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Abstract

Contracts specify properties of an interface to a software component. We consider the problem of defining
a full contract that specifies not only the normal behaviour, but also special cases and tolerated exceptions.
In this paper we focus on the behavioural properties of use cases taken from the Common Component
Modelling Example (CoCoME), proposed as a benchmark to compare different component models. We
first give the full specification of the use cases in the deontic-based specification language CL, and then
we concentrate on three particular properties in order to compare deontic and operational specifications.
We conjecture that operational specifications are well suited for normal cases, but are less easily extended
for exceptional cases. This hypothesis is investigated by comparing specifications in CSP (operational)
with specifications in CL. The outcome of the experiment supports the conjecture and demonstrates clear
differences in the basic descriptive power of the formalisms.
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1 Introduction

Modern software applications are built from components that are connected ei-
ther statically or dynamically, for instance using a service oriented architecture
for Internet-based applications. Components are developed by different teams that
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may be distributed across countries and organisations. With this reality, it becomes
important that the interfaces and protocols used between components are well spec-
ified, that there are some contracts that regulate these issues. Here the concepts
and techniques developed in the formal methods community attract attention. One
example is contracts as functional specifications in terms of invariants, pre- and
postconditions which are predicates over state variables and parameters that define
an input, pre-state, output, post-state relation. The behaviour of components, i.e.
the acceptable sequences of method calls or signals that can be exchanged among
components, is also important to understand the overall result of connecting dis-
tributed, concurrently executing components for an application, as it is done in
a service oriented architecture. Here, operational specifications are quite popular;
they include both automata based approaches and language oriented process alge-
bras. Deontic logics have not been used to the same extent, although they would
offer greater potentials for abstraction from the actual implementations and give
a constraint oriented specification style. To some extent this is understandable,
because logic formulae are more abstract and not so easy to understand as models.
However, they may have an advantage when it comes to providing a full specifica-
tion of a contract which includes not only the normal use cases, but also special
cases with compensations, tolerance of deviations or faults, or exception handling.
Here operational models quickly become complex, because they have to specify the
compensations and alternatives by branching to different paths.

In this paper, we start by giving the specification in CL, a deontic-based formal
language for contracts [12], of a large case study which was developed to compare
different formal approaches for the specification and analysis of a component based
system of a realistic complexity — the CoCoME (The Common Component Mod-
elling Example) experiment [13]. This case study involves all the usual aspects of
functionality and behaviour; but also aspects like performance, timing constraints
and even dependability. We then investigate contract specifications using logic (CL)
and operational models (CSP [5]) by looking at a fragment of CoCoMe; and we also
contrast these with specifications in LTL and CTL [11]. Since we want to exam-
ine the particular hypothesis about operational versus logic specifications, we limit
ourselves to behaviours, where the distinction will come out. We have furthermore
isolated a particular component where interaction with humans and external or-
ganisations come to the surface. This is where handling exceptions and exceptional
cases becomes important to capture the total behaviour so as to avoid unexpected
cases. For example, let us consider part of the informal specification of a super-
market cash desk: “While in express mode (allowing only clients with less than 8
items), if no sale is currently taking place, the cashier can choose to disable the ex-
press mode”. From the behavioural point of view a sequence of events consisting of
clients with more than 8 items coming into an express cashier and the subsequent
payment, seems to be acceptable given that the cashier can make an exception.
Any specification language whose semantics would accept such a sequence would
in principle be considered a suitable formalism. This is, however, only partially
correct, since it will depend on which kind of properties we are interested in. Just
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the sequence of events does not keep the original informal specification which uses
expressions like “can choose”. This kind of modalities add extra information which
may be lost by simply observing the sequence of events.

The contributions of this paper are twofold. First, we formalise the specification
of the behavioural aspect of CoCoMe in CL. Second, we take 2 use cases from
CoCoME to compare deontic (CL) and operational (CSP) specifications.

The paper is organised as follows. In next section we provide a general descrip-
tion of CoCoME. In section 3 we present the language CL and we give the CoCoME
specification. In section 4 we present in detail the three properties to be specified
in section 5 using CL and CSP, and we briefly comment on the suitability of LTL
and CTL as specification languages in this context. We compare the specifications
in section 6, to conclude in the last section.

