Powers of the Adjacency Matrix and the Walk Matrix

Andrew Duncan

Introduction The aim of this article is to identify and prove various relations between powers of adjacency matrices of graphs and various invariant propertics of graphs, in particular distance, diameter and bipartitoness. A relation between the Walk matrix of a graph and a subset of the cigenvectors of the graph will also be illustrated. A number of Mathematica procedures are also provided which implement the results described. Note that the procedures are only illustrative; issues of algorithmic efficiency are largely ignored.

Unless specified, all graphs are assumed to be simple and connected, that is, there is at most one edge between cach pair of vertices, there are no loops, and there is at least onc path betwecn every two vertices. The adjacency matrix A or $A(G)$ of a graph G having vertex set $V=V(G)=\{1, \ldots, n\}$ is an $n \times n$ symmetric matrix $a_{i j}$ such that $a_{i j}=1$ if vertices i and j arc adjacent and 0 otherwise.

Powers of the Adjacency Matrix

The following well-known result will bc used frequently throughout:

Theorem 0.1 The $(i, j)^{\text {th }}$ entry $a_{i j}^{k}$ of A^{k}, where $A=A(G)$, the adjacency matrix of G, counts the number of walks of length k having start and end vertices i and j respectively.

Proof For $k=1, A^{k}=A$, and there is a walk of length 1 between i and j if and only if $a_{i j}=1$, thus the result holds. Assume the proposition holds for $k=n$ and consider the matrix $A^{n+1}=A^{n} A$. By the inductive hypothesis, the $(i, j)^{t / h}$ entry of A^{n} counts the mumber of walks of length n between vertices i and j. Now, the number of walks of length $n+1$ between i and j cquals the number of walks of length n from vertex i to cach vertex v that is adjacent to j. But this is the $(i, j)^{t h}$ cutry of $A^{n} A=A^{n+1}$ the non-zero cutries of the column of A corresponding to v are precisely the first neighbours of v. Thus the result follows by induction on n.

The Diameter of a Graph

Definition 0.1 The distance between two vertices i and j in a graph G, denoted $d_{i j}$, is the length of the shortest path between i and j. Clearly, since G is connected such a path must exist.

Definition 0.2 The diameter of G is defined to be $D=\max _{(i, j) \in V}\left\{d_{i j}\right\}$.

Remark Although most of the results in this section can be found in [2], most of the proofs appearing here are different.

Lemma 0.2 Let $d_{i j}$ be the distance between vertices i and j in G. Then for all $k \in \mathbb{N}$, there is a walk of length $d_{i j}+2 k$ between i and j.

Proof Let $k \in \mathbb{N}$. We shall construct a walk of length $d_{i j}+2 k$ betweon i and j. Let $i=v_{1}, v_{2}, \ldots, v_{p-1}, v_{p}=j$ be the path of length $d_{i j}$ between i and j. After following this path, follow the cycle $v_{p}, v_{p-1}, v_{p} k$ times. The ending vertex is j and the total length of this constructed walk is $d_{i j}+2 k$.

Theorem 0.3 [2] Let D be the diameter of the graph G. Then the matrix $A^{D}+A^{D-1}$ has no zero entries.

Proof Without loss of gencrality, let D be cven. Let $i, j \in V(G)$. If $d_{i j}$ is cven, $D-d_{i j}$ is also cven, and thus by the previous lemma there is a walk of length $d_{i j}+D-d_{i, j}=D$ betwecn i and j, and thus the (i, j) cntry of A^{D} is greater then 0 . If $d_{i j}$ is odd, then $D-d_{i j}-1$ is cven, and thus by the previous lomma, there is a walk between i and j of length $d_{i j}+\left(D-d_{i j}-1\right)=D-1$. Hence the $(i, j)^{t / 2}$ cntry of A^{D-1} is greater than 0 . Since the cntrics of A^{D} and A^{D-1} are non-negative, in cither case, $A^{D}+A^{D-1}$ has no zero entrics.

The converse of this proposition is also truc, and provides us with an algorithm for calculating the diameter of the graph.

Theorem 0.4 [2] Let d be the smallest natural number such that, $A^{d}+A^{d-1}$ has no zero entries. Then $d=D$, the diameter of G.

Proof By Theorem 0.3, d can be found such that $A^{d}+A^{d-1}$ has no zero entrics. Hence $d \leq D$. Suppose $d<D$. Let (i, j) be a pair of vertices at a distance D apart in G. then the $i j$ th entrics of A^{d} and of A^{d-1} are both zero, a contradiction. Thus $d \geq D$. Also for any two vertices $i, j, a_{i j}^{D}$ or $a_{i j}^{D-1}$ is non-zero, so that $d \leq D$. Thus $d=D$ as required.

