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Foreward

The Scicnce and Socicty Dircctorate of the Europcan Commission published a
DVD called “Femmes de téte”. The stories of established women astrophysicists,
microbiologists, mathematicians, geologists and genetic engincers working on
edge-cutting rescarch in Europe are told in a witty way, highlighting the great
hurdles they managed to overcome and the unfailing support of their family and
collecagucs. Onc of the protagonists Prof. Enc Ergma who is an astrophysicist
and now an active MP in the Estonian Parliament acknowledged that to be a
scientist is “madness” in today’s world when other easier routes lead to much
higher financial gain. However scientists persist in their dedicated work because
“the soul sings” as they wade through the rocky paths of rescarch. I can vouch
for this exulting fecling from my cxperience in mathematical rescarch. However
what lifts my spirits to higher levels is when our students contract this urge for
mathematical discovery.

Encounters such as we have in the “Collection” workshops certainly foster the
aspirations of our budding mathematicians. In this scssion the talents of stu-
dents, other than in mathematics, have also been encouraged. Romina Mamo, a
local established singer and mathematics student clicited a smile from all present
as she sang with great charm the lyrics of fellow student Clinton P. Cilia. The
message of the song may sound negative; however it is a hard rcality that the
path which our students tread till graduation is adorned with thorny challenges.

Dr Irene Sciriha



The Collection IX
Faculty of Science
Department of Mathematics

Date: 9** March 2004
Time: 1500 — 1700
Venue: LC 119

A scminar /workshop is being held on Tucsday 9¢" March 2004 at 1500. Students
and staff from the Department of Mathematics, Faculty of Science will present
ideas from various fields of mathematics.

Keynote speakers:

Professor S. Fiorini On Singular Trees

Elaine Cheteuti The Euler Phi Function for Powers of Primes
Andrew Duncan The Powers of Matrices and the Walk Matriz
Angela Lombardi The Figenvalues of Self Complementary Graphs

Romina Mamo A Song for Mathematics
Paul Clinton Cilia Lyrics

We shall end with a brief scssion for spontancous problem posing. You arc
cordially invited to attend.

Abstracts of possible proofs or conjecturcs which you wish to sharc with us in
this mecting, or in a futurc one, may be sent to Dr. L. Sciriha or Ms. A. Attard,
Department of Mathematics, (marked The Collection), at any time of the year.

Dr. 1. Sciriha

Organiscr
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Powers of the Adjacency Matrix
and the Walk Matrix

Andrew Duncan

Introduction The aim of this article is to identify and prove various relations
between powers of adjacency matrices of graphs and various invariant propertics
of graphs, in particular distance, diameter and bipartiteness. A relation between
the Walk matrix of a graph and a subsct of the cigenvectors of the graph will also
be illustrated. A number of Mathematica procedures arc also provided which
implement the results desceribed. Note that the procedures are only illustrative;
issues of algorithmic efficiency are largely ignored.

Unless specified, all graphs are assumed to be simple and connected, that is,
there is at most onc edge between cach pair of vertices, there are no loops, and
there is at least onc path between cvery two vertices. The adjacency matrix
A or A(G) of a graph G having vertex set V = V(G) = {1,..,n} isan n x n
symmetric matrix a;; such that a;; = 1 if vertices ¢ and j are adjacent and 0
otherwise.

Powers of the Adjacency Matrix

The following well-known result will be used frequently throughout:

Theorem 0.1 The (i, )" entry afJ of A*, where A = A(G), the adjacency
matriz of G, counts the number of walks of length k having start and end vertices
i and j respectively.