2 CoCoME

The Common Component Modelling Example (CoCoME) [13] is based on a Trading
System that handles the sales and inventory of a Store chain. The case study is
defined using 8 use cases that describe the main processes. The use cases span from
selling products at a cash desk to the exchange of product between stores. The use
cases are described as a sequence of actions that must occur followed by a list of
exceptional behaviour if the use case allows such behaviour.

Use Case 1 describes how a sale is processed, from the scanning of the items to
the payment, either by cash or card. In the exceptional situation that a card
validation fails, the cashier should retry the validation process or require that the
customer pays in cash.

Use Case 2 describes how a cash desk switches to express mode which restricts
the total number of items the customer should have.

Use Case 3 describes how products, which are running low, are ordered.

Use Case 4 describes how to receive these orders once the suppliers have deliv-
ered the items. In the exceptional situation where the delivery is not correct or
complete, the products are sent back to the supplier.

Use Case 5 describes how the system generates stock-related reports.

Use Case 6 describe how the system generates delivery reports.

Use Case 7 describes how the price of a product may be altered.

Use Case 8 describes how products can be exchanged from one store to another
when the product is running low in one of the stores. The store running low on a
certain product will inform the enterprise server, which will send an update stock
request to all ‘nearby’ stores. With the fresh stock information the enterprise
server will decide on which store should exchange the goods and sends the request
to send the goods. In the exceptional situation that the enterprise server is
unreachable, the request is queued to be retried later. In the exceptional situation
that not all the ‘nearby’ stores reply to the update stock request the enterprise
server will wait for 15 min after which it will continue the process assuming that
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stores that have not responded to the request do not have the required products.

3 Specification of CoCoME using CL —Use Cases 3-8

In this section we first present CL [12], a language to express contracts as terms
over obligations, permissions and prohibitions, and then we show how to specify
CoCoME in CL. CL has the following syntax:

C := CO|CP |CF |C ∧ C|[β]C|〈β〉C|�|⊥
CO := OC(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := FC(δ)|CF ∨ [α]CF

α := 0|1|a|α&α|α · α|α + α

β := 0|1|a|β&β|β · β|β + β|β∗

This syntax is an extension of that given in [8] where here we add the angle
brackets. The semantics of CL have been given in an extension of μ-calculus, an
intuitive explanation of which is given below.

A contract typically consists of two parts: definitions (D) and clauses (C). We
deliberately leave the definitions part underspecified in the syntax above. D specifies
the assertions (or conditions) and the atomic actions present in the clauses. In this
case, the vocabulary of Table 1. Atomic actions are underspecified, but consist of
(at least) three parts: the proper action, the subject performing the action, and the
target of (or, the object receiving) the action. Note that, in this way, the parties
involved in a contract are directly encoded in the actions.

C is the general contract clause. CO, CP , and CF denote respectively obligation,
permission, and prohibition clauses. O(·), P (·), and F (·), represents the obligation,
permission or prohibition of performing a given action. ∧ and ⊕ correspond to the
classical conjunction and exclusive disjunction, which may be used to combine obli-
gations and permissions. For prohibition clauses CF , the operator ∨ corresponding
to disjunction is used. The constraints on which operators may be used to compose
which types of clauses are introduced to avoid expressing paradoxical contracts.

The α is a compound action (i.e., an expression containing one or more of the
following operators: choice “+”; sequence “·”, and concurrency “&” — see [8]),
while β is a compound action which can also be made up of the Kleene star “∗”.
Note that ⊕ cannot appear between prohibitions and + cannot occur under the
scope of F .

CL borrows from propositional dynamic logic [3] the syntax [α]C to represent that
after performing α (if it is possible to do so), C must be satisfied. 〈α〉C captures the
idea that the possibility exists of executing α, in which case C must hold afterwards.

CL can be extended with the temporal operators ♦ (eventually) and � (always),
with standard semantics [11]. Thus �C can be defined as [1∗]C. Similarly, we can
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define ♦C (eventually) for expressing that C holds sometime in a future moment, as
well as the U (until) and © (next) operators.

