an odd number of bounces; and (iv) starts
with a bounce; the behaviour of signature is equivalent to following the loop
only once as in σ′ = e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ .

Based on the above lemma, we can prove that any loop containing an odd
number of bounces can be accelerated. The proof works by unwinding the
loop body to push the first bounce to the beginning, and then applying the
previous lemma:

Lemma 17. Given a loop s with an odd number of bounces, we can calculate
the limit of s+ without iterating.

Therefore, we can now analyse any type of signature in GSPDIs using the
results from corollary 10 (to deal with inout edges), and lemmas 14 and 17
(to deal with bounces).

Theorem 18. We can compute the behaviour of a signature r1s
+
1 r2s

+
2 . . . rn.

4.2 Decidability

The following lemma guarantees that it is sufficient to consider simple cycles
which occur in a type of signature only under certain patterns. Any type
of signature containing two occurrences of the same simple cycle can be
reduced to another type of signature where the simple cycle s occurs only
once, provided the cycle with the edges in reverse order (denoted reverse(s))
does not occur between them. The proof is based on the fact that, assuming
the path does not cross itself, between two instances of a repeated loop,

17



one can always find either (i) the reverse of the cycle; or (ii) a bounce. In
the latter case, it can be shown that the bounce can be eliminated to avoid
leaving the loop.

Lemma 19. Given a GSPDI, and assuming only trajectories without self-
crossing, if there is a type of signature where a simple cycle s = (e0, e1, . . . , en)
appears twice, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′

, then if there is
no reverse(s) between the two occurrences of s, then type(Sig(ξ)) = σ′sk′′′

σ′′′.

We also prove that a trajectory which takes a loop (any number of times),
then takes it again (once again any number of times) but in reverse order, and
finally takes it a number of times in the forward direction, can be simulated
by another trajectory which simply takes the loop a number of times. The
proof is based on the fact that whichever direction the first edge of the simple
cycle under consideration allows sliding in, it is possible to obtain a type of
signature preserving reachability without such pattern.

Lemma 20. Given a GSPDI, if there is a trajectory segment ξ : [0, T ] → R
2,

with ξ(0) = x and ξ(t) = x
′ for some t > 0, such that type(Sig(ξ)) =

r1s
k1

1 r2s
k2

2 r3s
k3

3 r4, with s2 = s−1
1 and s3 = s1, then it is always possible to find

a trajectory segment ξ′ : [0, T ] → R
2 such that ξ′(0) = x and ξ′(t) = x

′ for

some t > 0, and type(Sig(ξ)) = r1s
k′

1

1 r′4.

Based on these last two results, we can conclude now that for GSPDIs we
can always transform a type of signature into one where simple loops are not
repeated.

Corollary 21. Given a GSPDI, let σ be an edge signature, then it can always
be written as σA = r1s

k1

1 . . . rnskn
n rn+1, where for any 1 ≤ i ≤ n + 1, si is a

simple cycle (i.e., without repetition of edges), and for every 1 ≤ i < j ≤ n,
si and sj are different.

The following lemma, ensuring that there are a finite number of types of
signatures in GSPDIs, follows from the previous results and it is the basis
for the termination proof of the reachability algorithm.

Corollary 22. The number of different types of abstract signatures of a given
GSPDI is finite.

4.3 Algorithm

Given a type of signature σ where each edge is traversed in exactly one
direction, let Reachσ(x0,xf) be the SPDI reachability algorithm presented

18



in [ASY07]. The reachability algorithm for a GSPDI H, Reach(H,x0,xf),
consists of the following steps:

1. Generate the finite set of types of signatures Σ = {σ0, . . . , σn} tak-
ing into account e and e−1 as different edges, and such that the loop
signatures are all distinct;

2. Apply the function Reachσi
(x0,xf ) for each σi ∈ Σ;

3. If for at least one σi ∈ Σ, Reachσi
(x0,xf) = Yes, then Reach(H,x0,xf) =

Yes, otherwise the answer is No.

