
The ('oJJec(;jo]J I V 19 

Homomorphisms and the number of 
Divisors 

Sarah Buttigieg and Monique Inguanez 

Lemma 1 Le/; f : lP£ \ {O} ---7 lP£ \ {O} bc defined In) .I'(.T) = :r7l. Then f is (j, 

hO'lIl. (iT//, orph isrn.. 

Proof: f(:r:)f(y) I(:D!J) 'i:r:,y E lP£ \ {O}, nE N. 

Theorem 2 Lei: 

F(p) = L m.l1 

111.11' 

fO'!' sO'lnc n E Nand WhCTC 7J is pT'im.c and i.he s'u.m.m.ation T1!.ns OVCT the 
(l'ivis()'J"s of p. Then F 'is a homo7n,orphis'lTI, 1!.'l/.deT rnnli:iplication. 

Proof: The divisors of pare 1 and 7). 

Hcmce 

F(Pl )F(p2) = (PIn + 1")(p271 + 111) 

= 7J111])211 + 1 + pjn + P2
11 

The divisors of P1 7)2 aTe P1])2, ]Jl, ])2 and 1. 

Hence P(P1712) = 7)jllP2" + 1 + JJj" + 712". 

Conseqnently, F(pdF(P2) = P(Pl]J2). 

This C:c1l1 be extended to any integer. 

Corollary 3 1f f 1:S a h07n07nOTphis771. unde?' ml1,/t.ipi?:cai:io'll., then so 1:8 F(n), 
defined by 

P(n) = L f(rn) 
'1111'/1 

wl/,C'rc the 8'1/.rn. is ()'lIe',. all d'ivisOTS of any integcT n. ThcTcfoTc. F(:l:)F(y) = 
F(:ry). 
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Application 1: Using the alxJV(, corollary, we see that the number of divisors 

1/('11) of '1/" where 

d(n) = ~1 
7nl" 

is H, llOl1lomorphism under multiplication, since J(:r) = 1 is, 

Let's consider a,n example: 63 = 7 x 9 

TIw divisors of 63 arc 63, 21, 9, 7, :3 a.nd 1. Thercf'ore d(63) = 6. 

The divisors of 7 a.re 7 and 1. So d(7) = 2. 

The divisors of 9 a.re 9, 3 a.nd 1. So d(9) = 3. 

By thc' above argument, d(63) = d(9)d(7), which indeed it is, since 6 = 2 x 3. 

Application 2: If 

F(:/;) = ~ f(m) 
m 171 

where I(Tn.) = Tn:l, then F(63) = F(7)F(9). 

The ch visors of 63 aJ'(~ 63, 21, 9, 7, 3 and 1. 
F(03) = 03:1 + 21:' + 9:' + ii + 3:' + 1:1 = 260408. 

The divisors of 7 and 7 a.nd 1, a.nd those of 9 and 9,3 a.nd 1. 
F(7) F(9) = (ii + 1 ;i) (93 + 3:1 + 1 :l) = 260408, 

This confirms OUl' result tha.t F is a. homomorphism. 

\7I,1e DOW consider the sum of cubes of numbers. 
It is "coml1lon knowledge" t.hat. 

Thus 

'l '1', ') 
I' + 2' +'" + '1/' = (1 + 2 + ,,' + 7/,)-

'1/ 

~T:) 

1'=1 
(

1 )2 (n )2 
'27/.(71.+ 1) = ~T 

Hencc" the set of numbers {L 2, ' , , ,n} has the property t.ha.t. t.he sum of it.s cubes 
is (,he squa.re of it.s sum, Arc t.here any other colledions of numbers with this 
jll'O]lc~rty'? 
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Let's consider the following argument. 
Pick any number, for example 63. List the divisors of 63, and for each divisor of 
63, count the number of divisors it ha.s: 

63 has 6 divisors (63, 21, 9, 7, 3, 1) 
21 has 4 divisors (21, 7, 3, 1) 
D ha.') 3 divisors (9,3, 1) 
7 has 2 divisors (7, 1) 
:j has 2 divisors (3, 1) 
1 has 1 divisor (1). 

The resulting collection of numbers ha,-" the same property, Namely: 

6:3 + 4:3 + 33 + 23 + 23 + 13 = 324 = (6 + 4 + 3 + 2 + 2 + 1)2 

[dj"i is a homomorphism under multiplication, and Corollary 3 shO\:vs that 

LcP(m) 
mln 

is also Cl homomorphism under multiplication. 

Also, from Corollary 3, squaring gives that 

( Ld(m)) 2 

mln 

is Cl homomorphisnl under multiplication. Using Cl similar argument a.s before, it 
ca.n finally be shown tha:t 

Ld3(m) = (Ld(m))
2 

mln ml71 
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The Total Number of Non-Isomorphic Simple Graphs with n Vertices and kEdges 

Definition: A graph is defined as G := CV, E), E s:;; VxV, where V(G) is the set of vertices of G 

and E(G) is the set of edges of G. 

E.g.G :[S]4 
3 

V(G) = { 1,2, 3,4} E(G) = {12, 13, 14, 23, 24 } 

De(lnition: G is s.t.b. simple if it has no loops or multiple edges. 

E.g. 3 

loop (edge from 1 to 1) ~ multiple edges from 2 to 3 

Definition: G, is isomorphic to G2, denoted G, == G2, if :3 f : V(G,) ~ V(G2) bijective s.t. if 

v, w E VCG,) then vw E ECG,) <=? fCv)f(w) E E(G2). 

