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Introduction The aim of this article is to identify and prove various relations 
between powers of adjacency matric:es of graphs and various invariant properties 
of graphs, in particular distance, diameter and bipartiteness. A relation between 
the \Valk matrix of a graph and a subset of the cigenvectors of the graph will also 
be illustrated. A number of Mathematica procedures are also provided which 
implement the results described. Note that the procedures are only illustrative; 
issues of algorithmic efficiency are largely ignored. 

Unless specified, all graphs are assumed to be simple and connected, that is, 
there is at most one edge between each pair of vertices, there are no loops, and 
there is at least one path between every two vertices. The adjacency matrix 
A or A(G) of a graph G having vertex set 11 = lI(G) = {I, ... , n} is an n x n 
symmetric: matrix aij such that aij = 1 if vertices i and .i are adjacent and 0 
otherwise. 

Powers of the Adjacency Matrix 

The following well-known result will be used frequently throughout: 

Theorem 0.1 The (i,.i)th entrya;j of Ak, where A = A(G), the adjacency 
matrix of G, counts the number of walks of length k having sta7i and end vertices 
i and.i respectively. 

Proof For k = 1, Ak = A, and there is a walk of length 1 between i and j 
if and only if aij = 1, thus the result holds. Assume the proposition holds for 
k = n and consider the matrix An+l = AnA, By the inductive hypothesis, the 
(i,n/,h entry of An counts the number of walks of length n between vertices i 
and j. Now, the number of walks of length n + 1 between i and j equals the 
number of walks of length 11. from vertex i to each veltex v that is adjacent to j. 
But this is the (i,j)th entry of A7IA = A7I+l the nOll-zero entries of the column 
of A corresponding to v are precisely the first neighbours of v. Thus the result 
follows by induction on n. I 
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The Diameter of a Graph 

Definition 0.1 The distance between two veTtices i and j in a gmph G, denoted 
d;j' is the length of the shortest path between i and j. Clearly, since G is 
connected such a path must exist. 

Definition 0.2 The diameter of G is defined to be D = maxU,j)EV {d;j}. 

Remark Although most of the results in this section can be found in [2], most 
of the proofs appearing here are different. 

Lemma 0.2 Let dij be the distance between vertices i and.i in G. Then for all 
kEN, there is a walk of length d.;j + 2k between i and j. 

Proof Let kEN. We shall construct a walk of length d'ij + 2k between i and j. 
Let i = VI, V2, ... , Vp-l 'VI' = j be the path of length d ij between i and j. After 
following this path, follow the cycle VI" Vp-I, vI' k times. The ending vertex is j 
and the total length of this constructed walk is d;j + 2k. I 

Theorem 0.3 (2] Let D be the diameter of the gmph G. Then the matrix 
AD + AD- 1 has no zero entries. 

Proof Without loss of generality, let D be even. Let i,.i E V (G). If d;j is even, 
D - d;j is also even, and thus by the previous lemma there is a walk of length 
dij + D - di ,} = D between i and.i , and thus the (i,j) entry of AD is gTeater 
then O. If d;j is odd, then D - cl;j - 1 is even, and thus by the previous lemma, 
there is a walk between i and j of length d;j + (D - d;j - 1) = D - l. Hence 
the (i,j)th entry of AD-l is gTeater than O. Since the entries of AD and AD-l 
arc non-negative, in either case, AD + AD- 1 has no zero entries. I 

The converse of this propositioll is also true, and provides us with an algorithm 
for calculating the diameter of the graph. 
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Theorem 0.4 [2] Lct d bc the smallest natural rw.mbcT such that, Ad + Ad-I 

has no ZC7'O entries. Then d = D, the diameter of G. 

Proof By Theorem 0.3, d can be found such that Atl+Ad-J has no zero entries. 
Hence d ::; D. Suppose d < D. Let (i,j) be a pair of vert.ices at a distance D 
apart in G. then the ijth ent.ries of Ad and of Ad-I are both zero, a contradic
tion. Thus d ;:: D. Also for any two vertices i, j ,af; or a~ -I is nOIl-zero, so that 
d::; D. Thus d = D as required. 

Corollary 0.5 Let d be thc srnallcst natural numbeT s1JCh that (A + 1)d has no 
zeTO entries. Then d = D the diameteT of G. 