Contrary-to-duty (CTD) contracts, which specify an obligation and reparation
contract in case the obligation is not met, is expressed in CL as OC(α): obliging
action α, but defaulting to contract C if it not satisfied. Similarly, contrary-to-
prohibition (CTP) contracts, specifying a prohibited action α and its reparation
clause C in case of violation, can also be expressed: FC(α).

In what follows we specify CoCoME using the contract language CL. CoCoME
specifies both behavioural and functional requirements. CL does not yet support
the specification of timing constraints natively; however, one could encode these
constraints in the definition of the actions. We have only done this in cases where
the timing constraint affected the behaviour of the system since we are focusing
on the behavioural specification. Though CL is limited when it comes to timing
constraints, it will allow us to describe exceptional behaviour easily and concisely.

In this section we will specify use cases three to eight of the CoCoME case
study. In the following section we will focus on the most interesting parts of use
cases one and two and use them to compare deontic specification with operational
specification. In the rest of the paper we will use the action names shown in Table 1.
For a more detailed presentation of the CL specification presented in what follows,
refer to [15].

Specification of Use Case 3 (Order Products)
(i) �[startOrderProcess]O(listItems&listLowItems)

(ii) �[listItems&listLowItems]P (entersAmount)

(iii) �[entersAmount]P (mngOrderButton)

(iv) �[mngOrderButton]O(placeOrder&displayOrderID)

Once the manager starts the order products process (startOrderProcess) the sys-
tem is obliged to show the full list of items and the list of items that are running
low (listItems&listLowItems). After this the manager has the permission to enter
the amount of items he would like to order (entersAmount) after which he is per-
mitted to press the order button (mngOrderButton) in which case the system is
obliged to place the order and display the order id (placeOrder&displayOrderID).
This use case does not have any exceptional behaviour specified. Further-
more, the distinction between the system permitting the manager to do cer-
tain actions (e.g. P (entersAmount)) and the system being obliged to respond
(e.g. O(placeOrder&displayOrderID)) is not explicitly described in the CoCoME
specification but rather assumed from the common expectations.

Specification of Use Case 4 (Receive Ordered Products)
(i) �[deliver]OO(sendBack)(completeCorrect)

(ii) �[completeCorrect]O(mngOrderButton)

(iii) �[mngOrderButton]O(updateInventory)
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disableExpress Go to Normal Mode

enableExpress Go to Express Mode

conditionMet Condition to go to express mode has been met

startSale Start a new sale

enterItem Enter new item

finishSale Stop entering items and start payment procedure

cashPay Pay in Cash

cardPay Pay with Card

correctPin Pin entered is correct

incorrectPin Pin entered is incorrect

sendBack Send customer to another line

> 8 Customer has more than eight items

< 8 Customer has less than eight items

returnItems Customer forfeits items

startOrderProcess Manager initiates the start of the Order Products process

listItems The System lists all the products

listLowItems The system lists the products which are running out of stock

entersAmount The store manager chooses the items to order and enters the corresponding amount

mngOrderButton The store Manager presses the Order button

placeOrder The System places the order to the appropriate supplier

displayOrderID The system displays the order identifier generated to the Store Manager

deliver Supplier delivers the ordered stock which is identified by an order ID

completeCorrect Supplier made a complete and correct delivery. This is checked by the Stock Manager

orderReceived Manager receives the order by pressing the button Roll in received order

updateInventory The System updates the inventory

sendBack The Stock Manager sends the products back to the supplier

enterStoreID Manager enters the store identifier and presses the button Create Report

displayReport System displaces a report including all the available stock items in the store.

enterEnterpriseID Manager enters the enterprise identifier and presses the button Create Report

displayEnterpriseReport The System generates and displays an Enterprise report

requestOverview The Manager requests a listing of available products in the store

listItems The System lists all the products

selectItem The Manager Selects an Item

changePrice The Manager changes price

pressCommit The Manager commits by pressing enter

commitPriceChange The System changes the price according to the amount set by the manager

productRunsOut A product of a store runs out

lowStock The store server recognises low stock of the product.

productRequest The Store Server sends a request to the Enterprise Server

inventoryRequest The enterprise server sends an Inventory request to nearby stores

inventoryReply The store replies with the inventory information

inventoryUpdate The enterprise server updates the database and looks up the product

storeChosen The enterprise server using an “optimisation criterion” to find a store

productReply The enterprise server sends a message to the receiving store.

transferRequest The enterprise server sends a message to the transferring store

queueRequest Store server queues request to enterprise.

