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Foreward 

The Science and Society Directorate of the European Commission published a 
DVD called "Femmes de tcte". The stories of established women astrophysicists, 
mierobiologists, mathematicians, geologists and genetic engineers working on 
edge-cutting reseal"ch in Europe arc told in a witty ,\lay, highlighting the great 
hurdles they managed to overcome and the unfailing support of their family and 
colleagues. One of the protagonists Prof. Ene Ergma who is an astrophysicist 
and now an active MP in the Estonian Parliament acknowledged that to be a 
scientist is "madness" in today's world when other easier routes lead to much 
higher financial gain. However scientists persist in their dedicated work because 
"the soul sings" as they wade through the rocky paths of research. I can vouch 
for this exulting feeling from my experience in mathematical research. However 
what lifts my spirits to higher levels is when our students contract this urge for 
mathematical discovery. 

Encounters such as we have in the "Collection" workshops certainly foster the 
aspirations of our budding mathematicians. In this session the talents of stu­
dents, other than in mathematics, have also been encouraged. Romina IvIamo, a 
local established singer and mathematics student elicited a smile from all present 
as she sang with great charm the lyrics of fellow student Clinton P. Cilia. The 
message of the song may sound negative; however it is a hard reality that the 
path which our students tread till graduation is adorned with thorny challenges. 

Dr Irene Sciriha 
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The Collection IX 

Faculty of Science 

Department of Mathematics 

Date: 91,h March 2004 

Time: 1500 - 1700 

Venue: LC 119 

A seminar/workshop is being held on Thesday gth March 2004 at 1500. Students 
and staff from the Department of Mathematics, Faculty of Science will present 
ideas from various fields of mathematics. 

Keynote speakers: 

Professor S. Fiorini On Singular Trees 

Elail1e Chetcuti The Euler Phi Function f01' Powers of Primes 

Andrew Duncan The Powers of Matrices and the Walk Matrix 

Angela Lombardi The Eigenvalues of Self Complementary Graphs 

Romina I\lamo A Song for Mathematics 
Paul Clinton Cilia Lyrics 

,;Vc shall end with a brief session for spontaneous problem pOSillg. You are 
cordially invited to attend. 

Abstracts of possible proofs or conjectures which you wish to share with us in 
this meeting, or in a future one, may be sent to Dr. 1. Sciriha or Ms. A. Attard, 
Department of Mathematics, (marked The Collection), at any time of the year. 

Dr. 1. Sciriha 

Organiser 
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Introduction The aim of this article is to identify and prove various relations 
between powers of adjacency matric:es of graphs and various invariant properties 
of graphs, in particular distance, diameter and bipartiteness. A relation between 
the \Valk matrix of a graph and a subset of the cigenvectors of the graph will also 
be illustrated. A number of Mathematica procedures are also provided which 
implement the results described. Note that the procedures are only illustrative; 
issues of algorithmic efficiency are largely ignored. 

Unless specified, all graphs are assumed to be simple and connected, that is, 
there is at most one edge between each pair of vertices, there are no loops, and 
there is at least one path between every two vertices. The adjacency matrix 
A or A(G) of a graph G having vertex set 11 = lI(G) = {I, ... , n} is an n x n 
symmetric: matrix aij such that aij = 1 if vertices i and .i are adjacent and 0 
otherwise. 

Powers of the Adjacency Matrix 

The following well-known result will be used frequently throughout: 

Theorem 0.1 The (i,.i)th entrya;j of Ak, where A = A(G), the adjacency 
matrix of G, counts the number of walks of length k having sta7i and end vertices 
i and.i respectively. 

Proof For k = 1, Ak = A, and there is a walk of length 1 between i and j 
if and only if aij = 1, thus the result holds. Assume the proposition holds for 
k = n and consider the matrix An+l = AnA, By the inductive hypothesis, the 
(i,n/,h entry of An counts the number of walks of length n between vertices i 
and j. Now, the number of walks of length n + 1 between i and j equals the 
number of walks of length 11. from vertex i to each veltex v that is adjacent to j. 
But this is the (i,j)th entry of A7IA = A7I+l the nOll-zero entries of the column 
of A corresponding to v are precisely the first neighbours of v. Thus the result 
follows by induction on n. I 



5 

The Diameter of a Graph 

Definition 0.1 The distance between two veTtices i and j in a gmph G, denoted 
d;j' is the length of the shortest path between i and j. Clearly, since G is 
connected such a path must exist. 