Proof For k = 1, A* = A, and there is a walk of length 1 between ¢ and §
if and only if a;; = 1, thus the result holds. Assume the proposition holds for
k = n and consider the matrix A®+! = A™A. By the inductive hypothesis, the
(4, 7)" cntry of A™ counts the number of walks of length n between vertices 4
and j. Now, the number of walks of length n + 1 between 4 and j cquals the
number of walks of length n from vertex ¢ to cach vertex » that is adjacent to 7.
But this is the (4, 7)™ entry of A"A = A" the non-zero entrics of the column
of A corresponding to v are precisely the first neighbours of v. Thus the result
follows by induction on n. |
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The Diameter of a Graph

Definition 0.1 The distance between two vertices i and j in a graph G, denoted
dij, is the length of the shortest path between i and j. Clearly, since G is
connected such a path must exist.

Definition 0.2 The diameter of G is defined to be D = max(; jyev{dis}-

Remark Although most of the results in this section can be found in [2], most
of the proofs appearing here are different.

Lemma 0.2 Let d;; be the distance between vertices i and § in G. Then for all
k € N, there is a walk of length di; + 2k between i and 7.

Proof Let k € N. We shall construct a walk of length d;; 4+ 2k between ¢ and 7.
Let 4 = vy, v2,...,0-1,vp = j be the path of length d;; between 7 and j. After
following this path, follow the cycle vy, vp-1, vp k times. The ending vertex is j
and the total length of this constructed walk is d;; +2k.

Theorem 0.3 [2] Let D be the diameter of the graph G. Then the matriz
AP + AP=1 has no zero entries.

Proof Without loss of gencrality, let D be even. Let ¢, j € V(G). If dy; is even,
D - d;; is also cven, and thus by the previous lemma there is a walk of length
dij + D —d; ; = D between 4 and 5 , and thus the (4, 7) entry of AP is greater
then 0. If di; is odd, then D — di; — 1 is even, and thus by the previous lemma,
there is a walk between ¢ and j of length d;; + (D — diy; — 1) = D — 1. Hence
the (7, 5)*" entry of AP~ is greater than 0. Since the cntrics of AP and AP-1
arc non-negative, in cither case, AP + AP~ has no zcro entrics. B

The converse of this proposition is also truc, and provides us with an algorithm
for calculating the diamecter of the graph.



Theorem 0.4 [2] Let d be the smallest natural number such that, A 4 Ad-d
has no zero entries. Then d = D, the diameter of G.

Proof By Theorem 0.3, d can be found such that A%+ A%~! has no zcro entries.
Hence d € D. Supposc d < D. Let (4,7) be a pair of vertices at a distance D
apart in G. then the 45th entrics of A% and of A9 arc both zero, a contradic-
tion. Thus d > D. Also for any two vertices 4, j ,ag or 0,5_] is non-zcro, so that

d < D. Thus d = D as required.

Corollary 0.5 Let d be the smallest natural number such that (A + I)? has no
zero entries. Then d = D the diameter of G.

Proof (I + A) = I +dA + ... + A% where the entrics of cach A’ arc non-
negative, and coefficients are positive. Thus the (4, 7)" entry of (A + )¢ is
non-zero if and only if, a.ffj > 0 for some 1 < k < d. Supposc A? + A% has
a zero cntry (4,7). Then there must be some A%, 1 < k < d — 2 such that the
(i, 3)" entry of A* is non-zcro, i.c. There is a walk of length & from i to j. Now
cither (d — k) is even or (d — k — 1) is cven. Thus by lemma 2.1, there is a walk
oflength k+(d—k) = dor k+(d—k—1) = d—1 between 7 and 7. This implics
that the (4, §)** entry of A%~1 4+ A% is non-zero which is a contradiction. Thus
d is the smallest natural number such that A% + A%? has no zero entrics. The
result follows by the previous proposition. E

This corollary provides us with a very simple algorithm to determine the diam-
cter of a graph G from its adjacency matrix:

HasZeros[m_] := MemberQ[Flatten[m], 0]

Diam[G_] := Module[{d = 1, m2 = m = A + IdentityMatrix[Length[A]]},
While [HasZeros[m], m = m.m2; d++]; dJ



Theorem 0.6 The diameter D of a (connected) graph G is less than the number
of distinct eigenvalues of the adjacency matriz.