We note that in step 2 we apply Succ progressively on the abstract signature,
using lemmas 14 and 17 to compute the successor of a loop with bounces,
and the Succ function as in the case of SPDIs for the rest. Based on these
results, it is possible to show termination, correctness and completeness of
GSPDI reachability.

Lemma 23. Reach(H,x0,xf) is a terminating, correct and complete algo-
rithm calculating GSPDI reachability.

From this, the main theoretical result of our paper follows immediately:

Theorem 24. The reachability problem for GSPDIs is decidable.

5 Conclusions

We have proved that the reachability question for GSPDIs is decidable. The
proof is a constructive one, giving an algorithm which extends the one given
in [ASY07] for SPDIs. The key lies in showing that the previous analysis
works in all cases except when a loop contains an odd number of bounces.
The algorithm is extended to deal with such cases. Inout edges enable sliding
in one or both directions. Although the algorithm needs to be extended to
deal with these cases, the overall effect of such edges is to accelerate the
analysis of an SPDI, since (at least) one end of the edge is immediately
covered once the edge is reached.
Reachability analysis of GSPDIs is not easy. In [Sch07] a semi-decision algo-
rithm has been presented by reducing reachability of GSPDI to reachability of
an exponential number of SPDIs. The main idea behind such an algorithm is
that in most cases reachability is preserved when fixing inout edges as entry-
only or exit-only edges, and then considering all the possible permutations
of SPDIs generated from such a pre-processing, reducing then the problem

19



to SPDI reachability. The main problem with the approach is that there
are cases where it is not possible to eliminate inout edges while preserving
reachability.
The main contribution of our paper is interesting in a theoretical sense, since
it extends the class of decidable hybrid systems, narrowing further the gap
between what is known to be be decidable and what is known to be unde-
cidable [AS02, MP05]. The result is, however, also interesting in a practical
sense, since it provides a good foundation to approximate planar non-linear
differential equations (as discussed in section 2.2). The next step is to im-
plement the algorithm, extending the SPeeDI+ tool [APSY02, Spe] to treat
GSPDIs, and use in real case studies using non-linear differential equations.

Acknowledgements

We would like to thank Hallstein A. Hansen for finding an error in an earlier
version of this paper.

References

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of
dynamical systems having piecewise-constant derivatives. TCS,
138:35–65, 1995.

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a ver-
ification tool for polygonal hybrid systems. In CAV’02, volume
2404 of LNCS, pages 354–358. Springer-Verlag, July 2002.

[AS02] E. Asarin and G. Schneider. Widening the boundary between de-
cidable and undecidable hybrid systems. In CONCUR’02, volume
2421 of LNCS, pages 193–208. Springer-Verlag, 2002.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability
of the reachability problem for planar differential inclusions. In
HSCC’01, number 2034 in LNCS, pages 89–104. Springer-Verlag,
2001.

[ASY07] E. Asarin, G. Schneider, and S. Yovine. Algorithmic Analysis
of Polygonal Hybrid Systems. Part I: Reachability. Theoretical
Computer Science, 379(1-2):231–265, 2007.

[HS74] M.W. Hirsch and S. Smale. Differential Equations, Dynamical
Systems and Linear Algebra. Academic Press Inc., 1974.

20



[MP93] O. Maler and A. Pnueli. Reachability analysis of planar multi-
linear systems. In CAV, number 697 in LNCS, pages 194–209.
Springer-Verlag, 1993.

[MP05] V. Mysore and A. Pnueli. Refining the undecidability frontier of
hybrid automata. In FSTTCS, volume 3821 of LNCS. Springer-
Verlag, 2005.

[Sch02] G. Schneider. Algorithmic Analysis of Polygonal Hybrid Systems.
PhD thesis, VERIMAG – UJF, Grenoble, France, July 2002.

[Sch07] G. Schneider. On the decidability of the reachability problem for
GSPDIs. Technical Report 359, Dept. of Informatics, Univ. of
Oslo, June 2007.