Definition 0.2 The diameter of G is defined to be D = maxU,j)EV {d;j}. 

Remark Although most of the results in this section can be found in [2], most 
of the proofs appearing here are different. 

Lemma 0.2 Let dij be the distance between vertices i and.i in G. Then for all 
kEN, there is a walk of length d.;j + 2k between i and j. 

Proof Let kEN. We shall construct a walk of length d'ij + 2k between i and j. 
Let i = VI, V2, ... , Vp-l 'VI' = j be the path of length d ij between i and j. After 
following this path, follow the cycle VI" Vp-I, vI' k times. The ending vertex is j 
and the total length of this constructed walk is d;j + 2k. I 

Theorem 0.3 (2] Let D be the diameter of the gmph G. Then the matrix 
AD + AD- 1 has no zero entries. 

Proof Without loss of generality, let D be even. Let i,.i E V (G). If d;j is even, 
D - d;j is also even, and thus by the previous lemma there is a walk of length 
dij + D - di ,} = D between i and.i , and thus the (i,j) entry of AD is gTeater 
then O. If d;j is odd, then D - cl;j - 1 is even, and thus by the previous lemma, 
there is a walk between i and j of length d;j + (D - d;j - 1) = D - l. Hence 
the (i,j)th entry of AD-l is gTeater than O. Since the entries of AD and AD-l 
arc non-negative, in either case, AD + AD- 1 has no zero entries. I 

The converse of this propositioll is also true, and provides us with an algorithm 
for calculating the diameter of the graph. 
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Theorem 0.4 [2] Lct d bc the smallest natural rw.mbcT such that, Ad + Ad-I 

has no ZC7'O entries. Then d = D, the diameter of G. 

Proof By Theorem 0.3, d can be found such that Atl+Ad-J has no zero entries. 
Hence d ::; D. Suppose d < D. Let (i,j) be a pair of vert.ices at a distance D 
apart in G. then the ijth ent.ries of Ad and of Ad-I are both zero, a contradic­
tion. Thus d ;:: D. Also for any two vertices i, j ,af; or a~ -I is nOIl-zero, so that 
d::; D. Thus d = D as required. 

Corollary 0.5 Let d be thc srnallcst natural numbeT s1JCh that (A + 1)d has no 
zeTO entries. Then d = D the diameteT of G. 

Proof (I + A)d = 1+ dA + .,. + Ad, where the entries of each Ai are non­
negative, and coefficients are positive. Thus the (i, j)th entry of (A + 1)d is 
non-zero if and only if, afj > 0 for some 1 ::; k ::; d. Suppose Ad + Ad-I has 
a zero entry (i, j). Then there must be some A k', 1 ::; k ::; d - 2 such that the 
(i,j)th entry of Al., is non-zero, i.e. There is a walk of length k frolll i to j. Now 
either (cl - k) is even or (d - k - 1) is even. Thus by lemma 2.1, there is a walk 
oflcngth k + (d - k) = d or k + (d - k 1) = d 1 betv/ceni and j. This implies 
that the (i,j)th entry of Ad- 1 + Ad is non-zero which is a contradiction. Thus 
d is the smallest natural number such that Ad + A<I-I has no zero entries. The 
result follows by the previous proposition. I 

This corollary provides us with a very simple algorithm to determine the diam­
eter of a graph G from its adjacency matrix: 

HasZeros[m_J := MemberQ[Flatten [mJ, oJ 

Diam[G_J := Module[{d = 1, m2 = m = A + IdentityMatrix[Length[A]]}, 
While [HasZeros[m] , m = m.m2; d++]; dJ 
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Theorem 0.6 The diamete7' D of a (connected) gT'(Jph G islcsB than the nmnbCT 
of distinct. eigenvalues of the adjacency matT'i.l;. 

Proof Let the number of distinct cigenvalues of the adjacency matrix A be 
T. Since A is real and symmetrical, it is diagonalizable. Then the minimal 
polynomial 7nr(:r) of A has degree T and mr(A) = O. 

We will show that there exist elements in {I, A, ... AD} which are not linear 
combinations of their predecessors, and thus show that {I, A, ... AD} is linearly 
independent, which implies that there is no polynomial of degree D or less 
satisfied by A. Consider d = djj :s: D, for some i,j E V(G). It follows, by 
definition of dij , that afj % 0 and aL = 0 for t < d. Thus it is impossible that 
Ad is a linear combination of its predecessors. It follows that T ;:: D + 1 as 
required. I 

Tests for Bipartiteness 

By observing powers of the adjacency matrix A, it is possible to determine 
whether G is bipartite through a simple test. 