Proof Let the number of distinct cigenvalues of the adjacency matrix A be
7. Since A is rcal and symmectrical, it is diagonalizable. Then the minimal
polynomial mr(z) of A has degree r and mr(A) = 0.

We will show that there exist clements in {I, A4, ... AD} which arc not lincar
combinations of their predecessors, and thus show that {I, 4, ... AP is lincarly
independent, which implics that there is no polynomial of degree D or less
satisfied by A. Consider d = d;; < D, for some i,7 € V(G). It follows, by
definition of d;;, that a;fj # 0 and a.f-'j = 0 for t < d. Thus it is impossible that
A% is a lincar combination of its predeccssors. It follows that » > D + 1 as
required. [

Tests for Bipartiteness

By obscrving powers of the adjacency matrix A, it is possible to determine
whether G is bipartite through a simple test.

Definition 0.3 The index of a graph G is defined to be the smallest v such that
A7 has no zero entries.

Note that not cvery graph has an index as will be scon soon. We will require
the following lenmma:

Lemma 0.7 Let D be the diameter of the graph G having adjacency matriz A.
If there are two columns r;, 75 in AP which are orthogonal, then G is necessarily
bipartite.

Proof Let 7y, 7; be two orthogonal columns in AP Partition V into the scts V;
and Vo, where V4 is the set of vertices having non-zero entries in r; and V4 is the
sct of vertices having zero entrics in 7. Then any two vertices in the same class
arc not adjacent. Supposc for contradiction that vertices k,1 € Vi are adjacent.
Then af,af] > 0, and thus af; = af] = 0. Thus the distances di; and dy; are
less than D, and D—dy; = D—dj; =1 mod 2. Thus D—d;—1=D—d;;—1=0
mod 2, which implics that a,?j"l, a.g"l > 0 by Lemma 0.2. But k& is adjacent
to . Thus, there must be a walk of length D between vertices &, 7 and [, and
thus afj,ag > 0 which contradicts the orthogonality of r; and ;. A similar
contradiction is obtained if onc assumes that k,! € V5 arc adjacent. [
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Proposition 0.8 Let G be a connected, non-bipartite graph, then the index <y
of G exists and satisfies D < < 2D.

Proof Clearly, D < v, since if v < D then, by definition of the index v of G,
A7 has no zcro clements. Thus A7+ A7~} has no zero clements but this would
contradict Theorem 0.4. Thus D < . We will now show that A2P a8 no zero
clements. Suppose, for contradiction that the (i, §)* entry of A?P is 0. Then
aff = AP = ABAR = S0 abaf = 3., afiaf; = 0. This implics that
the ¢** and 7** columns of AP, a; and a; arc orthogonal. But this implics that
G is bipartitc by the previous lemma, contradicting the premisce that G is non-
bipartite. Thus since A2P has no zcro entries. By the minimality of v,v < 2D.

Proposition 0.9 Let G be bipartite. Then the index v of G does not exist.

Proof Let G be bipartite, and let Vi, V5 be the partitions. Then, for 7,7 €
V1, all walks between 4 and § mwust contain an odd number of (not-necessarily
distinet) vertices. Thus all walks between 7 and § must be of even length. Also,
for k € V1,1 € Vs, all walks between & and [ must contain an cven number of
(not necessarily distinct) vertices. Thus all walks between k and [ must be of
odd length. Thus for v odd, the (i, 7)** cntry of A7 is zero, and for v cven, the
(k, 1)t entry of A7 is zero. Thus A" always has a zcro entry. |

Using the above two propositions. we obtain the following corollary:
Corollary 0.10 G is non-bipartite if and only if D < v < 2D. |

The following Mathematica function will compute the index -y of a non-bipartite
graph:

GraphIndex[M_ ] := Module[{d := 1, M1 := M},

While [HasZeros[M1], d++; M1 = M1.M]; d]



The following algorithm will determine whether a graph G is bipartite by testing
the powers of A = A(G), between D and 2D, as described in the above corollary:

isBipartite[G_] := Module[{d = Diam{A], result = True, m},

m = MatrixPower([A, dl;
For [i =4d, i <= 2d, i++,
I1f [HasZeros[m], m = m.G,

result = False; Break]]; result]

The Walk Matrix of a Graph

We will now digress and describe an intercsting result that relates the number
of main cigenvalucs to the rank of a matrix known as the Walk Matrix of the
graph. We will denote the all ones vector by j = (1,1,..., nT.