Proof (I + A)d = 1+ dA + .,. + Ad, where the entries of each Ai are non
negative, and coefficients are positive. Thus the (i, j)th entry of (A + 1)d is 
non-zero if and only if, afj > 0 for some 1 ::; k ::; d. Suppose Ad + Ad-I has 
a zero entry (i, j). Then there must be some A k', 1 ::; k ::; d - 2 such that the 
(i,j)th entry of Al., is non-zero, i.e. There is a walk of length k frolll i to j. Now 
either (cl - k) is even or (d - k - 1) is even. Thus by lemma 2.1, there is a walk 
oflcngth k + (d - k) = d or k + (d - k 1) = d 1 betv/ceni and j. This implies 
that the (i,j)th entry of Ad- 1 + Ad is non-zero which is a contradiction. Thus 
d is the smallest natural number such that Ad + A<I-I has no zero entries. The 
result follows by the previous proposition. I 

This corollary provides us with a very simple algorithm to determine the diam
eter of a graph G from its adjacency matrix: 

HasZeros[m_J := MemberQ[Flatten [mJ, oJ 

Diam[G_J := Module[{d = 1, m2 = m = A + IdentityMatrix[Length[A]]}, 
While [HasZeros[m] , m = m.m2; d++]; dJ 
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Theorem 0.6 The diamete7' D of a (connected) gT'(Jph G islcsB than the nmnbCT 
of distinct. eigenvalues of the adjacency matT'i.l;. 

Proof Let the number of distinct cigenvalues of the adjacency matrix A be 
T. Since A is real and symmetrical, it is diagonalizable. Then the minimal 
polynomial 7nr(:r) of A has degree T and mr(A) = O. 

We will show that there exist elements in {I, A, ... AD} which are not linear 
combinations of their predecessors, and thus show that {I, A, ... AD} is linearly 
independent, which implies that there is no polynomial of degree D or less 
satisfied by A. Consider d = djj :s: D, for some i,j E V(G). It follows, by 
definition of dij , that afj % 0 and aL = 0 for t < d. Thus it is impossible that 
Ad is a linear combination of its predecessors. It follows that T ;:: D + 1 as 
required. I 

Tests for Bipartiteness 

By observing powers of the adjacency matrix A, it is possible to determine 
whether G is bipartite through a simple test. 

Definition 0.3 The index of a gmph G is defined to be the smallest. I s1Lch that 
A' has no zero cntTies. 

Note that not every graph has an index as will be seen soon. \Ve will require 
the following lemma: 

Lemma 0.7 Let D bc the diameteT of the graph G having adjacency matn]; A. 
If theTe aTe two columns Ti, 7'j in AD which aTe oTthogonal, then G is necessaTily 
bipaTtite. 

Proof Let T;, Tj be two orthogonal columns in AD. Partition V into the sets VI 

and V2 , where Vi is the set of vertices having non-zero entries in Tj and V2 is the 
set of vertices having zero entries ill Tj, Then any two vertices in the same class 
are not adjacent. Suppose for contradiction that vertices k, I E VI are adjacent. 
Then ap" a{J > 0, and thus af?; = aB = O. Thus the distances d"j and dlj arc 
less than D, and D-dkj = D-dlj = 1 mod 2. Thus D-dkj-l = D-d1j-l = 0 
mod 2, which implies that a~-I, aB-I> 0 by Lemma 0.2. But k is adjacent 
to I. Thus, there must be a walk of length D between vertices k •. j and I, j and 
thus af?;. aB > 0 which contradicts the orthogonality of T.; and Tj. A similar 
contradiction is obtained if one assumes that k, I E V2 are adjacent. I 
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Proposition 0.8 Let G be a connected, non-bipartite gm,])h, then the indc:D / 
of G eJ;ists and satisfies D ::; / ::; 2D. 

Proof Clearly, D ::; /, since if / < D then, by definition of the index / of G, 
A/' has no zero elements. Thus A' + A,'-1 has no zero elements but this would 
contradict Theorem 0.4. Thus D ::; I'. \Ve will now show that A2D has no zero 
elements. Suppose, for contradiction that the (i, .J/" entry of A2D is O. The11 

2D A2D AD AD ",'11 D D ",n D D 0 Tl" l' tl a;j = ;j = ;j."1.;j = 0h=1 a.;"a"j = 0"=1 ahiahj =. lIS llnp les lat 

the it.h and ,fh columns of AD, aj and aj are orthogonal. But this implies that 
G is bipartite by the previous lemma, contradicting the premise that G is non
bipartite. Thus since A2D has no zero entries. By the minimality of /, / ::; 2D. 
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Proposition 0.9 Let G be bipartite. Then the index / of G does not exist. 

Proof Let G be bipartite, and let VI, V2 be the partitions. Then, for i,j E 

VI, all walks between i and j must contain an odd number of (not-necessarily 
distinct) vertices. Thus all walks between i and j must be of even length. Also, 
for k E VI, l E %, all walks between k and l must contain an even number of 
(not necessarily distinct) vertices. Thus all walks between k and l must be of 
odd length. Thus for / odd, the (i,.J)t.h entry of A/' is zero, and for / even, the 
(k, l)th entry of A/' is zero. Thus Ai' always has a zero entry. 11 

Using the above two propositions. we obtain the following corollary: 

Corollary 0.10 G is non-bipal·tite ~f and only ~f D ::; '/ ::; 2D. I 

The following Mathematica function will compute the index)' of a non-bipartite 
graph: 

Graphlndex[M_J ;= Modu1e[{d ;= 1, M1 ;= M}, 
While [HasZeros[M1J, d++; M1 M1.MJ; dJ 
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The rollo-wing algorithm will determine whether a graph G is bipartite by testing 
the powers of A = A(G), between D and 2D, as described in the above corollary: 

isBipartite[G_] := Module[{d = Diam[A], result True, m}, 
m = MatrixPower[A, d]; 
For [i = d, i <= 2d, i++, 

If [HasZeros[m] , m = m.G, 
result = False; Break]]; result] 

The Walk Matrix of a Graph 

Wc will now digress and describe an interesting result that relates the number 
of main eigenvalues to the rank of a matrix knmvn as the VlTalk Matrix of the 
graph. Wc will denote the all ones vector by j = (1,1, ... , l)T. 