Definition 0.3 The index of a gmph G is defined to be the smallest. I s1Lch that 
A' has no zero cntTies. 

Note that not every graph has an index as will be seen soon. \Ve will require 
the following lemma: 

Lemma 0.7 Let D bc the diameteT of the graph G having adjacency matn]; A. 
If theTe aTe two columns Ti, 7'j in AD which aTe oTthogonal, then G is necessaTily 
bipaTtite. 

Proof Let T;, Tj be two orthogonal columns in AD. Partition V into the sets VI 

and V2 , where Vi is the set of vertices having non-zero entries in Tj and V2 is the 
set of vertices having zero entries ill Tj, Then any two vertices in the same class 
are not adjacent. Suppose for contradiction that vertices k, I E VI are adjacent. 
Then ap" a{J > 0, and thus af?; = aB = O. Thus the distances d"j and dlj arc 
less than D, and D-dkj = D-dlj = 1 mod 2. Thus D-dkj-l = D-d1j-l = 0 
mod 2, which implies that a~-I, aB-I> 0 by Lemma 0.2. But k is adjacent 
to I. Thus, there must be a walk of length D between vertices k •. j and I, j and 
thus af?;. aB > 0 which contradicts the orthogonality of T.; and Tj. A similar 
contradiction is obtained if one assumes that k, I E V2 are adjacent. I 
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Proposition 0.8 Let G be a connected, non-bipartite gm,])h, then the indc:D / 
of G eJ;ists and satisfies D ::; / ::; 2D. 

Proof Clearly, D ::; /, since if / < D then, by definition of the index / of G, 
A/' has no zero elements. Thus A' + A,'-1 has no zero elements but this would 
contradict Theorem 0.4. Thus D ::; I'. \Ve will now show that A2D has no zero 
elements. Suppose, for contradiction that the (i, .J/" entry of A2D is O. The11 

2D A2D AD AD ",'11 D D ",n D D 0 Tl" l' tl a;j = ;j = ;j."1.;j = 0h=1 a.;"a"j = 0"=1 ahiahj =. lIS llnp les lat 

the it.h and ,fh columns of AD, aj and aj are orthogonal. But this implies that 
G is bipartite by the previous lemma, contradicting the premise that G is non­
bipartite. Thus since A2D has no zero entries. By the minimality of /, / ::; 2D. 

11 

Proposition 0.9 Let G be bipartite. Then the index / of G does not exist. 

Proof Let G be bipartite, and let VI, V2 be the partitions. Then, for i,j E 

VI, all walks between i and j must contain an odd number of (not-necessarily 
distinct) vertices. Thus all walks between i and j must be of even length. Also, 
for k E VI, l E %, all walks between k and l must contain an even number of 
(not necessarily distinct) vertices. Thus all walks between k and l must be of 
odd length. Thus for / odd, the (i,.J)t.h entry of A/' is zero, and for / even, the 
(k, l)th entry of A/' is zero. Thus Ai' always has a zero entry. 11 

Using the above two propositions. we obtain the following corollary: 

Corollary 0.10 G is non-bipal·tite ~f and only ~f D ::; '/ ::; 2D. I 

The following Mathematica function will compute the index)' of a non-bipartite 
graph: 

Graphlndex[M_J ;= Modu1e[{d ;= 1, M1 ;= M}, 
While [HasZeros[M1J, d++; M1 M1.MJ; dJ 



H 

The rollo-wing algorithm will determine whether a graph G is bipartite by testing 
the powers of A = A(G), between D and 2D, as described in the above corollary: 

isBipartite[G_] := Module[{d = Diam[A], result True, m}, 
m = MatrixPower[A, d]; 
For [i = d, i <= 2d, i++, 

If [HasZeros[m] , m = m.G, 
result = False; Break]]; result] 

The Walk Matrix of a Graph 

Wc will now digress and describe an interesting result that relates the number 
of main eigenvalues to the rank of a matrix knmvn as the VlTalk Matrix of the 
graph. Wc will denote the all ones vector by j = (1,1, ... , l)T. 

Definition 0.4 An eigenvalue is said to be non-main ~f it has an associated 
eigenvector x the sum of whose entTies is not equal to 0, i.e, x.j # 0 

Definition 0.5 Let G be a gTaph with adJ'acency matrix A. The walk matrix 
(il" = W])(A) of G is the n x p matrix (.i, A.i, A2 j, .. . ,AF-lj), where p is the 
smallest value s71,ch that the walk matTix Wl'( A) attains maximum Tank. 