[Spe] SpeeDI+. http://www.cs.um.edu.mt/speedi/.

21



A Proofs of Lemmas, Theorems and Proposi-

tions

This appendix is for reviewing purposes only. It contains the detailed proofs
of the results which could not be included for space reasons is being included
at the end of the paper. Should the paper be accepted for publication, the
main paper merged with the proofs will be published as a technical report
for reference.

Section 3

Corollary 3 Composition of two TMAFs gives a TMAF. The composition of
two inverted TAMFs gives a normal TAMF. Conversely, the composition of
one normal and one inverted TAMF (in either order) gives an inverted TAMF.

Proof Sketch. The proof follows similarly to Theorem 2, where we note
that the resulting affine functions are switched when one of the TAMFs is
inverted, and the gradient is the product of the original two gradient values
(hence positive when both positive or negative, and negative otherwise).

Section 4.1

Proposition 1 If e is an inout edge, then any trajectory reaching the edge
can always slide on the edge (in one or the other direction, or both).

Proof. The results follows from the fact that the director vector of e can be
expressed as the positive linear combination of the two vectors of the region
in consideration.

Proposition 2. If e0 is an inout edge, then for any other edge e1, and
interval I, such that Succe1e0

(I) is not empty, all such applied successors
include the left or all include the right end of the edge (equal to one of (0, x〉
or 〈x, 1) for some value of x — depending on one of I’s extremities).

Proof. This is a direct consequence of Proposition 1.

Lemma 12 Composition of the function Flip with an inverted TAMF results
in a normal TAMF and in an inverted TAMF if we compose Flip with a nor-
mal TAMF.

22



Proof. Consider a normal TAMF f :

(Flip◦f)[x, y]
= { by definition of TAMFs }

Flip([alx
′ + bl, ary

′ + br] ∩ J) where [x′, y′] = [x, y] ∩ S

= { J = [Jl, Jr] and by definition of intersection }
Flip[max{alx

′ + bl, Jl}, min{ary
′ + br, Jr}] where [x′, y′] = [x, y] ∩ S

= { definition of Flip }
[1 − min{ary

′ + br, Jr}, 1 − max{alx
′ + bl, Jl}] where [x′, y′] = [x, y] ∩ S

= { since −min{x, y} = max{−x,−y}, similarly for max }
[1 + max{−(ary

′ + br),−Jr}, 1 + min{−(alx
′ + bl),−Jl)] where [x′, y′] = [x, y] ∩ S

= { since a + max{x, y} = max{a + x, a + y}, similarly for min }
[max{1 − (ary

′ + br), 1 − Jr}, min{1 − (alx
′ + bl), 1 − Jl}] where [x′, y′] = [x, y] ∩ S

= arithmetic }
[max{−ary

′ − (1 + br), 1 − Jr}, min{−alx
′ + (1 − bl)), 1 − Jl}] where [x′, y′] = [x, y] ∩ S

= { definition of intersection }
[−ary

′ − (1 + br),−alx
′ + (1 − bl)] ∩ [1 − Jr, 1 − Jl] where [x′, y′] = [x, y] ∩ S.

Note that the result is also an inverted TAMF. The other result follows
identically.

Corollary 13 Any signature with an even number of bounces has its be-
haviour characterised by a normal TAMF, while a signature with an odd
number of bounces is characterised by an inverted TAMF.

Proof. The proof follows by induction on the number of edges appearing in
the signature.
The base case is when the signature consists of exactly two edges (shorter
sequences of edges are not signatures by definition). Let the signature be
σ = e0e1. Now either (i) e1 = e−1

0 , in which case we have an odd number
(exactly one) bounce, and Succσ = Flip (by definition 8) which is an inverted
TAMF (by definition of Flip); or (ii) e1 6= e−1

0 , in which case we have an
odd number of bounces (zero) and Succσ is a normal TAMF by the result in
[ASY07]. In both cases, the result holds.
Now let us assume that the result holds for signatures of length n, and we
will consider a signature of length n+1, namely: σ = e0e1 . . . en. Once again,
either en = e−1

n−1 or it is not. We will consider the cases separately:

• If en = e−1
n−1, then the signature e0e1 . . . en−1 contains one bounce less

that the original signature.