Definition 0.4 An cigenvalue is said to be non-main if it has an associated
eigenvector x the sum of whose entries is not equal to 0, i.e, x.j # 0

Definition 0.5 Let G be a graph with adjacency matriv A. The walk matriz
W = W,(A4) of G is the n x p matriz (j, Aj, A%J,..., AP7 ), where p is the
smallest value such that the walk matriz W,(A) attains mazimum rank.

The columns of the walk matrix define an A-cyclic subspace U = {a;, i€ N}.
Since U is a subspace of R™, it is finite dimensional, having dimension p, and it
can be shown that U is gencrated by the basis (4, Aj, A%4,..., AP~14). Thus the

above definition is well defined, and p can be defined to be the smallest value
such that Rank(W,(A)) = Rank(Wyi1(A)) = p.

The graph-thecoretic interpretation of a single column A”™j of the walk matrix, is
as follows: the #** entry of A”j counts the number of walks of length r starting
from vertex 4. Thus using the above result, the set of these vectors is finitely
generated, and cvery vector A”j, p < r is a lincar combination of the vectors
G, Aj, A%, ..., AP=1j).
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Lemma 0.11 Let A = A(G) be the adjacency matriz of G. Then a sct of n
orthonormal eigenvectors can be chosen such that for each eigenvalue, at most
one corresponding eigenvector €5 main.

Proof Supposc there is an cigenvalue A with multiplicity greater than one, and
let X1, ...,Xm be an orthonormal basis for the corresponding cigenspace where

z7 is main. Clearly we can assume that that xi.j > 0 for all k. Now supposc
x; is another main vector. Then replace x; with:

X;i.]
! 1
Xy =X — ——X1
X1
and replace x; with:
’ X;i.
1= X + X1
X3

and normalize accordingly. Then x is a main cigenvector, X is non-main, and
the set {x},%2,...,x}..., Xn} is an orthonormal sct of cigenvectors satisfying

it s

the required condition. B

Woe can now prove the following theorem relating the rank of the Walk Matrix
to the number of main cigenvalucs.

Theorem 0.12 [4] The rank of the walk-matriz of a graph G is equal to the
number of its main eigenvalues.

Proof By the previous lemma, we can choose an orthonormal sct of n cigen-
vectors such that cach cigenvalue has at most one corresponding main cigen-
vector. Let X1, X2, ...Xm be the set of orthonormal cigenvectors correspond-
ing to the main cigenvalucs, Aq,..., A, of G. As before, we can assumec that
a; =x3.j > 0fori=1,...,m. Then j can be cxpressed as the lincar combi-
nation j = 31" a;x;. Since for any k > 0, AFj = 51" | a;AFx;, then we have
that

U = Span(A*j,Vk > 0) C Span(xy, . . . ; Xm)

Thus dimU = rank W(G) < m. We will now show that U contains a lincarly
independent sct of m vectors, namely j, 4], ..., AT
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Supposc that Z;":l ¢; A771j = 0 for some constants ¢i, . . ., ¢,,. Then
T T . e T
_.E . "—1'_§ N 2 Jj-1 _§ E BV At N
0= CjAJ J= Cy Clq'>\,i X; = a; C; )‘i X
J=1 F=1 i=1 i=1 j=1
Then since a; > 0 and x3, 7= 1,...,m, arc orthonormal, then

ki3

ST =0, i=1,...,m
Jj=1

But the A;’s are all distinct, and so we have a polynomial of degree m — 1 with
m distinct roots which is only possible if the polynomial is entircly 0, that is
¢; =10, 7=1,...,m. Thus the set j, Aj,..., A™ ' is lincarly indcpendent
and so rank W(G)=m. }§
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An Upper Bound for the Nullity
of Trees and Edge-Colourings

Stanley Fiorini

Abstract

A necessary and sufficient condition for the non-singularity of the ad-
jacency matrix of a tree is given in terms of the existence of a 1-factor in
the tree. The result is used to give an upper bound for the nullity of the
troe via edge-colourings of bipartite graphs.