15min 15 minutes have passed

allRequestsReceived All requests have been received

Table 1
Alphabet

The case study describes that that Manager is required to check that the supplier has
sent the correct and complete order. Instead of defining an action MgrChecksOrder
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we defined the action completeCorrect since the obligation is on the supplier to
send the correct information. Thus here we have that once the delivery is made
(deliver) the supplier is obliged to have sent the complete and correct delivery
(completeCorrect). If however the supplier has violated this obligation, the man-
ager is obliged to send the order back (sendBack), otherwise he is obliged to pro-
cess the order (mngOrderButton) and the system is obliged to update accordingly
(updateInventory).

Specification of Use Case 5 (Show Stock Report)
(i) �[enterStoreID]O(displayReport)

Once the manager enters the store id (enterStoreID) the system is obliged to display
the report (displayReport).

Specification of Use Case 6 (Show Delivery Report)
(i) �[enterStoreID]O(displayReport)

Once the enterprise manager enters the store id (enterStoreID) the system is obliged
to display the report (displayReport).

Specification of Use Case 7 (Change Price)
(i) �[requestOverview]O(listItems)

(ii) �[listItems]P (selectItem)

(iii) �[selectItem]P (changePrice)

(iv) �[changePrice]P (pressCommit)

(v) �[pressCommit]O(commitPriceChange)

This use case shows the process of how a manager may change a price of an
item. The manager starts this process by requesting a list of available products
(requestOverview). The system is obliged to list all the items (listItems) and give
permission to the manager to choose items (selectItem). If the manager does select
an item, the system should give permission to the manager to change the price
(changePrice) after which it should give permission for the manager to commit the
price change (pressCommit). If the manager commits the changes, the system is
obliged to make these changes permanent (commitPriceChange).

Specification of Use Case 8 (Product Exchange Among Stores)
(i) �[productRunsOut]O(lowStock)

(ii) �[lowStock]OO(queueRequest)(productRequest)

(iii) �[productRequest]O(inventoryRequest)

(iv) �[inventoryRequest]O(inventoryReply)

(v) �[inventoryReply]O(inventoryUpdate)

(vi) �[15min + allRequestsReceived]O(storeChosen)
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Fig. 1. Cash desk and its constituents

(vii) �[storeChosen]O(productReply&transferRequest)

If a product runs out (productRunsOut) the local store server should recognise
that this has occurred (lowStock) and is obliged to send a request to the enterprise
server(productRequest). If this is not successful (for example the connection is
down) then the request should be queued (queueRequest). Once such a request is re-
ceived by the enterprise server, it is obliged to send an inventory request to all nearby
stores (inventoryRequest). Every store that receives this request is obliged to reply
with the inventory information (inventoryReply). After every reply the enterprise
server updates the local databases (inventoryUpdate). Once the enterprise server
receives all the replies from the stores or 15 minutes have passed since the requests
were sent (15min+allRequestsReceived) it chooses from where the items should be
taken and sends a reply to the original store requesting the items and a message to
the store that is going to supply the items (productReply&transferRequest).

4 An Example of a Full Contract –Use Cases 1-2

We shall concentrate on the cash desk part of the example shown in Fig. 1 which
have the following constituents:

(1) Each cash desk has a Cash Box for starting and finishing a sale, and entering
received money. (2) In order to identify the products to sell, each cash desk is
equipped with a Bar Code Scanner. (3) A Card Reader is installed at each cash
desk for handling card payment. Paying by cash can be handled by the Cash
Box. (4) In addition there is a Printer for printing the bill which is handed out
to the customer at the end of the sale process. (5) To realise the express checkout
mentioned above, each cash desk is equipped with a Light Display which signals the
customers if the Cash Desk is currently operating in an express mode. If so, the
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cashPay

returnItems

correctPin

incorrectPin

correctPin

incorrectPin

correctPin

incorrectPin

cardPay

Fig. 2. Full transition diagram for cardPay (F1)

customers are only allowed to buy a small amount of goods and must pay cash in
order to keep each transaction short. (6) Each Cash Desk has its own Cash Desk PC
where the software handles the sale process, and takes care of the communication
with the Bank. Furthermore, it integrates all devices at the Cash Desk.