Corollary 0.5 Let d be the smallest natural number such that $(A+I)^{d}$ has no zero entries. Then $d=D$ the diameter of G.

Proof $(I+A)^{d}=I+d A+\ldots+A^{d}$, where the entrics of cach A^{i} are nonnegative, and coefficients are positive. Thus the $(i, j)^{t h}$ cntry of $(A+I)^{d}$ is non-zcro if and only if, $a_{i j}^{k}>0$ for some $1 \leq k \leq d$. Suppose $A^{d}+A^{d-1}$ has a zero cntry (i, j). Then there must be some $A^{k}, 1 \leq k \leq d-2$ such that the $(i, j)^{\text {th }}$ entry of A^{k} is non-zero, i.c. There is a walk of length k from i to j. Now cither $(d-k)$ is cven or $(d-k-1)$ is cven. Thus by lemma 2.1, there is a walk of length $k+(d-k)=d$ or $k+(d-k-1)=d-1$ between i and j. This implies that the $(i, j)^{t h}$ contry of $A^{d-1}+A^{d}$ is non-zero which is a contradiction. Thus d is the smallest natural number such that $A^{d}+A^{d-1}$ has no zero entrics. The result follows by the previous proposition.

This corollary provides us with a very simple algorithm to determinc the diamcter of a graph G from its adjacency matrix:

```
HasZeros[m_] := MemberQ[Flatten[m], 0]
Diam[G_] := Module[{d = 1,m2 = m = A + IdentityMatrix[Length[A]]},
    While [HasZeros[m], m=m.m2; d++]; d]
```

Theorem 0.6 The diameter D of a (connected) graph G is less than the number of distinct eigenvalues of the adjacency matrix.

Proof Let the number of distinct eigenvalues of the adjacency matrix A be r. Since A is real and symmetrical, it is diagonalizable. Then the minimal polynomial $m_{T}(x)$ of A has degrec r and $m_{T}(A)=0$.

We will show that there exist elements in $\left\{I, A, \ldots A^{D}\right\}$ which are not lincar combinations of their predeccssors, and thus show that $\left\{I, A, \ldots A^{D}\right\}$ is lincarly independent, which implics that there is no polynomial of degree D or less satisfied by A. Consider $d=d_{i j} \leq D$, for some $i, j \in V(G)$. It follows, by definition of $d_{i j}$, that $a_{i j}^{d} \neq 0$ and $a_{i j}^{t}=0$ for $t<d$. Thus it is impossible that A^{d} is a lincar combination of its predccessors. It follows that $r \geq D+1$ as required.

Tests for Bipartiteness

By observing powers of the adjacency matrix A, it is possible to determine whether G is bipartite through a simple test.

Definition 0.3 The index of a graph G is defined to be the smallest γ such that A^{γ} has no zero entries.

Note that not every graph has an index as will be seen soon. We will require the following lemma:

Lemma 0.7 Let D be the diameter of the graph G having adjacency matrix A. If there are two columns r_{i}, r_{j} in A^{D} which are orthogonal, then G is necessarily bipartite.

Proof Let r_{i}, r_{j} be two orthogonal columms in A^{D}. Partition V into the sets V_{1} and V_{2}, where V_{1} is the set of vertices having non-zero entries in r_{i} and V_{2} is the sct of vertices having zero entrics in r_{i}. Then any two vertices in the same class are not adjacent. Suppose for contradiction that vertices $k, l \in V_{1}$ are adjacent. Then $a_{k i}^{D}, a_{l i}^{D}>0$, and thus $a_{k j}^{D}=a_{l j}^{D}=0$. Thus the distances $d_{k j}$ and $d_{l j}$ are less than D, and $D-d_{k j}=D-d_{l j}=1 \bmod 2$. Thus $D-d_{k j}-1=D-d_{l j}-1=0$ $\bmod 2$, which implics that $a_{k j}^{D-1}, a_{l j}^{D-1}>0$ by Lemma 0.2 . But k is adjacent to l. Thus, there must be a walk of length D between vertices k, j and l, j and thus $a_{k j}^{D}, a_{l j}^{D}>0$ which contradicts the orthogonality of r_{i} and r_{j}. A similar contradiction is obtained if onc assumes that $k, l \in V_{2}$ arc adjacent.