Illustrating the basic concepts

011010
101100
110001
A(G) = 010011
100101
001110
1 5
2 4
3 6

Figurc 1: A graph G and its adjacency matriz A (G)

Edges {12, 46} in G arc independent because they share no vertex; they arc also
called a matching.

Independent edges {15, 24, 36} arc a I-factor of G becausc they cover all ver-
tices; they form a mazimal matching.

An edge-colouring of G is a partitioning of the edge set E (G) of G into match-
ings, called colour-classes. The least number of colour-classes is the chromatic
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indez x/ (G). In the example given ¥/ = 3 and the partitioning (the only onc
possible) is {13, 24, 56} (coloured &), {12, 36, 45} (coloured B) and {15, 23,
46} (coloured 7).

If A (G) is the maximum valency of G, then, clearly A (G) < x/ (G); it has been
shown by Vizing [2, pp. 30-32] that x/ (G) < A(G) + 1.

The graph G (above) has odd circuits (1231}, (124651). If all circuits arc cven,

then G is said to be bipartite and the vertex set V (G) of G can be partitioned
into V(G)=AUB, ANB =g¢suchthat F(G)C Ax B.

A tree T is a connected graph with no circuits and hence bipartite. If |V (T)] =
n, then |E(T)| = n — 1 and it must have a vertex of valency 1.

Figurc 2: A tree T and its bipartition:

Kénig (1916) proved that for a bipartite graph of maximum valency A, x/ = A.
(2. p.25]

The spectrum spec(G) of a graph G is the sct of cigenvalues of A(G); since
A(G) is real and symmetric, spec(G) is rcal. Coulson and Rushbrook (1940)
proved that the spectrum of a bipartite graph is symmetric about 0. [1, p. 87]
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Main Theorem: A tree T has a 1-factor if and only if A (7} is non-singular.
Theorem 1: If a trec T has a I-factor, then A (T} is non-singular.

Proof: T bipartite = spec(T) symmetric about 0

=  A(T) singular if n(T) is odd.

But T has a 1-factor = n(T") even, n (T) = 2k.

Proceed by induction on k.

For k = 1, there is only onc trec on 2 vertices and det (A (7)) = l

hence non-singular.

Assuming the asscrtion is true for k& and considering a vertex v of valency 1 with
neighbour w in a trec with 2k + 2 vertices, we label its vertices v = v, w = w2
01 o
sothat A(T) =1 10 u
oul A(T—v—w)

. . R;— R; — R
By a scquence of row and column operations of the kind: C; : c, - C]1

vectors u and u” can be ‘killed’ without affecting the sub-matrix A (T — v — w)
and without changing the value of {A (T)}.

A final row-operation R; < R, changes the sign of the resulting determinant
and yields |[A(T)| = ~ |A (T — v — w)| # 0, by the inductive hypothesis.

Thus A (T') is non-singular. B



Theorem 2 If a trec T has a matching M of maximum size g (covering 2 p
vertices vy, ..., vz,) and if v is any other vertex, then the row R, in A (T) cor-
responding to v is linecarly dependent on the rows R,, . ..., R,,, corrcsponding
to the vertices in the matching.

Proof: Let v have ncighbours vy, ..., v;, -

If some v;, (1 €t € 8) is not covered by M, then the edge v v;, could have been

added to M, contradicting maximality. Thus all of v;,,...,v; arc in M and
deleting v from T yields a disconnected graph with s components C,,...,C,
with

v;, € Cy (1 <t <s). Thus, A{T) can be represented by:

A(Cy) 0 0 0
0 A(Cy) 0 0
0 0o . 0 |I=
0 0 0 A(C)
1 1 1 |0

for an appropriate labelling of its vertices.

