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Consider 9 populations or groups, 9 2:: 2. The object of discriminant analysis 
is to allocate an individual to one of these 9 groups on the basis of his/her 
measurements on the p variables Xl, 1';2, ... ,Xp. It is desirable to make as few 
'mistakes' as possible in classifying these individuals to the various groups. 

For example, the populations might consist of different diseases and the p 
variables 1';1, X2, ... ,xp might measure the symptoms of a patient, ego blood 
pressure, body temperature, etc. Thus one is trying to diagnose a patient's 
disease on the basis of his/her symptoms. As another example, one can 
consider samples from three species of iris. The object is then to allocate a 
new iris to one of these species on the basis of its measurements ego sepal 
length, sepal width, etc. 

In the case of two groups, 9 = 2, in the univariate case, when p = 1 and 
Xl is the only variable measured, it is quite easy to see when the two groups 
are well separated from each other. For this purpose, one can perform a 
t-test on 1';ltO see whether the two groups have significantly different means. 
Equivalently, one can define the ratio: 

the difference between the means of the two samples 
deviations within the samples 

A large value for this ratio, which is proportional to the t-statistic, would 
indicate that the means of the samples are well separated from each other; 
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conversely, a small value for this ratio would imply that within sample varia
tions are relatively large, and that readings from the two samples would tend 
to overlap. This would in turn lead to poor discrimination between the two 
groups in terms of .1:1, and to a non-significant difference between the sample 
means for ;£1. 

In the case when 9 ~ 2, that is for two or more groups, and when p = 

1, one-way analysis of variance, the F-test, can be performed to examine 
whether the mean of Xl differs significantly over the groups. Equivalently, 
one can define the ratio: 

Variation between the means of the samples 
Variation within the samples 

(1.0.0.1) 

Again in this case, a large value for this ratio, which is closely related to 
the F-statistic, signifies good separation between the groups and a significant 
difference for x1between the groups. In fact, in the case of two groups (g = 

2), the F-test and the t-test are equivalent to each other, with F = t2 for a 
given problem. 

In the case when the number of variables is larger than one, p > 1, one can 
perform separate univariate tests on each of the p variables Xl, X2, ... ,xp. For 
purposes of discrimination, however, it is often preferable to define a linear 

p 

combination y of the Xk'S, namely y = L akXk, with the object of maximis-
k=l 

ing the ratio defined in equation (1). Finding the best linear combination 
which maximizes this ratio is equivalent to maximizing the statistical dis
tance between the groups. This in turn would guarantee greater success in 
discriminating between the different groups. As shown below, the problem of 
finding the optimum choice of the coefficients ai can be reduced to a suitable 
eigenvalue problem. 

Partitioning the total variation of y 

We will now discuss briefly a very important identity in the context of dis
crimination and analysis of variance. '''le will assume that there are 9 dif
ferent groups in all, and that there are ni cases in the i'th group, where 
i = 1,2, ... ,g. For each case, the p variables Xl, X2, '" ,Xp are measured. We 
then denote by Xijk the value of the kih variable (Xk) for the j'th case in the 
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i'th group. Note here that the suffixes have the following bounds: 

:r:1:jk: 1 ~ k; ~ p, 1 ~ j ~ nj, 1 ~ 1: ~ g. 

value of variable Xk for case j in sample i. 
It is then easy to write down the mean of the k;'th variable over the i'th 

sample, and the grand mean of the k;'th variable over all groups: 

1 71.; 

Xi.k = - '\' Xijk 
n·L.t 

1, j=1 

1 9 71.; 

X .. k = -g--~ ~ Xijk 

'\' n· i=l j=1 L.. 1, 

i=1 

In an analogous fashion, the linear combination Y for the i'th case in the j'th 
p 

sample can be written as Yij = L akXijk. Its mean over the i'th sample and 
k=1 

its overall (grand) mean are then given as: 