Proposition 0.8 Let G be a connected, non-bipartite graph, then the index γ of G exists and satisfies $D \leq \gamma \leq 2 D$.

Proof Clcarly, $D \leq \gamma$, since if $\gamma<D$ then, by definition of the index γ of G, A^{γ} has no zero elements. Thus $A^{\gamma}+A^{\gamma-1}$ has no zero clements but this would contradict Theorem 0.4. Thus $D \leq \gamma$. We will now show that $A^{2 D}$ has no zero clements. Suppose, for contradiction that the $(i, j)^{t h}$ cntry of $A^{2 D}$ is 0 . Then $a_{i j}^{2 D}=A_{i j}^{2 D}=A_{i j}^{D} A_{i j}^{D}=\sum_{h=1}^{n} a_{i h}^{D} a_{h j}^{D}=\sum_{h=1}^{n} a_{h i}^{D} a_{h j}^{D}=0$. This implics that the $i^{t / h}$ and $j^{t / h}$ columns of A^{D}, a_{i} and a_{j} arc orthogonal. But this implics that G is bipartite by the previous lemma, contradicting the premise that G is nonbipartite. Thus since $A^{2 D}$ has no zero entries. By the minimality of $\gamma, \gamma \leq 2 D$.

Proposition 0.9 Let G be bipartite. Then the index γ of G does not exist.

Proof Let G be bipartite, and let V_{1}, V_{2} be the partitions. Then, for $i, j \in$ V_{1}, all walks between i and j must contain an odd number of (not-necossarily distinct) vertices. Thus all walks between i and j must be of cven length. Also, for $k \in V_{1}, l \in V_{2}$, all walks between k and l must contain an cven number of (not necessarily distinet) vertices. Thus all walks between k and l must be of odd length. Thus for γ odd, the $(i, j)^{\text {th }}$ entry of A^{γ} is zero, and for γ cven, the $(k, l)^{t h}$ entry of A^{γ} is zero. Thus A^{γ} always has a zero entry.

Using the above two propositions, we obtain the following corollary:

Corollary $0.10 G$ is non-bipartite if and only if $D \leq \gamma \leq 2 D$.

The following Mathematica function will compute the index γ of a non-bipartite graph:

```
GraphIndex[M_] := Module[{d := 1, M1 := M},
    While [HasZeros[M1], d++; M1 = M1.M] ; d]
```

The following algorithm will determine whether a graph G is bipartite by testing the powers of $A=A(G)$, between D and $2 D$, as described in the above corollary:

```
isBipartite[G_] := Module[{d = Diam[A], result = True, m},
    m = MatrixPower [A, d];
    For [i = d, i <= 2d, i++,
    If[HasZeros[m],m=m.G,
                                    result = False; Break]]; result]
```


The Walk Matrix of a Graph

We will now digress and describe an interesting result that relates the number of main cigenvalues to the rank of a matrix known as the Walk Matrix of the graph. We will denote the all ones vector by $\mathbf{j}=(1,1, \ldots, 1)^{\top}$.

Definition 0.4 An cigenvalue is said to be non-main if it has an associated eigenvector x the sum of whose entries is not equal to 0 , i.e, $\mathrm{x} . \mathrm{j} \neq 0$

Definition 0.5 Let G be a graph with adjacency matrix A. The walk matrix $W=W_{p}(A)$ of G is the $n \times p$ matrix $\left(j, A j, A^{2} j, \ldots, A^{p-1} j\right)$, where p is the smallest value such that the walk matrix $W_{p}(A)$ attains maximum rank.

The columns of the walk matrix define an A-cyclic subspacc $U=\left\{a_{j}, \quad i \in N\right\}$. Since U is a subspace of R^{n}, it is finite dimensional, having dimension p, and it can be shown that U is gencrated by the basis ($j, A j, A^{2} j, \ldots, A^{p-1} j$). Thus the above definition is well defined, and p can be defined to be the smallest value such that $\operatorname{Rank}\left(W_{p}(A)\right)=\operatorname{Rank}\left(W_{p+1}(A)\right)=p$.

The graph-theorctic interpretation of a single column $A^{r} j$ of the walk matrix, is as follows: the $i^{\text {th }}$ entry of $A^{r} j$ counts the number of walks of length r starting from vertox i. Thus using the above result, the set of these vectors is finitely generated, and every vector $A^{r} j, p \leq r$ is a lincar combination of the vectors $\left(j, A j, A^{2} j, \ldots, A^{p-1} j\right)$.