The columns of the walk matrix define an A-cyclic subspace U = {aj, i E N}. 
Since U is a subspace of Rn, it is finite dimensional, having dimension p, and it 
can be shown that U is generated by the basis (j, Aj, A 2 j, . .. , A]J-lj). Thus the 
above definition is well defined, and p can be defined to be the smallest value 
such that Rank(Wp(A)) = Rank (WP+l (A)) = p. 

The graph-theoretic interpretation of a single column A'j of the walk matrix, is 
as follows: the it." entry of A''j counts the number of walks of length r starting 
from vertex i. Thus using the above result, the set of these vectors is finitely 
generated, and every vector A''j, p ::; l' is a linear combination of the vectors 
(.i, Aj, A 2 j, ... , AP-1,j). 
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Lemma 0.11 Let A = A(G) be the adjacency matrix: of G. Then a set of n 
orthonormal eigenvectoTs can be chosen such that fOT each eigenvalue, at most 
one cOr1'esponding eigenvectoT is ma'in. 

Proof Suppose there is an eigenvalue A with lllultipLicity greater than one, and 
let Xl, ... , Xm be an orthonormal basis for the corrcsponding eigenspace where 
:rJ is main, Clearly we can assume that that xkj :2: 0 for all k. Now suppose 
Xi is another main vector. Then replace Xi with: 

and replace Xl with: 

I xd 
Xi =Xi - -.XI 

XI·J 

I xd 
Xl = -.Xi +XI 

XI·J 

and normalize accordingly. Then x~ is a main eigellvector, x; is non-main, and 
the set {x~, X2, ... , x;, ... , xn} is an orthonormal set of cigenvectors satisfying 
the required condition. I 

'Ve can now prove the following theorem relating the rank of the 'Walk IvIatrix 
to the number of main cigenvalues. 

Theorem 0.12 (4) The rank of the walk-matrix of a graph G is equal to the 
number of its main eigenval~tes. 

Proof By the previous lemma, we can choose an orthonormal set of n cigen­
vectors such that each eigenvalue has at most onc corresponding main eigen­
vector. Let Xl, X2, ... Xm be the set of orthonormal cigenvectors correspond­
ing to the main eigenvalues, AI, ... , Am. of G, As before, we can assume that 
ai = xd > 0 for i = 1, ... , m. Then j can be expressed as the linear combi-

t ' .' ",n S· r 1. > 0 AI;' ",m ,k I 1 na lOll J = 6i=1 aiXi· 1l1ce 10r any," _ , J = 6,=1 aiAi Xi, t 1en we lave 
that 

U = Span(Akj, Vk :2: 0) ~ Span(xl,"" xm) 

Thus dimU = rank T·V(G) ::; rn. 'Ve will now show that U contaillS a linearly 
independent set of rn vectors, namely j, Aj, ... , Am-lj. 
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Suppose that zy~ 1 Cj Ai -1 j = 0 for some constants Cl , ' .. , Cm. Then 

rn '{/I 'IT/ rn 'rI1 

0 _'" 'Aj-l. - '" " '" ,,j-l . _ "\' . "'. ,j-l . - L.... CJ J - L.... CJ L.... a,A; X, - 1-.. a, L.... CjA; X, 

j=1 j=l i=l 'i=l j=l 

Then since ai > 0 and xi, i = 1, ... ,rn, are orthonormal, then 

-rn 

'" ,>1- 1 _0 '-I L....CJAi -, z- , ... ,rn 

j=1 

But the Ai'S are all distinct, and so we have a polynomial of degree rn - 1 with 
rn distinct roots which is only possible if the polynomial is entirely 0, that is 
(j = 0, .i = 1, ... , rn. Thus the set j, Aj, ... , Arn-J j is linearly independent 
and so rank W(G) = rn. I 
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An Upper Bound for the Nullity 
of Trees and Edge-Colourings 

Stanley Fiorini 

Abstract 

A necessary and sufficient condition for the nOli-singularity of the ad­
jacency matrix of a tree is given in terms of the existence of a I-factor in 
the tree. The result is used to give an upper bound for t.he nullity of the 
tree via edge-eolourings of bipartite graphs. 