1 71.; P P 

Yi .. = ;:. ~ ~ akxi.jk = ~ akXi.k 

1. j=l k=l k=1 

1 9 71; P P 

Y .. = -g-~ L L akXijk = ~ ak·'E .. k 

L ni i=1 j=1 k=1 k=l 
i=l 

The sum of the square of the deviations of the values of Yij for each case from 
their overall (grand) mean Y .. is then given by 

9 71.; 9 71.; [p ] 2 

t;j~ (Yij - y . .)2 or t;i.r; :; ak(Xijk - X .. k) 

This quantity is often referred to as the total variation of y, or equivalently 
as the total sum, of squares, often abbreviated as SST. Algebraic manipula
tion of the SST will result in a very important partitioning of this variation 
into two separate parts as follows: 
SST == Total sum of squares 

gn;[p ]2 
= i~j~ ~ ak(Xijk - X .. k) 

interchange order of surnmation: 

a/ant 9 71,1 

= L L L (Xijl - .'E .. I) (Xijrn - X .. m) 
1~I,m0J i=1 j=1 

add and subtract mean of sample from which reading 1:S taken, leaving sum 
unchanged: 
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a/am 9 71.i 

'\' '\''\'(X X -1:1' X )(X x' +X x') L.. L.. L.. . ,:jl - . i.l -. 'i.! -· .. 1 . ijm - '1:.m i.m - ' .. m 
l";;l,m";;pi=lj=l 

multiply out the terms in pain' 

a,am. 9 71.i alarn 9 n 1" 

'\' '\' '\' (X'''I - X'I)(X" - x· ) + '\' '\' '\' (X'I - X 1)(X' - X ) L.. L.. L.. . '1.]. • 1... . 1.]m . 1 .. m L.. L.. L.. 1... ...' un .. m 
1 ";;l,m";;p i=lj=l l";;l,m~ i=l j=1 

+ the other two cross terms which each equal zero using the definition of 
the sample means 

s1:mplify second term since brackets are independent of suffix j: 

a,am. 9 ni alam. 9 
- '\' '\' '\' (x "I - X· I) (X, . - X· ) + '\' '\' n· (x . I - X I) (x . - x ) - L.. L.. L.. 'J. 1... 1Jm 1 .. m L.. L.. ".. .., Lm .. m 

1";;I,m~i=1j=1 l";;l,m~i=l 

== SSW + SSB 

The first term in the penultimate line, often abbreviated as SSW, esti
mates the size of deviations of the readings from their own sample mean, 
and is often called the within-variation or within sum of squares. The sec
ond term, often abbreviated as SSB, estimates the size of the deviations of 
the sample means from the overall mean and is referred to as the between
variation, or the between sums of squares. The above identity can be therefore 
written as 

SST = SSVl + SSB (1.0.0.2) 

or total variation = variation within samples + variation between samples 
This important identity is often referred to as partitioning the sums of 

squaT'es. It is important to note that the terms SSB and SSW are, respec
tively, the numerator and denominator in the ratio defined by equation (1). 
The groups are more easily separated if the ratio in equation (1), XX!, is 
large or equivalently ~~~ is small. Statistical tests have been devised using 
these ratios to determine whether the sample means are significantly different 
from each other. 
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Matrix formulation 

The sums of squares, SST, SSW and SSB are all quadratic forms in the 
coefficients ak 

and can be elegantly represented in matrix form. Rearranging the p 
coefficients ak as thep x 1 column vector a, one can rewrite the partitioning 
identity (2) as 

atTa = atWa + alBa 

SST = SSW + SSB 

where T, HI and B are symmetric p x p matrices, the l, m'th entry of 
which are given by the terms multiplying alam in the corresponding sum of 
squares. Thus, 

9 71; 

the l, m,'th entry of T is ~ ~ (Xijl - X . .l) (Xijm - x .. m) ; 
i,=l j=l 

9 71.; 

the l, m'th entry of 1-V is ~ ~ (Xijl - Xi.l)(Xijm - Xi .. m); (3) 
i=l j=l 
9 

the l, m'th entry of B is ~ ni(Xi.l - :r .. l)(Xi,m - X.:rn). 
1:=1 

The matrices T, VV and B are called sums of squaTes and cross-product 
matrices. Since the partitioning holds for any arbitrary vector a, these three 
matrices satisfy the identity 

T=W+B (1.0.0.4) 

In fact, B is usually calculated from B = T - W in practise. 