23



Succe0e1...en

= { property of Succ }
Succen−1en ◦ Succe0e1...en−1

= { definition of Succ on a bounce }
Flip ◦ Succe0e1...en−1

Now, if e0e1 . . . en has an even number of bounces, e0e1 . . . en−1 has
an odd number of bounces (since the last pair were a bounce), and
thus, by the inductive hypothesis, Succe0e1...en−1

is an inverted TAMF.
But by the above equational reasoning, and lemma 12, it follows that
Succe0e1...en

is a normal TAMF.

The case when e0e1 . . . en has an odd number of bounces follows simi-
larly.

• On the other hand, if en 6= e−1
n−1, then the signature e0e1 . . . en−1 con-

tains the same number of bounces as the original signature.

Succe0e1...en

= { property of Succ }
Succen−1en ◦ Succe0e1...en−1

As before, if e0e1 . . . en contains an even number of bounces, so thus
e0e1 . . . en−1 (since the last pair were not a bounce), and thus, by the in-
ductive hypothesis, Succe0e1...en−1

is a normal TAMF. But by the above
equational reasoning, and lemma 2, it follows that Succe0e1...en

is a nor-
mal TAMF.

The case when e0e1 . . . en has an odd number of bounces follows simi-
larly.

Lemma 15 Loops which include bounces are not STAY loops.

Proof. The proof follows from Proposition 1, which guarantees that once we
reach the first inout edge, we can always slide to one end of the edge. Hence
any loop containing such edge cannot be a STAY, by definition.

Lemma 14 The behaviour of any loop σ containing an even number of
bounces can be calculated as for SPDIs.

Proof. Corollary 13 ensures that Succσ is a normal TAMF. Earlier, in Section
3.3, we have summarised the analysis from [ASY01] which enables us to

24



calculate the behaviour of a cycle whose TAMF is not inverted, in a non-
iterative manner. We can thus use this technique to calculate the iterated
behaviour of σ in a non-iterative way.

Lemma 16 Given a signature with one loop σ = e0(e1e
−1
1 e2 . . . en)ke1 (with

k > 0, which has an odd number of bounces, and starts with a bounce),
the behaviour of signature is equivalent to following the loop only once as in
σ′ = e0e1e

−1
1 e2 . . . ene1. In other words: Succσ = Succσ′ .

Proof. Since e1 is an inout edge, by proposition 2, we know that we can slide
in (at least) one direction. without loss of generality, let’s assume that for
any e, Succee1

(I) = (0, x). Note that due to the definition of TAMFs, x is
only dependant on the right bound of I.
Let F = Succe−1

1 e2...ene1
. Since this includes an even number of bounces,

composed TAMF (thus F ) is a normal (non-inverted) TAMF. Moreover, since
F (I) = Succene1

(Succe−1
1 e2...en

(I)), then F (I) = (0, x) for some value of x.
Finally, we note that since F is a normal TAMF, x is dependant only on the
right bound of I, we can conclude that there exists α such that for any x,
F (x, 1) = (0, α).
We can now proceed to prove the result by induction on k. Trivially, the
result holds for k = 1. Now consider k > 1:

25



Succe0(e1e−1
1 e2...en)ke1

(I)

= { k > 1 }
Succe0(e1e−1

1 e2...en)(e1e−1
1 e2...en)k−1e1

(I)

= { by induction }
Succe0(e1e−1

1 e2...en)(e1e−1
1 e2...en)e1

(I)

= { by definition of Succ and F }
F ◦ Succe1e−1

◦ FSucce1e−1
◦ Succe0e1

(I)
= { by definition of Flip }

F ◦ Flip ◦ F ◦ Flip ◦ Succe0e1
(I)