We focus on the behavioural aspect of the use case, and in particular the follow-
ing 3 clauses of the contract which includes expected and exceptional behaviours,
fairness, permissions and obligations:

F1 If the customer chooses to pay by cash he is obliged to swipe the card followed
by entering the correct pin number. If the pin number is incorrect the customer
has two more attempts at entering the correct pin after which the client is obliged
to pay with cash. If the client refrains to pay with cash the client has to give up
the goods. See transition diagram in Fig. 2.

F2 While in normal mode, the cashier may choose to switch to express mode if in
the last hour 50% of the sales had less than eight items (conditionMet). Once
in express mode the cashier is obliged to eventually go back to normal mode.
If conditionMet holds infinitely often, then the cashier should change to express
mode infinitely often. See transition diagram in Fig. 3.

F3 In express mode, once a sale has commenced, the cashier is obliged to service
customers with less than eight items. To service a customer, the items need to
be entered in the system, and then finish the sale. If a customer has more than
eight items then it is up to the cashier’s discretion whether to service the client
or send him back to the end of another line. See Fig. 4.

Clause F2 includes interesting aspects as permissions, obligations and fairness
constraints. In Fig. 3 the leftmost state decorated with a black circle indicates that
the state should be visited infinitely often. This models the part of the clause which
states that the cashier is obliged to always eventually go back to normal mode.
From the normal state we can only exit when the express condition is met, after
which the cashier has the choice of going back to normal mode or express mode.
The dashed transition signifies that if this transition is taken infinitely often then
the dotted transition needs to be also taken infinitely often, modelling the part of
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disableExpress

conditionMet enableExpress

disableExpress

anyany

Fig. 3. Transition diagram for Express mode (F2)

disableExpress

enableExpress

<8

enterItem

sendBack

>8

startSale

finishSale

>8

Fig. 4. Transition diagram for sales process (F3)

the clause stating that if the condition is met infinitely often then the cash desk
needs to infinitely often go into express mode.

In clause F3 the choice to serve a client with more than 8 items is up to the
cashier’s judgement, This ‘permission’ to the cashier to ‘violate’ the rule can be
seen as an allowed explicit exception.

5 Formal Specifications of Use Cases 1-2

Our first formal specification is operational, using CSP; it includes the normal
operations for the three clauses. Then follows specifications using temporal logics,
and finally the deontic logic based specifications. We use the action names shown
in Table 1.

5.1 Operational Specification

The Relational Calculus of Object and Component Systems (rCOS) is a method
for developing component based systems. Syntactically, it is rooted in Unified The-
ory of Programming (UTP) [6] which has been adapted for object and component
based use [4]. Behavioural aspects are syntactically expressed by UML diagrams.
Semantically and for verification purposes, they are translated to CSP [5].

CSP terms define processes:

P ::= Stop | a → P | P []P | P � P | X

where Stop denotes the deadlocked process; action prefix a → P means do a then act
as P ; external choice ([]) between processes, whichever is able to proceed is executed;
non-deterministic or internal choice (�), one is chosen; and finally X denotes a
process name for a process defined in a set of mutually recursive definitions: X = P .
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—
CashDesk = disableExpress → NormalDesk

[] enableExpress → ExpressDesk

ExpressDesk = startSale → EnterExp(0)

NormalDesk = startSale → EnterNormal

EnterExp(i) = i < 8 ∧
enterItem → EnterExp(i + 1)

[] finishSale → cashPay → CashDesk

EnterNormal = enterItem → EnterNormal

[] finishSale → Finish

F inish = cashPay → CashDesk

[] cardPay → CashDesk

Table 2
Normal case specification

The trace semantics of CSP defines a set of finite traces. For the refusal seman-
tics, which distinguishes the two choice operators, refer to [5,14].

