The Square of a Two-Digit Number

Alex Farrugia
B.Sc. $3^{\text {rd }}$ Year

Abstract

We are concemed with the square of two-digit numbers. This is basically done by the "difference of two squares" formula which gives a simple way of obtaining the result, thus: ($x 2$ means x squared, and $a 2$ means a squared)

$x 2-a 2=(x+a)(x-a)$

Adding a2 to both sides, we get:
$x 2=(x+a)(x-a)+a 2 \ldots-\cdots-(1)$

Note that equation (1) above is true for all real x and a. Here, we're considering only two-digit natural numbers. Let us show how it works for the square of 47 , we just substitute x for 47 in equation (1), to yield:
$47 \wedge 2=(47+a)(47-a)+a 2$

This is true for all a.

Now comes the issue of choosing an appropriate a. To make the calculation as easy as possible, we must have two criteria for the choice of a:
(i) a must be small, in the range $0<=a<=9$, so that we can easily find $a 2$.
(ii) a must be such that the product $(x+a)(x-a)$ is as simple to calculate as possible

To satisfy the above criteria, a is chosen as follows:

Let the last digit of x be n (i.e. $n=x \bmod 10$). Then
$a:=n$, if $n=0,1,2,3,4$, or 5
$a:=10-n$, if $n=6,7,8$, or 9 .

So, in the above example, we choose $a=10-7=3$

So $47^{\wedge} 2=(47+3)(47-3)+3^{\wedge} 2=50 \times 44+9$

We note that 50×44 can be calculated easily $(=2200)$, and adding 9 to this we get
$47^{\wedge} 2=2209$

The important thing is that the above calculation can be made shorter by first calculating 44×5, and then 'appending' 9 to the answer!

We give another example: $76^{\wedge} 2$
$76^{\wedge} 2=(76+4)(76-4)+4^{\wedge} 2=80 \times 72+16=5760+16=5776$

In this case, after calculating 72×8, we do not append ' 16 ', but we add 1 to the answer and then 'append' 6 , viz:

$.72 x$
8
-
$576+$
1
-7776

A better idea is using the following algorithn to find the square of any two-digit number n :

Step 1) Find the smallest a such that ($\mathrm{n}+\mathrm{a}$) or $(\mathrm{n}-\mathrm{a})$ is divisible by 10. Let this multiple of 10 be t, and let u be t divided by 10 .

Step 2) If $t>n$, then write the following:
($\mathrm{n}-\mathrm{a}$) la
ula

Otherwise, write:
$(n+a) l a$
ula

Step 3) Now work out (n-a) $\times \mathrm{u}$ (or $(\mathrm{n}+\mathrm{a}) \times \mathrm{u})$. Let result be p .

Step 4) Work out a x a to give q.

Step 5) Result is the number written as p x $10+\mathrm{q}$.

To illustrate how this algorithm works for the various values of x mod 10 , we give three further examples:

Let's calculate $82^{\wedge} 2$:

Step 1: $a=2, t=80, u=8$

Step 2:

8412
812
Step 3:
8412
812

4
Step 4: 3
8412
812
6724

Therefore, $82^{\wedge} 2=6724$.

Another example: $46^{\wedge} 2$:

Step 1: $a=4, t=50, u=5$

Step 2:
4214
514

Step 3:
1
4214
514
6
Step 4:
11
4214
514
2116
Therefore, $46^{\wedge} 2=2116$.

Now let's present some optimisations to the method. The algoritm is particularly easy for $x \bmod 10=5$ as we show in the following example. First, when the last digit is 5 , we said above that we choose $\mathrm{a}=5$. This results in BOTH $(x+5)$
and ($x-5$) being divisible by 10 . For example, in $55^{\wedge} 2$
$55^{\wedge} 2=(55+5)(55-5)+25=50 \times 60+25$
Or, in the step-by-step method:
2
5015
615
3025
In this case, a simpler algorithm can be used:

Step 1: Let first digit of the number we want to square be x. Find $x(x+1)$

Step 2: Append '25' to the answer!

The above method is very well-known.

The other optimisation to the method is for numbers $n>90$. In these cases, the choice of a simplifies the algorithm considerably.

If we consider ($93^{\wedge} 2$), we have:
$93^{\wedge} 2=(93+7)(93-7)+7^{\wedge} 2=100 \times 86+49$

Fience, we can just calculate $93-7$, and then append $7 \wedge 2$ to the answer! The algorithm for these values of x is as follows:

Step 1: Let a be $100-\mathrm{x}$
Step 2: Write down (x-a)
Step 3: Append a2 to the number just written down!

Finding the square of numbers with more than two digits is possible by using recursion. The algorithm may be developed:
$x_{2}=(x+a)(x-a)+a_{2}$
we can find a 2 by the same method! For example, to find the square of 237 , a possible method is: first we put $a=37$, thus:
$237^{\wedge} 2=(237+37)(237-37)+37^{\wedge} 2=274 \times 200+37 \wedge 2=54800+37^{\wedge} 2$

Then we calculate $37 \wedge 2$ by putting $a=3$, thus:
$37 \wedge 2=(37+3)(37-3)+9=40 \times 34+9=1360+9=1369$
Hence, $237 \wedge 2=54800+1369=56169$
I doubt, however, if this method is any quicker than by multiplying out in the usual way. I'm mentioning it for the sake of information.

