Euler's Phi function for Powers of Primes

Elaine Chetcuti

The Phi function $\phi(n)$ is defined as the number of positive integers less than n which have no factor in common with n.

Knowing that a residue group is a set of positive integers less than n and relatively prime to n; the phi function, $\phi(n)$, can be defined as the number of elements in the residue group.

 $\emptyset(n) = \text{no. of natural numbers} < n: (a, n) = 1$

Consider $\emptyset(4)$:

There are 2 positive integers less than 4 which have no common factor with 4 namely (1 and 3). Hence

• $\phi(4) = 2$

Consider $\emptyset(7)$:

There are no positive integers less than 7 which have a common factor with 7 since 7 is a prime number.

Therefore we can say that for any prime number p, $\phi(p) = p-1$

Our attempt is to find $\phi(p^k)$

Let us consider $\phi(p^2)$

Consider first $\emptyset(5^2)$

Listing all positive integers less than 25, we obtain

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$$1 \ 2 \dots pp+1 \dots 2p2p+1 \dots 3p3p+1 \dots 4p$$

21 22 23 24 25

$$4p+1..............5p$$
 (where $5p$ is p^2 in this case)

Therefore, to find $\phi(p^2)$, first list all positive integers less than p^2

1 2 3....
$$p, p+1$$
....2 $p,2p+1$...3 $p,3p+1$... p^2

This makes us realize that $p, 2p, 3p, 4p, \dots p^2$ are the only integers which are not coprime with p^2 .

Therefore $\phi(p^2) = p^2 - p$

Let us now consider $\phi(p^3)$

The positive integers from 1 to p^3 can be divided into p sets:

1	to	p^2	$(p^2 - p \text{ coprimes})$
p^2+1	to	$2p^2$	$(p^2 - p \text{ coprimes})$
$2p^2 + 1$	to	$3p^2$	$(p^2 - p \text{ coprimes})$
$(p-2)p^2+1$	to	$(p-1)p^2$	$(p^2 - p \text{ coprimes})$
$(p-1)p^2+1$	to	p^3	$(p^2 - p \text{ coprimes})$

Each set has p^2 – p coprimes and there are p sets.

 \Rightarrow total number of coprimes from 1 to $p^3 = p(p^2 - p)$

$$\Rightarrow \phi(p^3) = p(p^2 - p)$$

$$= p^2(p-1)$$

From this we claim that $\phi(p^n) = p^{n-1}(p-1)$

Let us prove this by the Principle of Induction

RTP:
$$\phi(p^n) = p^{n-1}(p-1)$$

Proof

Let n = 1

LHS: $\phi(p^1) = p-1$ (as discussed earlier)

RHS:
$$p^{1-1}(p-1) = p^{1-1}(p-1) = p^0(p-1) = (p-1)$$

 \therefore true for n=1

Assume it is also true for n = k

i.e.
$$\phi(p^k) = p^{k-1}(p-1)$$

We need to prove it is true for n = k + 1

i.e. RTP
$$\phi(p^{k+1}) = p^k \ (p-1)$$

The positive integers from 1 to p^{k+1} can be divided into p groups as in the case of 1 to p^3 earlier on

1	to	p^k	$(p^{k-1}(p-1) \text{ coprimes})$
p^k+1	to	$2p^k$	$(p^{k-1}(p-1) \text{ coprimes})$
$2p^k+1$	to	$3p^k$	$(p^{k-1}(p-1) \text{ coprimes})$
$(p-2)p^k + 1$	to	$(p-1)p^k$	$(p^{k-1}(p-1) \text{ coprimes})$
$(p-1)p^k + 1$	to	p^{k+1}	$(p^{k-1}(p-1) \text{ coprimes})$

Each set has $p^{k-1}(p-1)$ coprimes and there are p sets.

 \Rightarrow total number of coprimes from 1 to $p^{k+1} = p(p^{k-1}(p-1))$

$$\Rightarrow \phi(p^{k+1}) = p(p^{k-1}(p-1))$$

$$= p^k(p-1)$$

As $\phi(p^n) = p^{n-1}(p-1)$ holds for n=1 and whenever it is true for n=k, it is also true for n=k+1, by the Principle of Induction, the theorem is true for all natural numbers n.