Maximising the ratio of between to within vari
ation 

For optimum separation of the groups, we would therefore seek to maximise 
the ratio ffff,!. In matrix form, we would like to find a suitable column vector 

a with entries aI, a2, .... , ap , such that ::l!~ is a maximum. Equivalently, 
since multiplying a by a scalar would not change the ratio, we can maximise 
the numerator, subject to the constraint that the denominator is one. Using 
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Lagrangian multipliers, we maximise the function cp(a)defined by 

cp(a) = aiBa + A(l- a/\iVa). 

27 

This function cp( a) can then be differentiated with respect to each of the ak's, 
k = 1, 2, ... , p, and the derivatives aa'P(a) are each set to zero. 'iVhen the 

CLk 

resulting set of p equations are rearranged in matrix form, one obtains the 
homogeneous linear system 

ocp(a) 
oa 

= 2Ba - 2AWa = 0, 

where 0 is the p x 1 column vector of zeros. Dividing by 2 and factorising, 
we then obtain the condition: 

(B - AVV)a = 0, or equivalently 

(1-1/ - 1 B - AI)a = O. 

(1.0.0.5) 

(1.0.0.6) 

Therefore a is an eigenvector of 1-1/- 1 B and A is its corresponding eigen
value. Further, pre-multiplying equation (5) by at, we get 

at(B - AW)a = 0, that is 

at Ba = Aal;lVa or 
atBa 

A=--. 
at"Wa 

(1.0.0.7) 

From equations 6 and 7, one can therefore conclude that the maximum 
possible value of the ratio :/:r~ (= %%:r) is the largest eigenvalue A of lV-1 B 
and the optimum choice of a is the eigenvector of A. The linear combination 

p 

y = I.: akXk can be written in matrix form as atx. For this particular choice 
k=l 

of the vector a, this linear combination is the one which best separates the 
groups. It is called Fisher's discriminant function (Fisher, 1936) after its 
inventor. 

An example on discrimination between two groups 

To illustrate the above, we now give an example of discrimination between 
two groups (g = 2) on the basis of two variables (p = 2). The following 
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'botanical' example is inspired by Fisher's classic paper on discrimination 
(Fisher, 1936), which is described in Mardia et al. (1979), \vhilst the numer
ical data are derived from Tacq (1997). 

The datafile in our example contains measurements on two types of iris. 
The variables Y, Xl and X 2 are defined as follows: 

{ 
0 if iris is of the setosa type (group 1); 

Y = type of iris = 1: if iris is of the veTsicoloT type (group 2). 

Xl = sepal length and X 2 = sepal width. 

Xl and X 2 are assumed to be normally distributed with similar covari
ance structure in the two groups (Tacq, 1997). 

The data-file contains 15 cases in all, 6 in the first group (setosa), and 9 
in the second group (veTsicolor-). For each individual case (flower), we give 
its group membership (Y), its sepal length and sepal width (Xl and X 2 ). 

The data-file is listed in Table 1. 



Table 1: The datafile and its statistical description. 
Calculation of the matrices W, rand E, using equations (3) and equation (4). 

y 
Setosa 0 

Versi
color 

o 

o 
o 
o 

o 

1 

1 

1 

1 

1 

1 

1 

1 

Xl 
1 

2 

4 

5 

5 

4 

4 

5 

6 

6 

7 

8 

9 

9 

X2 

1 

4 

1 

5 

5 

9 

2 

4 

6 

3 

6 

6 

7 

7 

8 

Groups 1 and 2 together: 

Group 1: Setosa 

Cases in sample: 111 =6 

Mean: XI = 3.000 Xl = 4.166 

Variation: L(XI-XY =18.000 L(X2 -XJ2 =44.833 

Covariation: L(XI -XI)(X1 -X2 ) = 22 

(
18 22) :. W, == ; within variation in group I. 
22 44.833 

Group 2: Versicolor 

Cases in sample: n2 =9 

Mean: XI = 6.444 X2 = 5.444 

Variation: L (XI - xy == 30.222 L (X2 - xS = 32.222 

Covariation: L(XI -XJ(X1 -Xl) = 25.222 

(
30.222 25.222) 

:. W, == ; within variation in group 2. 
- 25.222 32.222 

_ _ I I _ (48.222 47.222). -1 _ ( 0.052 -0.032) 
.. W-11 +11,- ... W - . 