Onc notes that the top right-hand submatrix must be zero; otherwise if there
exist v; (in Cy say) that is not covered by this matching, then there exists a
path in G starting in v ending in v; with cdges alternately "not in™ / "in” the
matching, contradicting the maximality of M.

But by Theorem 1, the principal sub-matrix of size 2p X 2u is non-singular so
that by suitable elementary row-operations the first 2u rows of A (T') can be
reduced to

B:= (]2/1]*)

Thus the (2u + 1)”" row corresponding to v in scen to be the sum of the rows
Rv, + Rviy+ ...+ Ru; of B. B



16

Since the vertex v was arbitrarily chosen from V (T)\V (M), we have the fol-
lowing:

Corollary: The rank 7k (T) of T cquals 2. B
The main theorem follows from this corollary and Theorem 1.

Now let A = A(T) and n = |V (T)]. Since T is bipartite, T has an cdge-
colouring with A colours (by K&nig), that is, E (T} can be partitioned into A
colour-classes I'1,...,a. It is clear that a colourclass consists of independent
cdges which form a matching. Hence the size of the largest colour class in the
graph is less than that of a maximum matching.

A
- —_ — £ | < N
Thus (n - 1) = |E(T)] =5, T4 < Afi’%" T < Ap,

<u
2 n-1

2

= (251
= rk (T)

~

Thus, the nullity of T is at most n — 1"‘,’2'['31 |

Open Problem: Investigate the nullity of bipartitc graphs.
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Fuler’s Phi function
for Powers of Primes

Elaine Chetcuti

The Phi function e(n) is defined as the number of positive integers less than n
which have no factor in common with n.

Knowing that a residuc group is a sct of positive integers less than n and rel-
atively prime to n; the phi function, ¢(n), can be defined as the number of
clements in the residuc group.

g(n) = no. of natural numbers < n: (a,n) =1
Consider o(4):

There arc 2 positive integers less than 4 which have no common factor with 4
namely (1 and 3). Hence

o 3(4) =2

Consider o(7):

There are no positive integers less than 7 which have a common factor with 7
since 7 is a prime number.

Therefore we can say that for any prime number p, g(p) = p-1

Our attempt is to find g(p*)



Let us consider g(p?)
Consider first ¢(5%)
Listing all positive integers less than 25. we obtain

1234567891011 121314151617181820

12,0 pp+l.ooo. 2p2p4+1 oo 3p3p+1... L

dp+1....0 L 5p (where 5p is p?in this casc)

18

Therefore, to find g(p?), first list all positive integers less than p?

123.....p p+l....2p2p+1.. . 3p.3p+1... p°

This makes us realize that p, 2p, 3p, 4p,. . . p®arc the only integers which arc not

coprime with p2.
Therefore a(p?) = p*~ p

Let us now consider (p%)

The positive integers from 1 to p® can be divided into p scts:

1 to | p? {(p? — p coprimcs)
PP+ 1 to | 2p? (»* — p coprimes)
2p°+ 1 to | 3p? (p° - p coprimes)
(p-2)p*+ 1 to | (p-1)p” (p® ~ p coprimes)
(p-1)p*+ 1 to | p° {(p* — p coprimes)




Each sct has p® ~ p coprimes and there are p scts.
= total number of coprimes from 1 to p°= p(p® - p)
= o(p®) = p(p* - p)

=p*(p-1)

From this we claim that ¢(p™) = p"~1(p - 1)

Let us prove this by the Principle of Induction
RIP: a(p™) = p™"Y(p - 1)

Proof

Letn=1

LHS: ¢(p') = p-1 (as discussed carlicr)

RHS: p' "' (p-1) =p''(p-1) =pp-1) = (p-1)
Strucforn =1

Assumec it is also true for n = k

ie o(pF) =p*p-1)