Definition 0.4 An eigenvalue is said to be non-main ~f it has an associated 
eigenvector x the sum of whose entTies is not equal to 0, i.e, x.j # 0 

Definition 0.5 Let G be a gTaph with adJ'acency matrix A. The walk matrix 
(il" = W])(A) of G is the n x p matrix (.i, A.i, A2 j, .. . ,AF-lj), where p is the 
smallest value s71,ch that the walk matTix Wl'( A) attains maximum Tank. 

The columns of the walk matrix define an A-cyclic subspace U = {aj, i E N}. 
Since U is a subspace of Rn, it is finite dimensional, having dimension p, and it 
can be shown that U is generated by the basis (j, Aj, A 2 j, . .. , A]J-lj). Thus the 
above definition is well defined, and p can be defined to be the smallest value 
such that Rank(Wp(A)) = Rank (WP+l (A)) = p. 

The graph-theoretic interpretation of a single column A'j of the walk matrix, is 
as follows: the it." entry of A''j counts the number of walks of length r starting 
from vertex i. Thus using the above result, the set of these vectors is finitely 
generated, and every vector A''j, p ::; l' is a linear combination of the vectors 
(.i, Aj, A 2 j, ... , AP-1,j). 
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Lemma 0.11 Let A = A(G) be the adjacency matrix: of G. Then a set of n 
orthonormal eigenvectoTs can be chosen such that fOT each eigenvalue, at most 
one cOr1'esponding eigenvectoT is ma'in. 

Proof Suppose there is an eigenvalue A with lllultipLicity greater than one, and 
let Xl, ... , Xm be an orthonormal basis for the corrcsponding eigenspace where 
:rJ is main, Clearly we can assume that that xkj :2: 0 for all k. Now suppose 
Xi is another main vector. Then replace Xi with: 

and replace Xl with: 

I xd 
Xi =Xi - -.XI 

XI·J 

I xd 
Xl = -.Xi +XI 

XI·J 

and normalize accordingly. Then x~ is a main eigellvector, x; is non-main, and 
the set {x~, X2, ... , x;, ... , xn} is an orthonormal set of cigenvectors satisfying 
the required condition. I 

'Ve can now prove the following theorem relating the rank of the 'Walk IvIatrix 
to the number of main cigenvalues. 

Theorem 0.12 (4) The rank of the walk-matrix of a graph G is equal to the 
number of its main eigenval~tes. 

Proof By the previous lemma, we can choose an orthonormal set of n cigen
vectors such that each eigenvalue has at most onc corresponding main eigen
vector. Let Xl, X2, ... Xm be the set of orthonormal cigenvectors correspond
ing to the main eigenvalues, AI, ... , Am. of G, As before, we can assume that 
ai = xd > 0 for i = 1, ... , m. Then j can be expressed as the linear combi-

t ' .' ",n S· r 1. > 0 AI;' ",m ,k I 1 na lOll J = 6i=1 aiXi· 1l1ce 10r any," _ , J = 6,=1 aiAi Xi, t 1en we lave 
that 

U = Span(Akj, Vk :2: 0) ~ Span(xl,"" xm) 

Thus dimU = rank T·V(G) ::; rn. 'Ve will now show that U contaillS a linearly 
independent set of rn vectors, namely j, Aj, ... , Am-lj. 
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Suppose that zy~ 1 Cj Ai -1 j = 0 for some constants Cl , ' .. , Cm. Then 

rn '{/I 'IT/ rn 'rI1 

0 _'" 'Aj-l. - '" " '" ,,j-l . _ "\' . "'. ,j-l . - L.... CJ J - L.... CJ L.... a,A; X, - 1-.. a, L.... CjA; X, 

j=1 j=l i=l 'i=l j=l 

Then since ai > 0 and xi, i = 1, ... ,rn, are orthonormal, then 

-rn 

'" ,>1- 1 _0 '-I L....CJAi -, z- , ... ,rn 

j=1 

But the Ai'S are all distinct, and so we have a polynomial of degree rn - 1 with 
rn distinct roots which is only possible if the polynomial is entirely 0, that is 
(j = 0, .i = 1, ... , rn. Thus the set j, Aj, ... , Arn-J j is linearly independent 
and so rank W(G) = rn. I 
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