E.g. G, 
, 2 

D 
.; 4 

E.g. G, X: 

G2 
, 2 

Z 
3 4 

G2 '\Ll2 3 4 

5 

G, and G2 are isomorphic, where 
f(l) = J, f(2) = 2, f(3) = 4, f(4) = 3, 
so that if vw E ECG,) then f(v)f(w) E E(G2) 

e.g. 13 E E(G,) and f(1)f(3) = 14 E E(G2) 

G, not isomorphic to G2 (see Result 1) 

De{lnition: Let v E V(G). The valency of v, denoted p(v), is the number of edges incident to v. 

Also, w E VCG) is s.t.b. adjacent to v if vw E ECG). 

Result 1: Let S(G) := {p(v): v E VCG)}, i.e. the set of valencies of vertices of G. Then 

G, == G 2 =9 S(G,) = S(G2). 

Proof: Let v E VCG,). Thus fCv) E V(G2). 

Suppose v" V2, ... , Vk are all the vertices adjacent to v. 

So fey,), f(v2), ... , f(vk) are all the vertices adjacent to fCv) 

22 
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s.t VVI E E(G I) q f(v)f(vl) E E(G2). 

So '1/ v E V(G) p(V) = p(f(v)), and since f is 1 - 1 and onto we get the result. 

Definition: A simple graph with n vertices is s.t.b. complete and denoted Kn if '1/ v, w E V(G) 

E.g. 

VW E E(G). 

K:; @, 
:; 4 

Result 2: Let G ~ be the class of simple graphs with vertices labelled 1, 2, ... , nand kedges. 

Proof 

11 _ -2- = -2- = GI1 .. 
(

"("-1) J [ 11(11-1) J 
Then IG k 1- k n(';-I) _ k 1 11(11-1)/2-k 1 

For a simple graph with n vertices we have at most 1 E(Kn) 1 = n(n-l)/2 edges (for all 

of the n vertices there are (n - 1) incident edges but every edge connects 2 vertices, 

hence n(n - I) = 21 E(Kn) 1 ). 

So the no. of different graphs in the class G~ is equal to the number of ways of 

choosing k edges out of the n(n - 1)/2 total no. of edges. 

Result 3: The isomorphism relation == on graphs is an equivalence relation. 

Proof reflexive: G I == G I (trivial) 

symmetric: Let V(G I) = {VI, V2, ... , vn}. IfGI == G2 then:3 f: V(G I) -7 V(G2) 

bijective S.t. VjVj E E(G I) q f(vj)f(vj} E E(G2). . . 

f bijective =? V(G2) = {f(VI), ... , f(v,J}. Let Xj = f(vD. 

Also, f bijective =?:3 fl : V(G2) -7 V(G I) bijective S.t. 

XjXj = f(vj)f(v) E E(G2) q VjVj = fl(f(vj))fl(f(vj}) E E(G I). 

Hence G2 == G I. 

transitive: Let G I == G2 be defined as in the above symmetric case. 

23 
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Let G2 == G3. Thus:3 g : V(G2) -7 V(G3) bijective s.t. 

XjXj = f(vj)f(vj) E E(G2) <=> g(Xj)g(Xj) = g(f(vj))g(f(vj)) E E(G3)· 

f, g bijective => gof bijective where 

VjVj E E(G 1) <=> gof(vj)gof(vj) E E(G3). Hence G 1 == Gel. 

Definition: The complement of simple graph G with n vertices, denoted G, is the graph s.t. 

E(G) u E( G) = E(Kn) and E(G) n E( G) = <j), i.e. 

if v, WE V(G) then vw E E(G) <=> vw E E(G) and vw E E(G) <=> vw E E(G). 

Result 4: G == G' <=> G == G'. 

Proof Let v, w E V(G) and let f be the isomorphism fr0111 G to G'. 

Remark: 

Conclusion: 

vw E E( G) <=> vw E E(G) <=> f(v)f(w) E E(G') <=> f(v)f(w) E E( G'). 

Result 2 al1d Result 4 imply that tackling the problem for the case with k edges is 

equivalent to tackling it for the case with [11(11-1)/2 - kJ edges (i.e. number of edges of 

complementary graph), because from Result 4 we easily deduce that for 

complementary graphs the sizes of classes of isomorphic graphs are equal (i.e. 

I[GJI = j[GJj) and from Result 2 we already know that the total number of different 

graphs are also equal (refer to Conclusion). 

Since an equivalence relation on elements of a set gives a partition of the set into equivalence 

classes, from the important Result 3 we get that the set of different vertex-labelled simple graphs 

with n vertices and k edges is partitioned into classes of isomorphic graphs of this type. Hence if 

N~ is the number of classes of our set of graphs then there are N~ non-isomorphic simple graphs 

with n vertices and k edges. Let [Ga denote the i'th class of isomorphic graphs of this type. 

24 
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N:: [~) I-fence 10:: 1 = t;J 0 a 1 = ~ . If the class sizes were all the same then this wou Id be an easy 

problem to solve, however this is not the case. 

This might be an approach to finding a way of obtaining all the non-isomorphic graphs. So if 

• we have an efficient straight-forward formulation which determines if 2 graphs are 

isomorphic or not rather than considering all the nl vertex bijections, in particular something 

stronger than Result J which gives a helpful sufficient condition rather than a necessary one, 

and 

• we have a formula which determines the size of the class of graphs isomorphic to any given 

graph, 

then we have a method of finding N~ which works by generating non-isomorphic graphs and 

("(I-IlJ finding their size until the sum of sizes equals ~ , but this would still be an algorithm rather 

than a formula. 

25 