Illustrating the basic concepts 

A(G)= 

o 1 1 0 1 0 
101 100 
1 1 000 1 
o 1 001 1 
100 1 0 1 
o 0 1 1 1 0 

.5 

3" )I, 6 

Figure 1: A graph G and its adjacency m.atr'ix A (G) 

Edges {12, 46} in G are independent because they share no vertex; they are also 
called a matching. 

Independent edges {15, 24, 3G} are a i-factoT of G because they cover all ver­
tices; they form a m.aximal matching. 

An edge-colouTing of G is a partitioning of the edge set E (G) of G into match­
ings, called COlouT-classes. The least number of colour-classes is the chmmatic 
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indcJ; Xi (C). In the example given Xi = 3 and the partitioning (the ouly onc 
possible) is {13, 24, 56} (coloured 0'), {12, 36, 45} (coloured ;3) aud {15, 23, 
46} (coloured 'y). 

If tJ. (C) is the maximum valency of C, then, dearly 6. (C) :( Xl (C); it has been 
shown by Vizing [2, pp. 30-32] that. Xl (C) :( tJ. (Cl + 1. 

The graph C (above) has odd circuits (1231), (124G51). If all circuits are even, 
then C is said to be bipartite and the vertex set \I (C) of G can be partitioned 
into \I (C) = A u B, An B = cj; such that E (Cl c;;;: A x B. 

A tree T is a connected graph with no circuits and hence bipartite. If IV (T) I = 
n, then lE (T) I = n 1 and it must have a vertex of valency 1. 

6 

:~' 2 
o 2 3 4 9 

Figure 2: A tree T and its bipartition: 

Konig (1916) proved that for a bipartite graph of maximum valency 6, Xl = tJ.. 
[2, p.25] 

The spectrum. spec(C) of a graph C is the set of eigenvalues of A (C); since 
A (C) is real and symmetric, spec(C) is real. Coulson and Rushbrook (1940) 
proved that the spectrum of a bipartite graph is symmetric about O. [1, p. 87] 
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Main Theorem: A tree T has a I-factor if and only if A (T) is non-singlllar. 

Theoren1 1: If a tree T has a I-factor, then A (T) is non-singular. 

Proof: T bipartite => spee(T) symmetric about ° 
=> A (T) singular if n (T) is odd. 

But T has a I-factor => n (T) even, n (T) = 2k. 

Proceed by induction on k. 

For k = 1, there is only onc tree on 2 vertices and det (A (T)) = I ~ ~ I = -1 f. 0; 

hence non-singular. 

Assuming the assertion is true for k and considering a vertex v of valency 1 with 
neighbour w in a[tr~e 1with 2k : 2 verticles, wc label its vertices v = VI, W = 1)2 

so that A (T) = IOu . 
o uT A (T - 1) - w) 

. f . Ri ...... Ri - RJ 
By a sequence of row and colu111n operatIOns 0 the kmd: C. C. C 

J...... J 1 

vectors u and uT can be 'killed' without affecting the sub-matrix A (I' - 1) - w) 
and without changing the value of lA (I')I. 

A final row-operation Rl +-> R2 changes the sign of the resulting determinant 
and yields lA (I')I = lA (I' - v - w)1 #- 0, by the inductive hypothesis. 

Thus A (I') is non-singular. • 
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Theorem 2 If a tree T has a matching Ai of maximum size f.t (covering 2 j1 
vertices v] , ... , 'U2p) and if v is any other vertex, then the row R" in A (T) cor­
responding to v is linearly dependent on the rows Rn, , ... ,R"21' corresponding 
to the vertices in the matching. 

Proof: Let v have neighbours 'Vi" ... ,Vi,· 

If some Vi, (1 ~ t ~ s) is not covered by 111, then the edge v Vi, could have been 
added to 111, contradicting maximality. Thus all of Vi" ... , Vi, arc ill 111 and 
deleting v from T yields a disconnected graph with s components Cl: .. " C" 
with 
Vi, E Ct. (1 ~ t ~ s). Thus, A (T) can be represented by: 

A(C1 ) 0 0 0 
o A(C2) 0 0 

o 1* o 
o 

o 
o o A(C,,) 

1 1 1 10 

* 

for an appropriate labelling of its vertices. 

One notes that the top right-hand submatrix must be zero; otherwise if there 
exist Vj (in Cl say) that is not covered by this matching, then there exists a 
path in G starting in vending in Vj with edges alternately "not in" / "in" the 
matching, contradicting the maximality of 111. 

