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Homomorphisms and the number of
Divisors

Sarah Buttigieg and Monique Inguanez

Lemma 1 Let [ : R\ {0} — R\ {0} be defined by f(2) = a™. Then [ is a

homomorphism.

Proof: [(z)f(y) = [(zy) Va,y € R\ {0}, n € N.

Theorem 2 Let

F(p) = Z m"

mlp

Jor some n € N and where p is prime and the summation runs over the
divisors of p. Then F is a homomorphism under multiplication.

Proof: The divisors of p are 1 and p.
Hence

Fp)F(p2) = (" +1") (" + 1)
— 7)]71,7)21‘1, + 1™+ 7)277,

The divisors of p1ps are pypa, p1, P2 and 1.
Hence Fpip2) = o "pa™ 4+ 14 py™ 4 pu™.

Consequently, F'(p1)F(p2) = F(p1p2)-

This can be extended to any integer.

Corollary 3 If [ is a homomorphism under muliiplication, then so is I (n)
defined by

2

F(n) = Z J(m)

min

where the sum is over all divisors of any integer n. Therefore. F(z)F(y) =
F(y).
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Application 1: Using the above corollary, we see that the number of divisors

d(n) = Z 1

min.

d(n) of n, where

is a homomorphism under multiplication, since [(z) = 1 is.
Let’s consider an example: 63 =7 x 9

The divisors of 63 are 63, 21, 9, 7, 3 and 1. Therefore d(63) = 6.
The divisors of 7 are 7 and 1. So d(7) = 2.

The divisors of 9 are 9, 3 and 1. So d(9) = 3.

By the above argument, d(63) = d(9)d(7), which indeed it is, since 6 = 2 x 3.

Application 2: If

Fx) = Z J(m)

min

where [(m) = m?, then F(63) = F(7)F(9).

The divisors of 63 arc 63, 21,9, 7, 3 and 1.
P(63) = 63% + 21% + 93 + 73 1 3% 1 1% = 260408.

The divisors of 7 and 7 and 1, and those of 9 and 9, 3 and 1.
F(TYF(9) = (7% 4+ 1%)(9% 4 3% + 13) = 260408.

This confirms our result that I is a homomorphism.

We now consider the sum of cubes of numbers.
It is 7common knowledge” that

P2t =042+ 4n)?
Thus

3= () = (32 )

7= r=1
Hence the set of numbers {1,2,...,n} has the property that the sum of its cubes
is the squave of its sum. Arc there any other collections of numbers with this
property?
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Let’s consider the following argument.
Pick any number, for example 63. List the divisors of 63, and for each divisor of
63, count the number of divisors it has:

63 has 6 divisors (63, 21, 9,7, 3, 1)
21 has 4 divisors (21, 7, 3, 1)

9 has 3 divisors (9, 3, 1)

7 has 2 divisors (7, 1)

3 has 2 divisors (3, 1)

1 has 1 divisor (1).

The resulting collection of numbers has the same property. Namely:

63 +434+3%4+2° 423 +1%=324=(64+4+3+2+2+1)?

[d]? is a homomorphism under multiplication, and Corollary 3 shows that

Z a3 (m)

mln.

is also a homomorphism under multiplication.

Also, from Corollary 3, squaring gives that

Z d(m)

min

is a homomorphism under multiplication. Using a similar argument as before, it
can finally be shown that

Z d*(m) = Z d(m)

min min
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The Total Number of Non-Isomorphic Simple Graphs with n Vertices and k Edges

Definition: A graph is defined as G := (V, E), E ¢ VxV, where V(G) is the set of vertices of G
and E(G) is the set of edges of G.

Bo G '=—t V(G)=1{1,2,3,4) E(G)={12,13, 14,23, 24)

Definition: G is s.t.b. simple if it has no loops or mulitiple edges.

3

E.g.
loop (edge from 1 to 1) M multiple edges from 2 to 3

Definition: G, is isomorphic to G, denoted G, = Gy, if 3 f: V(Gy) = V(Gy) bijective s.t. if
v, w e V(G)) then vw € B(G)) < f(Wf(w) e B(G,).

Eg G ' 2 G, ! 2 G, and G, are isomorphic, where
% f(1)y=1,12)=2,13) =4, f(4) = 3,
so that if vw € E(G)) then f(v)f(w) € E(G,)
3 4 3 4

e.g. 13 € E(Gy) and f(1)f(3) = 14 € E(Gy)

G, ><2 G, 2 G not isomorphic to G, (see Result 1)
: 3‘4’4
5
5

Definition: Let ve V(G). The valency of v, denoted p(v), is the number of edges incident to v.

e
ga

Also, w € V(G) is s.t.b. adjacent to v if vw € E(G).