1 - 47.222 77.056 -0.032 0.032 

variation within samples; inverse of W. 

Total number of cases: n = 111 + 112 = 15 

Overall mean: XI = 5.067 Xl = 4.933 

Total Variation: L(XI _XI)2 =90.933 L(X2 -X2)2 =82.933 

Total Covariation: L (XI - XI )(X2 - X 2 ) = 63.067 

. = (90.933 63.067) .. T . 
63.067 82.933 

total variation 

(
42.711 15.844) 

B=T-W= . 
15.844 5.858 

variation between samples 
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In Table I, we also give the statistical description of each group sepa
rately, and of both groups pooled together. In particular, we give the means 
of the two variables Xl and X 2 , namely Xl and X 2 , for each sample sep
arately, and the within sums of squares for each sample, 1V1 and 1V2 , from 
which the within sum of squares matrix liV for both groups could be simply 
calculated using W = VV1 + 1V2 . The groups are then pooled together, to ob
tain the grand means of Xl and X 2, and hence the total sum of squares matrix 
T. The between sum of squares matrix B is then calculated as B = T - "\IV. 
The reader is referred to Table I for the calculation of the 2x2 matrices HI, 
B, T and VV-l. 

One can then calculate 1/V-1 B as follows: 

1,11- 1 B 
(

0.052 -0.032) (42.711 15.844) 
-0.032 0.032 15.844 5.858 ( 

l.711 0.635 ) 
-0.843 -0.313 . 

This matrix has non-zero eigenvalue ,\ =l.399, with unit eigenvector a 

(
0.897 ) 
-0.442 . 

Fisher's discriminant function is therefore given by atx = 0.897 Xl -
0.442X2 . This is the linear combination which gives the largest value (=,\) 
of the ratio %%l! in equation (2), namely, the ratio of the variation between 
samples to the variation within samples. 

Test of significance on the eigenvalue. 

One normally performs Hotelling's T2 test to see whether the mean of the 
discriminant function atx differs significantly between the two groups. 

The T2 statistic is defined as 

T2 = (n - 2),\, 

where n = nl + n2 is the total number of cases in the two samples. 
T2 should be 'large' if the means of the two groups are well separated. 
Conversely, T2 is 'small' if there is no significant difference between the 

two sample means. In this case, Hotelling showed that the quantity (;C:~~)T2 
should be distributed according to the F-distribution with p, n-p-1 degrees 
of freedom, where p is the number of variables featuring in the discriminant 
function and n is the total number of cases in the two groups. 
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In this application, p = 2, 11 = 'ILl + n2 = 6 + 9 = 15, 

T2 = (n - 2)'\ = (15 - 2)(1.399) = 18.182, 

F = (TL - P - 1)T2 = (15 - 2 - 1) (18.182) = 8.392. 
p(n - 2) 2(15 - 2) 

Degrees of freedom for F-test = p, 11 - P - 1 = 2, 15 - 2 - 1 
= 2,12. 

31 

In our case therefore, if there is no significant difference between the 
groups, the F-statistic should be distributed according to the F-distribution 
with 2, 12 degrees of freedom. 

From the tables, the critical F-value for 2, 12 degrees of freedom with 
a= 0.05 is 3.89. Since 8.392 > 3.89, we can conclude that the means of the 
two groups are significantly different. For this reason, discriminant analysis 
could be done profitably on this dataset. 