= { by sliding argument given above }
F ◦ Flip ◦ F ◦ Flip(0, x)

= { by definition of Flip }
F ◦ Flip ◦ F (1 − x, 1)

= { by property of F given above }
F ◦ Flip(0, α)

= { by definition of Flip }
F (1 − α, 1)

= { by property of F given above }
(0, α)

= { by property of F given above }
F (1 − x′, 1)

= { by definition of Flip }
F ◦ Flip(0, x′)

= { by sliding argument given above }
F ◦ Flip ◦ Succe0e1

(I)
= { by definition of Flip }

F ◦ Succe1e−1
1

◦ Succe0e1
(I)

= { by definition of Succ and F }
Succe0(e1e−1

1 e2...en)e1
(I)

By induction the result thus follows.

Lemma 17 Given a loop σ with an odd number of bounces, we can calculate
the limit of σ+ without iterating.

Proof. Let σ = e0e1 . . . eie
−1
i ei+1 . . . en, where eie

−1
i is the first bounce of the

sequence. Since σ contains inout edges, it cannot be a STAY loop, and we
only consider the case where the loop finally exits. Consider the exiting loop
σ+e′.

26



The case when σ is never repeated or repeated only once, can be easily
handled. When the number of repetitions is at least twice, we can use the
following reasoning:

Succσke′

= { definition of σ }
Succ(e0e1...eie

−1
i ei+1...en)ke′

= { definition of path repetition }
Succe0e1...ei−1(eie

−1
i ei+1...ene0eq...ei−1)k−1eie

−1
i ei+1...e′

= { using Lemma 16 }
Succe0e1...ei−1(eie

−1
i ei+1...ene0eq...ei−1)eie

−1
i ei+1...ene′

This reduces the analysis of such loops to a simple path analysis which we
know how to perform.

Theorem 18 We can (constructively) compute the behaviour of a signature
r1s

+
1 r2s

+
2 . . . rn.

Proof. We use the standard techniques presented in [ASY07], but use Theo-
rems 14 and 17 to analyse loops with bounces.

Section 4.2

Lemma 19 Given a GSPDI, and assuming only trajectories without self-
crossing, if there is a type of signature where a simple cycle s = (e0, e1, . . . , en)
appears twice, i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′

, then if there is
no reverse(s) between the two occurrences of s, then type(Sig(ξ)) = σ′sk′′′

σ′′′.

Proof Sketch. There are two cases:

1. σ′′ = skrsk′′

: In this case r must be of the form e−1
n e−1

n−1 . . . e−1
i with

i > 0. We must have a bouncing at e−1
i , then we can slide and we get

σ′′ = sk′′′

.

2. σ′′ = skωsk′′

: Here ω is any finite sequence of alternating r’s and s′s.
It can be shown that either we reduce to the previous case, or ω must
contain reverse(s), or there must be a self-crossing.

Lemma 20 Given a GSPDI, if there is a trajectory segment ξ : [0, T ] → R
2,

with ξ(0) = x and ξ(t) = x
′ for some t > 0, such that type(Sig(ξ)) =

r1s
k1

1 r2s
k2

2 r3s
k3

3 r4, with s2 = reverse(s1) and s3 = s1, then it is always pos-
sible to find a trajectory segment ξ′ : [0, T ] → R

2 such that ξ′(0) = x and

27



ξ′(t) = x
′ for some t > 0, and type(Sig(ξ)) = r1s

k′

1

1 r′4.

Proof Sketch. Let s1 = (e0, e1, . . . , en) be a simple cycle where ξ is a clockwise
spiral turning inwards. Due to Proposition 1, we have the following two cases:

1. e0 allows sliding inwards. We can always eliminate the first s, i.e.,
type(Sig(ξ)) = r′1s

k2

2 r3s
k3

3 r4. See Fig. 8.