But by Theorem 1, the principal sub-matrix of size 2j1 x 2/1 is non-singular so 
that by suitable elementary row-operations the first 2/1 rows of A (T) can be 
reduced to 

B:= (hpl*) 

Thus the (2/1 + 1)1.11 row corresponding to V in seen to be the sum of the rows 
Rv,] + RVi2 + ... + Rv;., of B .• 
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Since the vertex v was arbitrarily chosen from V (T) \ V (Af), wc have the fol­
lowing: 

Corollary: The rank rk (T) of T equals 2/1. III 

The main theorem follows from this corollary and Theorem l. 

Now let b. = b. (T) and n = IV (T)I. Since T is bipartite, T has an edge­
colouring with b. colours (by Kc .. nig), that is, E (T) can be partitioned into b. 
colour-classes r 1 , ... ,r n. It is clear that a c:olourclass consists of independent 
edges which form a matching. Hence the size of the largest colour class in the 
graph is less than that of a maximum matching. 

Thus (n - 1) = lE (T)I = ""~1 ICI ( b. max Iril ( b.p" 
L.;,_ l~i~~ 

=? in;:;:ll ( /1 
=? rk (T) ~ r ';1-.11 

Thus, the nullity of T is at most n - ir~.;;.11. 

Open Problem: Investigate the nullity of bipartite graphs. 
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for Powers of Primes 

Elaine Chetcuti 
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The Phi function 0(11,) is defined a.s the number of positive integers less than n 
which have no factor in common with n. 

Knowing that a residue group is a set of positive integers less than n and rel­
atively prime to n; the phi function, o(n), can be defined as the number of 
element.s in the residue group. 

o(n) = no. of natural numbers < n: (a,11,) =1 

Consider 0(4): 

There arc 2 positive integers less than 4 which have no common factor with 4 
namely (1 and 3). Hence 

• 0(4) = 2 

Consider 0(7): 

There are no positive integers less than 7 which have a common factor with 7 
since 7 is a prime number. 

Therefore wc can say that for any prime number p, o(p) = ])-1 

Our att.empt is to find O(pk) 



18 

Let us consider 0(p2) 

Consider first 0(52 ) 

Listing all positive integers less than 25, we obtain 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 2 .. , pp+ 1. ... " 2p2p+ 1. ........... . 3p3p+ 1. ........... .4p 

21 22 23 24 25 

4p+ l. ........... . 5p (where 5p is p2 in this case) 

Therefore, to find lZi(p2), first list all positive integers less than p2 

1 23 ..... p, p+1. .... 2p,2p+l. .. 3p,3p+1. ... p2 

This makes us realize that p, 2p, 3p, 4p, . .. p2are the only integers which are not 
eoprime with p2. 

Therefore lZi(li ) = ])2_ p 

Let us now consider lZi(p3) 

The positive integers from 1 to p3 can be divided into p sets: 

1 to p- (p~ p coprimes) 
p:';+ 1 to 2p:'; (p"" P coprimes) 
2p:"+ 1 to 3p:" (1)L. - p coprimes) 
...... 

..... . 

(p-2)p"+ 1 to (p-1 )p:" (p" - p coprimes) 
(p-1)p""+ 1 to pJ (p:'; - p c:oprimes) 



Each set has p2 - P coprimes and there arc p sets. 

=? total number of coprimes from 1 to p3= p(p2 - p) 

=? 0(p3) = p(p2 _ p) 

= p2(p _ 1) 

From this we claim that 0(pn) = I/,-l(p - 1) 

Let us prove this by the Principle of Induction 

RTP: 0(p") = pn-l(p - 1) 

Proof 

Let n = 1 

LHS: 0(pl) = p-1 (as discussr:d earlier) 

RHS: pl-l(p - 1) = pl-l(p - 1) = pO(p - 1) = (p -1) 

... true for n = 1 

Assume it is also true for n = k 

i.e. 0(ph) = ph-l(p - 1) 

Wc need to prove it is true for n = k +1 

i.e. RTP 0(pk+l) = I} (p - 1) 
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The positive integers from 1 to pk+J can be divided into ]J groups as in the case 
of 1 to ])3 earlier on 

1 to ph: (ph' (p - 1) coprimes) 
pk+ 1 to 21;" (ph" -J(]) - 1) coprimes) 
2])"+ 1 to 3])'- (ph: .J (p __ 1) coprimes) 

.... - . 