Result I: Let S(G) := {p(v): v € V(G)}, i.e. the set of valencies of vertices of G. Then
G =2G; = S(G)) =S(Gy).

Proof: Let ve V(Gy). Thus f(v) e V(G,).
Suppose vy, vy, ..., vy are all the vertices adjacent to v.
So f(vy), f(va), ..., f(vy) are all the vertices adjacent to f(v)

22
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Definition:

Resulr 2:

Proof:

Result 3:

Proof:

s.tvvy € E(G)) & f(v)f(vy) € E(Gy).

So V v e V(G) p(v) = p(f(v)), and since fis 1 - 1 and onto we get the result.

A simple graph with n vertices is s.t.b. complete and denoted K, if V v, w € V(G)

vw e E(G).

Ks /
2 3
4 5

Let G| be the class of simple graphs with vertices labelled 1, 2, ..., n and k edges.
n(n-1) n(n-1)
Th@ﬂ IG:‘ = ( }; ]: [n(n—l; __ k]: ‘G::(n—l)/?_‘k‘ -

For a simple graph with n vertices we have at most IE(K,,) 1 = n(n-1)/2 edges (for all
of the n vertices there are (n - 1) incident edges but every edge connects 2 vertices,
hence n(n - 1) =2 | EX.) ).

So the no. of different graphs in the class G is equal to the number of ways of

choosing k edges out of the n(n - 1)/2 total no. of edges.

The isomorphism relation = on graphs is an equivalence relation.

reflexive: G; = G, (trivial)
symmetric: Let V(G)) = {vy, vy, .., vi}. G =Gy then 3 f: V(G)) — V(Gy)
' bijective s.t. viv; € B(Gy) & f(v)f(v)) € E(Gy).
f bijective = V(G,) = {f(v)), ..., f(vy)}. Let x; = f(vy).
Also, f bijective = 3 ' : V(G,) = V(G)) bijective s.t.
xixj = f(vi)f(v)) € E(Gy) & vivi = T (f(vi) ' (f(v}) € E(Gy).
Hence G, = G;.

transitive: Let G| = G; be defined as in the above symmetric case.

23
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Let G, = Gs. Thus 3 g: V(Gy) — V(G3) bijective s..
xix; = f(v)f(vy) € B(Ga) & g(x)g(x)) = g(f(vi)g(f(v)) € E(Ga).
f, g bijective = g,f bijective where

vivi € B(G)) & gof(vi)gof(v;) € E(Gs). Hence G, = Gs.

Definition: The complement of simple graph G with n vertices, denoted G, is the graph s.t.
E(G) UB(G) = E(K,) and B(G) "E(G) = 0, i.e.
if v. w e V(G) then vw € E(G) & vw ¢ E(G ) and vw ¢ E(G) & vw € E(G).

Result4: G=G < G = G'.

Proof: Let v, w € V(G) and let f be the isomorphism from G to G’.
VW € E(a) o= vw ¢ B(G) & fNOf(w) ¢ B(G”) @ f(v)f(w) E(é_' ).

Remark:  Result 2 and Result 4 imply that tackling the problem for the case with k edges is
equivalent to tackling it for the case with [n(n-1)/2 - k] edges (i.e. number of edges of
complementary graph), because from Result 4 we easily deduce that for
complementary graphs the sizes of classes of isomorphic graphs are equal (i.e.

][G}] :’[~G—]’) and from Result 2 we already know that the total number of different

graphs are also equal (refer to Conclusion).

Conclusion:

Since an equivalence relation on elements of a set gives a partition of the set into equivalence
classes, from the important Resulr 3 we get that the set of different vertex-labelled simple graphs
with n vertices and k edges is partitioned into classes of isomorphic graphs of this type. Hence if
N, is the number of classes of our set of graphs then there are N| non-isomorphic simple graphs

with n vertices and k edges. Let [G]], denote the i’th class of isomorphic graphs of this type.
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N;‘ n{n-1)
Hence lG}‘i = Zi[GE]i( = li . If the class sizes were all the same then this would be an easy
i=]

problem to solve, however this is not the case.

This might be an approach to finding a way of obtaining all the non-isomorphic graphs. So if

o we have an efficient straight-forward formulation which determines if 2 graphs are
isomorphic or not rather than considering all the n! vertex bijections, in particular something
stronger than Result 1 which gives a helpful sufficient condition rather than a necessary one,
and

e we have a formula which determines the size of the class of graphs isomorphic to any given
graph,

then we have a method of finding N which works by generating non-isomorphic graphs and

n(n-=1)
finding their size until the sum of sizes equals | * |, but this would still be an algorithm rather
k

than a formula.

>
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