Lemma 0.11 Let $A=A(G)$ be the adjacency matrix of G. Then a set of n orthonormal eigenvectors can be chosen such that for each eigenvalue, at most one corresponding cigenvector is main.

Proof Suppose there is an cigenvalue λ with multiplicity greater than onc, and let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$ be an orthonormal basis for the corresponding cigenspace where x_{1} is main. Clearly we can assume that that $\mathbf{x}_{\mathbf{k}} \cdot \mathbf{j} \geq 0$ for all k. Now suppose x_{i} is another main vector. Then replace x_{i} with:

$$
x_{i}^{\prime}=x_{i}-\frac{x_{i} \cdot j}{x_{1} \cdot j} x_{1}
$$

and replace x_{1} with

$$
x_{1}^{\prime}=\frac{x_{i} \cdot j}{x_{1} \cdot j} x_{i}+x_{1}
$$

and normalize accordingly. Then x_{1}^{\prime} is a main cigenvector, $\mathrm{x}_{\mathrm{i}}^{\prime}$ is non-main, and the set $\left\{\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ is an orthonormal set of cigenvectors satisfying the required condition.

We can now prove the following theorem relating the rank of the Walk Matrix to the number of main cigenvalucs.

Theorem 0.12 [4] The rank of the walk-matrix of a graph G is equal to the number of its main eigenvalues.

Proof By the previous lemma, we can choose an orthonormal set of n cigenvectors such that each cigenvalue has at most one corresponding main cigenvector. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}$ be the set of orthonormal cigenvectors corresponding to the main cigenvalues, $\lambda_{1}, \ldots, \lambda_{m}$ of G. As before, we can assume that $a_{i}=\mathbf{x}_{\mathrm{i}} . \mathbf{j}>0$ for $i=1, \ldots, m$. Then \mathbf{j} can be cxpressed as the lincar combination $\mathbf{j}=\sum_{i=1}^{m} a_{i} \mathrm{x}_{\mathbf{i}}$. Since for any $k \geq 0, A^{k} \mathbf{j}=\sum_{i=1}^{m} a_{i} \lambda_{i}^{k} \mathrm{x}_{\mathbf{i}}$, then we have that

$$
U=\operatorname{Span}\left(A^{k} \mathbf{j}, \forall k \geq 0\right) \subseteq \operatorname{Span}\left(\mathrm{x}_{\mathbf{1}}, \ldots ; \mathrm{x}_{\mathrm{m}}\right)
$$

Thus $\operatorname{dim} U=\operatorname{rank} W(G) \leq m$. We will now show that U contains a lincarly independent set of m vectors, namely $\mathrm{j}, ~ A \mathrm{j}, \ldots, A^{m-1} \mathrm{j}$.

Suppose that $\sum_{j=1}^{m} c_{j} A^{j-1} \mathbf{j}=0$ for some constants c_{1}, \ldots, c_{m}. Then

$$
0=\sum_{j=1}^{m} c_{j} A^{j-1} \mathbf{j}=\sum_{j=1}^{m} c_{j} \sum_{i=1}^{m} a_{i} \lambda_{i}^{j-1} \mathbf{x}_{\mathbf{i}}=\sum_{i=1}^{m} a_{i} \sum_{j=1}^{m} c_{j} \lambda_{i}^{j-1} \mathbf{x}_{\mathbf{i}}
$$

Then since $a_{i}>0$ and $\mathbf{x}_{\mathrm{i}}, \quad i=1, \ldots, m$, are orthonormal, then

$$
\sum_{j=1}^{m} c_{j} \lambda_{i}^{j-1}=0, \quad i=1, \ldots, m
$$

But the λ_{i} 's are all distinct, and so we have a polynomial of degree $m-1$ with m distinct roots which is only possible if the polynomial is entirely 0 , that is $c_{j}=0, \quad j=1, \ldots, m$. Thus the set $\mathbf{j}, A \mathbf{j}_{,} \ldots, A^{m-1} \mathbf{j}$ is linearly independent and so $\operatorname{rank} W(G)=m$.

References

1. D. B. West, Section 8.6: Eigenvalues of Graphs, Introduction to Graph Theory, 1996, Prentice-Hall Inc.
2. I. Sciriha and E.M. Li Marzi Boolean Matrices Graph Theory Notes of New York GTN XLVI 20-26 (2004)
3. S. Wolfram, The Mathematica Book, Version 5, Wolfram Mcdia, Cambridge University Press (2004)
4. E. M. Hagos, Some results on graph spectra, Lincar Algebra and its Applications, 356, 103-111.