We need to prove it is truc for n =k +1

ie. RTP p(p**1) = p* (p-1)

19
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The positive integers from 1 to pF+! can be divided into p groups as in the case

of 1 to p* carlicr on

1 to | p* (pk_l(p - 1) coprimes)
ph 1 to | 2pF (p*="(p - 1) coprimes)
2pF+ 1 to | 3p* (" 1(p -~ 1) coprimes)
(p-2)pF+ 1 to | (p-1)p* (p*I(p - 1) coprimes)
(p-DpF+1 to | p™+! (" (p - 1) coprimes)

Each sct has p*~1(p - 1) coprimes and there arc p scts.

= total number of coprimes from 1 to p*+i= p(p**(p - 1))

= o(P"*) = p(P* (- 1))

=pF(p-1)

As o(p™) = p"~1(p - 1) holds for n = 1 and whenever it is truc for n = k, it is
also true for n = k + 1, by the Principle of Induction, the theorem is truc for

all natural numbers n.



The Eigenvalues of Self
Complementary Graphs

Angela Lombardi

Abstract

Sclf complementary graphs have many intercsting properties with ref-
crence to their main and non-main cigenvalucs. Eigenvalues are a special
sct of scalars associated with a lincar system of cquations (i.c., a matrix
cquation) that arc sometimes also known as characteristic roots, proper
values, or latent roots. We consider the spectra of self complementary
graphs.

A graph has a sct V of vertices {1.2,... n} and a sct £ of cdges joining distinet
pairs of vertices.

Graph Complement The complement of a graph G is the graph Gwith
the same vertex sct but whose cdge sct consists of the edges not present in G
(i.c., the complement of the edge set of G with respect to all possible edges on
the vertex sct of G).

Example:

G Iej
Figurc 3: Graph G and its Complement Graph

Self Complementary Graphs : A self-complementary graph is a graph
which is isomorphic to its graph complement.

Next are three examples of self-complementary graphs.



Example 1:

Figurc 4: G = Cs and its compliment G

P: 1—3
2—35
3 - 2
4 — 4
5—1

Example 2:

G G
Figure 5: G = P4 and its complement G

P: 1—2
2— 4
3—1
4 — 3

)
[



Example 3:

Figure 6: G = Ag and its compliment G

P: 1—4
2—1
3—3
4 -5
5 — 2

An interesting property follows from the definitions given below of the adjacency
matrix and its complement.

A is the adjacency matriz of a graph G, if it is the n x n symmetric matrix such
that

g =t {i,j} is an cdge of G;
*7 7 1 0 otherwise.

A is the adjacency matrix of the complement G of G if it is an n x n symmctric
matrix such that

g — 0 {i,j} is an cdge of G;
Y711 otherwise.

If J is the all 1 matrix and I is the identity matrix then

A+A=T-1 (1)
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Finding an Antimorphism and an Automorphism

Examplel: The adjacency matrix of Cs is denoted by A(Cs).

As we have shown before the mapping from Cs to its complement may be
represented as the permutation P = (1 3 2 5) (4). By entering the matrices
below into Mathematica and using the command Transposc[P].A.P we obtain
the following matrices.

00001
00100
P=[10000
00010
01000
00100
00001
PT=101000
00010
10000
01001
10100
A(C)s=]01010
00101
10010

So PT.A.P=A

Therefore P is an antimorphism. since it represents a mapping from A to its
complement A

Lot Q =P3>=(4) (1325). (4) (1325) =(4)(12)(35)

then
01000
10000
@=100001
00010

00100



D
o

So Q-1.A.Q = A.

Therefore @ represents an automorphism since it is a mapping from A onto
itself.

Example 2 : The adjacency matrix of Py is denoted by A(P4).

The mapping from Py to its complement maybe represented as the permutation
P=(1243).

So PT.A.P=A

Let Q=P?=(1243).(1243)=(14)(23)

SoQLA.Q=A

Example 3 : The adjacency matrix of the graph Ag of Figure 6 is denoted by
A(Ag).