..... . 
(p-2)p"+ 1 to (p-l )pA' (pk-l(p - 1) c:oprimes) 
(p-l)1J"+ 1 to pk+l (p" -l(p - 1) c:oprimes) 

Each set has pk- J (p - 1) cop rimes and there arc p sets. 

=? total number of coprirnes from 1 to p"+l= p(pk-l(1J - 1)) 

=? O(p"+l) = p(p"-I(p - 1)) 

= p"(p - 1) 

As 0(pll) = p",-1 (p - 1) holds for n = 1 and whenever it is true for n = k, it is 
also true for n = k + 1, by the Principle of Induction, the theorem is true for 
all natural numbers n. 



The Eigenvalues of Self 
Complementary Graphs 

Angela Lombardi 

Abstract 

Self complementary graphs have many interesting properties with ref­
erence to their main and non-main eigcnvalues. Eigenvalues are a special 
set of scalars associated with a linear system of equations (i.e., a matrix 
cquation) that are sometimes also known as characteristic roots, proper 
values, or latent. roots. We consider the spectra of self complementary 
graphs. 
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A graph has a set V of vertices {1,2, ... ,n} and a set E of edges joining distinct 
pairs of vertices. 

Graph Complement The complement of a graph G is the graph Gwith 
the same vertex set but whose edge set consists of the edges not present in G 
(Le., the complement of the edge set of G with respect to all possible edges on 
the vertex set of G). 

Example: 

ox 
G G 

Figure 3: Graph G and its Complement Graph 

Self Complementary Graphs: A sdf-complementaTY gTaph is a graph 
which is isomorphic to its graph complement. 

Next are three examples of self-complementary graphs. 



Example 1: 

P: 1--->3 
2--->5 
3--->2 
4--->4 
5 ---> 1 

Example 2: 

P: 1--->2 
2--->4 
3 ---> 1 
4--->3 
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3 3 20.4 2 ....... ~4 
1 S IJ;><\S 

G G 

Figure 4: G = C5 and its compliment G 

fl L:: 
G G 

Figure .5: G = P 4 and its complement G 



Example 3: 

P: 1-;4 
2-;1 
3-;3 
4-;5 
5-;2 
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3 3 

G 21\4 
Ir-\S G,(il), 

Figure 6: G = Aa and its compliment G 

An interesting property follows from the definitions given below of the adjacency 
matrix and its complement. 

A is the adjacency matrix of a graph G, if it is the n x n symmetric matrix such 
that 

ai .. = { 1 {i,j} is an edge of G; 
J 0 otherwise. 

A is the adjacency matrix of the complement G of G if it is an n x n symmetric 
matrix such that 

a .. _ { 0 {i,j} is an edge of G; 
7) - 1 otherwise. 

If J is the all 1 matrix and I is the identity matrix then 

A+A=J-I (1) 
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Finding an Antimorphisnl and an AutOlTIOrphism 

Examplel: The adjacency matrix of Cs is denoted by A(C 5 ). 

As wc have shown before the mapping from Cs to its compicment may be 
represented as the permutation P = ( 1 3 2 5) (4). By entering the matrices 
below into Ivlathematica and using the cOl1lmand TJ-allspose[Pj.A.P wc obtain 
the following matrices. 

o 0 100 

(

00001) 

p= 10000 
00010 
o 1 000 

o 0 0 0 1 

(

00100) 

pT = 0 1 000 
00010 
1 0 0 0 0 

1 0 100 

(

01001) 

A( Ch = 0 1 0 1 0 
o 0 101 
10010 

T -So P .A.P=A 

Therefore P is an antimorphisrn. since it represents a mapping from A to its 
complement A 

Let Q = p 2 = (4) ( 1325) . (4) ( 1 325) = (4) (1 2) (35) 

then 

1 000 0 

(

01000) 

Q= 00001 
00010 
o 0 100 
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So Q-l.A.Q = A. 

Therefore Q represents an automorphism since it is a mappiJlg frolll A onto 
itself. 

Example 2 : The adjacency matrix of P 4 is denoted by A(P4 ). 

The mapping froln P 4 to its c:omplement maybe represented as the perrnutation 

P = ( 1 2 4 3 ). 

T -So P .A.P = A 

Let Q = p2= ( 1 243 ) . ( 1 2 4 3 ) = ( 1 4 ) ( 2 3 ) 

So Q-l.A.Q = A 

Example 3 : The adjac:ency matrix of the graph Ac of Figure 6 is denoted by 
A(Ac)· 

The mapping from Ac to its c:omplement may be represented as the permutation 

P = ( 1 4 5 2) (:3). 