The Normal Case Specification
The example scenario of sale processing which forms the basis for the example
contract is rendered as the CSP processes shown in Table 2. In this specification,
we use a bounded integer counter i which ranges from 0 to 8; thus the specification
stays within the fragment that can be analysed with a model checker.

Specification of F1
Here we need to modify the Finish process only:

Finish = cashPay → CashDesk [] cardPay → Card

Card = sendP in → Check(0)

Check(i) = correctP in → CashDesk

[] i ≥ 3 ∧ incorrectP in → Nocard

[] i < 3 ∧ incorrectP in → Check(i + 1)

Nocard = cashPay → CashDesk [] returnItems → CashDesk

This can be proved to be a refinement of the Finish process in the normal
behaviour; but note the intricate branching logic.

Specification of F2
Concerning F2, a non-deterministic switching could be added. It can be specified
as follows:

Switch = (enableExpress → Switch) � (disableExpress → Switch)

However, there is no guarantee of fairness or liveness, so it is left underspecified.

Specification of F3
Here we have to modify the process EnterExp:
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EnterExp(i) = (i < 8 → enterItem → EnterExp(i + 1)

[] finishSale → CashDesk)

[] i ≥ 8 → Finalise(i)

Finalise(i) = (finishSale → cashPay → CashDesk

[] enterItem → EnterExp(i + 1))

� finishSale → CashDesk

where Finalise gives the non-deterministic choice of the cashier. Note, however,
that in this case we get a process that is no longer a refinement of the previous
defined one because it allows same behaviours that were prohibited before.

5.2 Temporal Logics Specification

Two widely used temporal logics are LTL and CTL. LTL is a linear temporal logic
which allows us to specify properties over paths. Given a set P of atomic preposi-
tions, the syntax of an LTL formula is

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Gϕ | Fϕ | Xϕ |ϕUϕ

The LTL formula Gϕ means that ϕ always hold, Fϕ that ϕ will eventually hold,
Xϕ that ϕ will hold in the next step and ϕUψ that ϕ holds until ψ holds.

CTL is a branching time temporal logic which makes use of the same LTL
temporal operators but each temporal operator is preceded by a path quantifier,
either E or A:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AGϕ | AFϕ | AXϕ |ϕAUϕ | EGϕ | EFϕ | EXϕ |ϕEUϕ

E is the existential path quantifier meaning that there exists at least one path
starting from this state, which satisfies the quantified formula. A is the universal
path quantifier meaning that all the paths starting from this state must satisfy the
quantified formula.

Specification of F1
The first clause can be seen as a list of conditional statements where it is always
the case that after the card is swiped then there is a choice of either entering the
correct pin, in which case it would satisfy the formula or else it could be satisfied in
the next step. In the next step we repeat the possibility of satisfying the formula
by entering the correct pin and if not we again check the next step. This formula
can be described in both CTL and LTL:

AG(cardPay → AX (correctPin ∨ AX(correctPin ∨
AX(correctPin ∨ AX(cashPay ∨ returnItems)))))

G(cardPay → X(correctPin ∨ X(correctPin ∨
X(correctPin ∨ X(cashPay ∨ returnItems)))))
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Specification of F2
The second clause cannot be described using CTL due to the fairness, unless the
logic is extended with fairness constraints. Moreover, it is not clear how the permis-
sions and obligations of the clause could faithfully be represented in CTL. Fairness
is expressible using LTL, however, the clause also requires the existence of the tran-
sition leading to express mode which cannot be represented using LTL.

Specification of F3
For the third clause it is always the case that once we go to express mode then we
need to satisfy the express mode behaviour until we go back to normal mode. Once
a sale is started the client needs to be serviced until the sale is finished or the client
is sent to another line. If the client has less than eight items then that implies that
he should be serviced, otherwise the cashier has to choose between either servicing
the customer or sending the customer back. We are also ensuring that there exists
the possibility of both servicing the customer and sending the customer back since
this is required by the clause. It is because of this requirement that the behaviour
cannot be expressed using LTL. However, in CTL it is:

AG enableExpress → AX(startSale →
AX((< 8 → AX(enterItemAUfinishSale)) ∧

(> 8 → AX(enterItem ∨ sendBack) ∧ EX(enterItem) ∧ EX(sendBack) ∧
AX(enterItem → enterItemAUfinishSale)))

AU disableExpress)

5.3 Deontic Specification

In this section we will present a deontic specification of the properties, using CL.