The mapping from Ag to its complement may be represented as the permutation
P=(1452)(3).

So PT.AP =

Let Q = P2 == (3)(1452).(3)(1452) = (3)(15)(42)

SoQLA.Q=A
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Special Eigenvalues Properties For Self Comple-
mentary Graphs:

An cigenvector is said to be main if it is not orthogonal to j.

Example 1: For A(C)s,

the cigenvalucs arc: {2, —1.61803, ~1.61803,0.618034, 0.618034},

and the cigenvectors are @ {1,1,1,1,1},{~1.61803,1.61803, -1,0,1},

{-1,1.61803, —1.61803, 1,0}, {0.618034, —0.618034, -1,0, 1}, {—1, —0.618034, 0.618034, 1,0}

Checking if eigenvectors are main:
Since Cj is regular the only main cigenvector {1,1,1,1,1}

A(C;) has non-main cigenvalues Ao, Az, A4 and Ag, which can be paired off
as follows:

A+ =d+As = +A=A3+=-1

This follows from cquation 1.

Example 2: For A(P;)

the cigenvalues are cqual to: {—1.61803, 1.61803, —0.618034, 0.618034},

and the corresponding cigenvectors are: {—1,1.61803, —1.61803, 1}, {1,1.61803,1.61803, 1},
{1,-0.618034, —0.618034, 1}.{ 1, ~0.618034, 0.618034, 1}

Checking if eigenvectors are main:
For Ay = 1.61803, the cigenvector x5 is {1,1.61803,1.61803,1} If j = {1,1,1,1,}
then < j,x2 >3 0. Hence Ag is main.

The non-main cigenvalues arc Ay and Ag, which can be paired off as follows:

A+ A= —1



Example 3: For A(Ag)

the cigenvalues are: {2.30278, —1.61803, —1.30278,0.618034, 0},

and the corresponding cigenvectors arc: {1,2.30278,2,2.30278, 1}, {~1, 1.61803, 0, —1.61803, 1},
{1,-1.30278,2, —1.30278,1}, {—1, —0.618034, 0,0.618034, 1}, {1,0, - 1,0, 1}.

The only non-main cigenvalues are Az and Az which can be paired off as follows:
Ay + A3 = —1

Justification of the results obtained:

A+A=J--I

=>A=J--1-A

= Ax;= Jx;— — Ixi— — Ax;

If A; is non-main, then x;.j =0

Thus A X; = 0 — x;— — AX; corresponding to a non-main cigenvaluc A

So Ax; = (N\; —1)x;

Since G is self complementary, the set of cigenvalues of A= sct of cigenvalucs
of A

For cach A;, there oxists Aj = - (A + 1)

So in self complementary graphs non-main cigenvalucs arc paired s.t. A; +
Ai = = — 1. Thercfore by just looking at the cigenvalues and by pairing them
off, we may find the non-main eigenvalues.



The Maths Test

Lyrics: Clinton Paul Cilia Singer: Romina Mamo

Today’s the day
That T will face the test

Ring, ring gocs my clock

I wake up in a total shock
Feeling down, fecling ill
Should I take mysclf a pill?

Wish it was over
Then I'd start to live again
But it has to be done. .. nothing ventured, nothing gained.

In the Maths test... I will try and do my best
Even though I'm scared to death

About Gaussian might forget

In the Maths test... I will give it my best shot
Hope I don’t forget the rules

Remember the ones that scare me and you

Oh no it’s half-past 8

Half an hour left to go

Will T pass? Will I fail?

What will happen I don’t know?

Wish it was over
Then I'd start to live again
But it has to be done... nothing ventured, nothing gained

My...Oh my,

The time has come

Can’t feel my knees — they're numb
Here it is. .. whiter than ice

In the Maths test... I will try and do my best
Even though I'm scared to death

About Gaussian might forget

In the Maths test... I will give it my best shot
Hope I don’t forget the rules

Remember the ones that scare me and you
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