2. e0 allows sliding outwards. Two cases:

(a) reverse(s1) loops outwards. In this case we can eliminate s2

since once we start that loop, we can slide outwards till s3 starts,
and we get type(Sig(ξ)) = r1s

k1

1 sk3

3 r4, which is type(Sig(ξ)) =
r1s

k′

1 r4. See Fig. 6-(a).

(b) reverse(s1) loops inwards. Two cases:

i. r2 contains only edges in s1 and s2. This implies bouncing.
Two cases.

A. Bouncing inwards. Implies sliding inwards, which con-
tradicts the assumption. See Fig. 7-(a).

B. Bouncing outwards. Implies reverse(s1) must loop out-
wards, contradicts the assumption that reverse(s1) loops
inwards. See Fig. 7-(b).

ii. r2 contains edges not in s1 and s2. This means that the
trajectory exit s1 through the ’right’. Let us assume the last
visited point in s1 is x ∈ en, and that x

′ ∈ e such that ξ(t) = x

and ξ(t′) = x
′ with Sig(ξ[t..t′]) = ene, where e ∈ first(r2).

Then the segment of line xx′ partition the region R into two
subregions R1 and R2. Clearly the only way to have r2s2 with
s2 going inwards is from a trajectory segment from region R1

to R2 by crossing xx′, which breaks the assumption of non-
crossing trajectories. Thus the pattern s2r3s3 is not possible
in this case. See Fig. 6-(b).

Corollary 21 Given a GSPDI, let σ = e1 . . . ep be an edge signature,
then it can always be written as σA = r1s

k1

1 . . . rns
kn
n rn+1, where for any

1 ≤ i ≤ n + 1, si is a simple cycle (i.e., without repetition of edges), and for
every 1 ≤ i 6= j ≤ n, si and sj are different.

Proof. If there are i 6= j such that si = sj, the only possibility is to satisfy
or the assumptions of Lemma 19 or Lemma 20. In both cases we can always
obtain a signature without repeating si.

28



(b)(a)

xx

x
′ x

′

e0

e1
e2

e3 e0

e1
e2

e3

Figure 6: Proof of Lemma 20 - Case sliding outwards: (a) case reverse(s)
looping outwards; (b) case reverse(s) looping inwards and exiting.

(b)(a)

xx

x
′ x

′

e0

e1
e2

e3 e0

e1
e2

e3

Figure 7: Proof of Lemma 20 - Case sliding outwards: (a) case bouncing
inwards; (b) case bouncing outwards.

Corollary 22 The number of different types of abstract signatures of a given
GSPDI is finite.

Proof. Based on Lemma 21, it suffices to analyse signatures of the form
σA = r1s

+
1 . . . rns+

n rn+1 such that provided that i 6= j, si 6= sj and with
each rk containing no repeated edges. Hence, since the number of edges is
finite, the number of possible values each rk can take is finite. Similarly, the
number of distinct simple loops is finite. Therefore, the number of abstract
signatures to analyse is finite.

Section 4.3

Lemma 23 Reach(H,x0,xf) is a terminating, correct and complete algo-
rithm calculating GSPDI reachability.

29



x

x
′

e0

e1
e2

e3

Figure 8: Proof of Lemma 20 –Case sliding inwards.

Proof. Termination of step 1 follows from the fact that GSPDIs have finite
partitions. Step 2 terminates by corollary 22. Using Theorems 17 and 14
we can also compute steps 3 and 4, hence guaranteeing termination of the
algorithm.
Correctness of the algorithm follows from Theorems 17 and 14 (on accelerat-
ing loops with bounces) and the results in [Sch02, ASY07] on the correctness
of SPDI reachability checking.
Finally, completeness is guaranteed by Theorem 22.
Therefore, Reach(Hi,x0,xf) (for all Hi ∈ Hred, 1 ≤ i ≤ n), is a terminating
complete and sound algorithm for deciding GSPDI reachability.

30

View publication statsView publication stats

https://www.researchgate.net/publication/228945320