Specification of F1
Here we make extensive use of nested CTDs, where we have a number of options
of how the client may satisfy the payment by card. Once a card is swiped then
the client is obliged to enter the correct pin (primary obligation). However, if
the pin entered is incorrect then the client may still try again two times (secondary
obligation) and in case of failure the exceptional cases of paying by cash or returning
the items must be enforced. If none is satisfied, the contract is violated:

�[cardPay] Oψ1 (correctP in)

where ψ1 = Oψ2 (correctP in), with ψ2 = OO(cashPay+returnItems)(correctP in).

Specification of F2
Clause F2 starts by stating that the cashier is infinitely often obliged to go to the
normal mode: it can never stay in express mode forever. Then we state that it
is always the case that after conditionMet is observed (possibility to enable the
express mode) then the cashier is obliged to either choose to stay in normal mode
or express:
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�♦O(disableExpress) ∧
�([conditionMet] (O(disableExpress + enableExpress) ∧ P (enableExpress) )) ∧
�♦[conditionMet] � ♦O(enableExpress)

We also enforce that once the condition is met, the cashier has the possibility to
go to express mode to avoid a model that only contains a return to normal mode.
We do not need to explicitly ensure that there is a possibility to choose to stay in
normal mode, similarly to what we have done with the express mode, or that after
being in express mode we have the possibility to go back to normal mode because of
the first conjunct which states that we have to go infinitely often to normal mode.
The fairness requirement is specified in the final part of the clause where we say that
if we infinitely often observe conditionMet, then we will infinitely often be obliged
to go back into express mode.

Specification of F3
It is always the case that once we go to the express mode a certain behaviour needs
to be followed until we go back to normal mode. In the case that the client has less
than eight items, then the cashier is obliged to service the customer. However, if
the client has more than eight items the cashier is obliged to choose to either service
the customer or send back the customer to another cash desk and both possibilities
should exist. The last property is thus specified in CL as follows:

�( [enableExpress]( [startSale](

[< 8]O(enterItem) U finishSale ∧
[> 8](O(enterItem + sendBack) ∧ P (sendBack) ∧ P (enterItem) ∧

[enterItem]O(enterItem) U finishSale ))

U disableExpress )

6 Comparison

In Table 3 we present a summary of which formulae can be expressed by the for-
malisms we used in the previous section. We elaborate in what follows on the
differences between the approaches.

The specification of the example using the different notations shows that CTL
and CSP allow the specification of exceptional behaviour aspect of a contract which
cannot be specified in other notations such as LTL. Thus making it possible to spec-
ify full contracts. However, model based formalisms cannot express global properties
such as fairness or liveness of a transition system, because they essentially model
the individual transitions.

CL combines both linear and branching time, with the addition of certain deontic
notions. It has not only information of what actions are to be done to satisfy the
CL clause but also prescriptive information about the action, namely whenever the
action is observable it is possible to distinguish whether it was required to perform
it (as a primary obligation), whether it was a reparation to an obligation, or simply
a permitted action.

Moreover, the expression of CTDs and CTPs in terms of basic CL goes beyond
syntactic rewriting, since it still enables a contractual view of when obligations,
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permissions and prohibitions are active, have been satisfied, or violated. The main
advantage of viewing the properties as a deontic contract is that this knowledge is
preserved and can be reasoned about.

In summary, F2 seems to be relatively complex property difficult to be captured
in specifications using temporal logics and operational approaches. Deontic specifi-
cations seem to be appropriate, whenever a right combination of deontic operators
with temporal ones is provided.