A typical statistical package would also include the following items in the 
output of a discriminant analysis: 

1. a classification rule to determine the group to which a given case is 
assigned; 

2. application of this classification rule to the cases whose group member
ship is known a priori, so as to obtain an estimate of the misclassifica
tion rate; 

3. application of this classification to classify cases of unknown type. 

We now describe briefly the classification rule and its application. 

The Classification Rule 

The discriminant function is often used to establish a classification rule 
whereby group membership of a given case can be determined. This could 
be done both for cases whose group membership is known a pTiori, and also 
for cases with unknown group membership. 

One classification rule can be set up in the following way. 
The value of the discriminant function atx is first calculated at the cen

troid of each group: 
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Group 1: 0.897(3.000)-0.442(4.167) = 0.849, 
Group 2: 0.897(6.444)-0.442(5.444) = 3.374. 
The cut-off is then taken to be the average of these two values: 

0.849 + 3.374 = 2.112. 
tc = 2 

32 

Then any case (Xl, X 2)is assigned to Group 1 if 0.897XI - 0.442X2 < 2.112, 
and to Group 2 otherwise. 
Using this rule, one can classify the original cases to find how good the 

discriminant analysis is. Prior group membership could be compared to the 
posterior grouping predicted by the classification rule. This comparison is 
summarized in a classification table. One can also use this rule to classify new 
cases for which group membership is not known. The use of the classification 
rule is illustrated in Table n. 



Table I1: Use of the classification rule: 
i) to classify original cases and hence 
ii) to obtain a prior versus post classification table; and 
iii) to classify new cases with unknown group membership. 

i) Ciasstfication of original cases: 

y Xl X2 0.897XI -0.442X2 Posterior 

Classification 
Setosa 0 1 1 0.455 0 

0 1 4 -0.871 0 
0 2 1 1.352 0 
0 4 5 1.378 0 
0 5 5 2.275 1 
0 5 9 0.507 0 

Versi- 1 4 2 2.704 1 
Calor 1 4 4 1.820 0 

1 5 6 1.833 0 
1 6 3 4.056 1 
1 6 6 2.730 1 
1 7 6 3.627 1 
1 8 7 4.082 1 
1 9 7 4.979 1 
I 9 8 4.537 1 

if) Classification Table: 
Posterior Classification: 
Group 1 Group 2 

Prior Classification: Group 1 5 I 
Group 2 2 7 

80% of the cases are classified correctly. 

iii) Class[fication of new cases with unknown group membership: 

y XI X2 0.897 Xl - 0.442X2 Postelior 

Classification 
? 6 5 3.172 1 
? 5 6 1.833 0 
? 3 7 -0.403 0 
? 4 3 2.262 1 
? 6 4 3.614 1 
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Conclusion and suggestions for further reading 

Discriminant analysis is a very popular multivariate technique. Like many 
other techniques in multivariate statistics, the method is based on the alge
braic eigenvalue problem. In this respect it is very similar to principal corn
ponent analysis, factor analysis, correspondence analysis and multivariate 
analysis of variance (Manova), in all of which one ha.s to find the eigenval
ues and eigenvectors of a suitable matrix (Lebart, Morineau and \iVarwick, 
1984). The eigenvalue problem defined by equation (5) is also important in 
the solution of vibrational problems of mechanics (Lunn, 1990 and Segerlind, 
1983) and in the buckling of structures (Dawe, 1983). 

Discriminant analysis is also related to linear regression and logistic re
gression, where group mell1.bership, y, is regressed on the mea.sured variables 
.Xi, (Flury and Riedwyl, 1993). 

Most books on multivariate statistics have a chapter on discriminant anal
ysis. The books by Tacq (1997), Manly (1986), and Flury and Riedwyl 
(1993) are very readable and should be reasonably easy to an undergraduate 
in mathematics or statistics. 

For students who wish to read further on discriminant analysis, one can 
suggest more mathematical texts such as Morrison (1990), Everett and Dunn 
(1991), Johnson and VJichern (1992) and Ivlardia, Kent and Bibby (1979). 
In addition to the statistical theory, these books also give many practical 
examples of this technique. 
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