So pT.A.P = 

Let Q = p2 = (3)(1452).(3)(1452) = (3)(15)(42) 

So Q-l.A.Q = A 
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Special Eigenvalues Properties For Self Con1.ple­
Inentary Graphs: 

An eigenvector is said to be main if it is not orthogonal to j. 

Example 1: For A(C)s, 
the eigenvalues arc: {2, -1.61803, -1.61803,0.618034,0.618034}, 
and the eigenvectors arc : {I, 1, 1, 1, I}, {-1.61803, 1.61803, -1,0,1}, 
{ -1,1.61803, -1.61803, i, O}, {0.618034, -0.618034, -1,0,1}, {-I, -0.618034,0.618034.1, O} 

Checking if eigenvectors are main: 
Since C5 is regular the only main eigenvector {I, 1,1,1, I} 

A(C5 ) has non-main eigenvalues A2, A3, A4 and A5, which can be paired off 
as follows: 

A2 + A4 = A3 + A5 = A2 + A5 = A3 + A4 = -1 

This follows from equation 1. 

Example 2: For A(P4) 
the eigenvalues arc equal to: {-1.61803, 1.61803, -0.618034, 0.618034}, 
and the corresponding eigenvectors are: {-I, 1.61803, -1.61803, I}, {I, 1.61803, 1.61803, I}, 
{I, -0.618034, -0.618034, I}, { --1, -0.618034, 0_618034, I} 

Checking if eigenvectors are main: 
For A2 = 1.61803, the cigenvector X2 is {I, 1.61803, 1.61803, I} If j = {I, 1, 1, 1, } 
then < j, X2 ># O. Hence A2 is main. 

The non-main eigenvalues arc Al and A3, whiGh can be paired off as follows: 

)1] + A3 = -1 
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Example 3: For A(Ac) 
the eigenvalues arc: {2.30278, -l.61803, -1.30278, 0.618034,0}, 
and the corresponding cigenvectors arc: {l, 2.30278, 2, 2.30278, I}, {-1, l.61803, 0, -1.61803, 1}, 
{1, -1.30278,2, -1.30278, 1}, {-1, -0.618034,0,0.618034,1}, {1, 0, -1, D, 1}. 

The only non-main eigenvalues are A2 and A3 which can he paired off as follows: 

A2 + A3 = -1 

Justification of the results obtained: 

A+A=J -I 

=? A = J - -I - A 

=? AXi= JXi- - 1Xi- - AXi 

If Ai is non-main, then x;.j = D 

Thus A.; Xi 0 - Xi - AXi corresponding to a nOD-main cigenvalue A.; 

So Ax; = (Ai -l)xi 

Since G is self complementary, the set of eigenvalues of A= set of eigenvalues 
of A 

For each Ai, there exists Aj = - (Ai + 1) 

So in self complementary graphs non-main eigenvalues arc paired s.t. Aj + 
Ai = - 1. Therefore by just looking at the cigenvalues and by pairing them 
off, we may find the non-main eigenvalues. 



The Maths Test 
Lyrics: Clinton Paul Cilia Singer: Romina Mamo 

Today's the day 
That I will face the test 

Rillg, ring goes my clock 
I wake up in a total shock 
Feeling down, feeling ill 
Should I take myself a pill? 

Wish it was over 
Then I'd start to live again 
But it has to be done. .. nothing ventured, nothing gained. 

In the Maths test. .. I will try and do my best 
Even though I'm scared to death 
About Gaussian might forget 
In the Maths test. .. I will give it my best shot 
Hope I don't forget the rules 
Remeluber the ones that scare me and you 

Oh no it's half-past 8 
Half an hour left to go 
\i\'m J pass? Will I fail? 
\i\That will happen I don't know? 

V1ish it wa.s over 
Thell I'd start to live again 
But it has to be done. .. nothing ventured, nothing gained 

My ... Oh my, 
The time has come 
Can't feel my knees - they're numb 
Here it is ... whiter than ice 

In the Maths test. .. I will try and do my best 
Even though I'm scared to death 
About Gaussian might forget 
In the Maths test. .. I will give it Iny best shot 
Hope I don't forget the rules 
Remember the ones that scare me and you 
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Prof. S. Fiorini and Dr. 1. Sciriha The Professor at the whiteboard 

Close up of Andrew Duncan at the board A shot of Andrew with the organiser 
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Angcla Lombardi preparing the sheets Explaining to the present audience 