Analysis
Though our aim is to compare the specification style of temporal logics, oper-

ational and deontic specifications, we are also interested in what we can do with
those specifications, namely how easy it is to analyse them. It is well known that
both LTL and CTL are amenable to model checking [1,7]. In the case of CSP suf-
fices, so one can take advantage of the existing tool FDR2 [9] to do the analysis. It
may be used to check CSP refinement as well as other properties such as deadlock
freeness, trace refinement, etc. However, it is unclear what refinement should be
checked for F3 since it contains contrary-to-duty actions, which do not blend well
with ordinary refinement.

In what concerns CL, an ad-hoc algorithm for checking deontic inconsistencies
has recently been developed. In this way, given a CL contract, we are able to detect
whether the contract contains contradictory obligations, or an obligation and a
prohibition to do something at the same time, and other kinds of contradictions (see
[2] for more details). A general model checker for CL is currently under development,
though by using a semantic encoding into an extended μ-calculus [12] it is possible
to model check contracts written in CL as presented in [10].

As an example in addition to the three clauses seen in section 4, let us consider
the contract [a]O(c)∧ [b]F (c) which is satisfiable except when the concurrent action
a&b is observed: we end in a state where the contract cannot be satisfied since c is
both forbidden and required to happen. We could encode the CL trace semantics
into LTL, however, the correct encoding of the deontic notions as to be able to
model check contract inconsistencies would be extremely difficult. Moreover, in
order to handle the above small example, CTL and LTL should be extended with
concurrent actions, and a priority order among actions (this is built-in in CL [12]).

Summarising, once the specifications are written in any of the approaches under
consideration, one can apply existing tools to further analyse them. However, only
CL can be model checked against properties concerning obligations, permissions,
and prohibitions, as well as CTDs and CTPs.

7 Final Remarks

In this paper we have given a specification of the CoCoME benchmark case study
using a deontic specification language. We have then presented and examined the
use of three specification styles for the description of total contracts, contracts
which not only specify normal behaviours, but also exceptional ones. Clauses of the
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LTL CTL CSP CL
F1 � � � �
F2 – – – �
F3 – � (�) �

Table 3
Comparisons between specifications

CoCoME example have been used to illustrate different types of contract clauses
and how they can be handled using different specification approaches in order to
identify their respective strengths and weaknesses.

One prevailing view of contracts is that of properties which the underlying sys-
tem must satisfy. In the gist of this view, we have shown how they can be expressed
in terms of appropriate standard logics, CTL and LTL. One main disadvantage of
this approach is that obligations, permissions and prohibitions are encoded in terms
of the underlying logic, making it difficult, in some cases practically impossible, to
relate behaviour of the system back to these operators. The encoding also leads to
loss of compositionality of contracts for exception handling or contract violations,
as in the case of CTDs. Reasoning about CTDS and CTPs would be difficult. In
particular, the detection of deontic inconsistencies, as explained at the end of the
previous section, cannot be done in temporal logics, and quite difficult in many
operational models.

Using a process calculus approach to describe contracts enables reasoning about
the contracts in a direct manner — for instance comparing contracts up to a sim-
ulation relation. Also, more complex composition of contracts can be encoded in
a direct manner. On the other hand, one still lacks information about contract
violation and satisfaction which would have to be encoded directly (and thus prone
to error), making the description of total contracts less direct.

Finally, we explore the use of a deontic logic based language to describe the
contract clauses. In this approach, we note that reasoning about the deontic state
of the system is possible. Moreover, the possibility to analyse contracts, and to
express properties of contracts (such as “Whenever you are obliged to pay, you are
forbidden from leaving the store, unless you pay”) which may refer to the deontic
state of the system, is highly desirable. Furthermore, only the analysis of deontic
specification is suitable to detect inconsistencies concerning obligations, permissions
and prohibitions in full contracts. An implementation of the inconsistency checker
for CL is described in [2].

Overall, it can be argued that the appropriate specification language depends
on the intended use. If the contract is intended to be used simply as a property
which should be satisfied by a system, then the use of a standard logic, with ade-
quate expressiveness and tool support, will usually suffice. If the use also includes
the composition and comparison of contracts, the process calculus approach gives
more flexibility. If it is required to analyse and compose full contracts including
exceptional behaviour, a deontic approach would be more appropriate.
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