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Foreword 

Most hobbies involve collections. 
Here's one with different flavours 
of what we enjoy in mathematics . 

The hub of activity that followed the first two Collection workshops was 
very encouraging. It was interesting to note the feedback we received to 
questions posed during the workshops. 

The conjecture posed on intersecting circles has been proved and we received 
three different solutions to the interesting question on equivalent sets. Re­
ports on both are to be found in this issue. Also included in this issue is the 
discussion that a letter in the local press on divisibility triggered. 

The contribution to mathematical ideas during the second meeting varied 
from balancing of dominoes to reconstructing graphs, music, divisibility and 
infinite sets. \!lle look forward to our February 2001 meeting. 

Dr. Irene Sciriha. 
Organiser . 
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4th October, 2000 

The Collection 11 

A workshop is being held on Monday, 30th October 2000 from 3.00 to 4. 00 

p.m. to share some interesting mathematical ideas among people who find 

pleasure in the elegance and preciseness of mathematics. 

Venue: University of Malta 

Maths and Physics Building, Department of Mathematics, Room 316 . 

Speakers: Ms Juanita Formosa, Mr Peter Borg, Mr Alex Farrugia, Mr 

J ames Borg, Mr. David Suda. 

We shall end with a brief session for spontaneous problem posing and/or 

solving. You are cordially invited to attend. 

Abstracts of possible proofs or conjectures which you wish to share with us 

in this meeting, or in a future one, may be sent t o Dr. 1. Sciriha or Ms. A. 

Attard, Department of Mathematics, (marked The Collection), at any time 

of the year. 

Dr. 1. Sciriha. 

(Organisor) 

p.s. European V\!omen in Mathematics 20011 

10th International Meeting of EWM 

24-30 August, 2001. Tartu, Estonia 

http) /www.maths.ox.ac.uk/ ewm01/ 

Budding, amateur and professional mathematicians who wish to become 

members of the EWM can contact me. 

1 Because of unforeseen difficulties, the EWM conference will not be held 

in Estonia but in MALTA. 
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Intersecting Circles and Ellipses2 

Alastaire Farrugia 

PhD candidate 

Dept. of Combinatorics 

Faculty of Mathematics 

University of Waterloo 

Canada 

Abstract 
In the February 2000 issue of The Collection, Phaedra Cassar 

posed the following the question: Is it possible for four or more 

circles to be drawn such that each new circle added has a COl11-

man region with all existing regions?3 We prove that this is not 

possible. Furthermore we show that for ellipses, the task is not 

possible for five or more ellipses. 

3 

DEFINITION 0.0.1. An r-Venn diagram is a collection of r closed curves 

Cl, ... , Cr, such that the intersection of Xl, ... ,X2r is non-empty and con­

nected, where each Xi is either int( Ci) or ext( Ci). 

[Note: we will use '1" for the number of curves, and reserve 'n' for the 

number of intersection points. A region is also referred to as a face and the 

region outside the Venn Diagram is the infinite face.] 

THEOREM 0.0.2. 4 If Cl, ... , Cr are all circles, then there is no T-Venn diagram 

for l' > 3; if the Ci's are all ellipses, there is no 1'-Venn diagram for l' > 5. 

PROOF. Given a Venn diagram we can put a vertex at each intersection 

point to get a planar graph. By Euler's formula for planar graphs n - m + 
2Following the article "Intersecting Circles" which appeared in 

The Collection: 16th Feb 2000. (See p.5) 

3See p.5. 

4] wish to thank Frank Ruskey who gave me the necessary hint to prove this theorem. 
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.r = 2 where n, m, f are the numbers of vertices (intersection points of the 

Venn diagram) , edges and faces. Now in an 1'-Venn diagram f = 21', so 

27
' = 2 + m - n 

We will get an upper bound on m - n and thus prove the theorem. 

Vie will consider only the case where we do NOT have three or more circles 

intersecting at the same point. This can be justified by geometric intuition, 

or by observing that if we do have three or more circles intersecting at the 

same point, the quantity m-n is even lower than if we don't. 

The graph will be 4-regular, so 4n = 2m, and thus 21' = 2 + n. 

Now since every pair of circles intersect in at most two points, the number 

of intersection points is at most twice (1' choose 2), i.e. n ::; 1'(1' - 1). 

Thus we must have 21' <= 2 + 1'(1' - 1) which is impossible for l' = 4(27
' = 

16,2+ 1'(1' -1) = 14) , and thus impossible for l' ~ 4 since 21' increases faster 

than 1'(1' - 1). 

If we have ellipses, since each pair of ellipses can intersect at at most four 

points, we have n <= 21'(1'-1) and so 21' <= 2+21'(1'-1) which is impossible 

for l' = 6(21' = 64, 2 + 21'(1' - 1) = 62). 0 
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Intersecting Circles 

Rule: The circles must intersect in such a way that the new circle added must taJce in part of 

Each and every area of the circles and regions in the former diagram. 

With two circles this is obviously possibJe, creating three regions. 

With three circles, it is also possibJe, with 7 regions being created. 

But with four circles, Olle region will be enclosed entirely within the circle. 

Question: Is it really impossible to draw four circles such that tbemle defined above is 
, 

followed? If not, why is it not possible to draw four circles to fulfill tbe set 

condition, when it is possible to do it 

with two or three circles? Perhaps this problem is related to the four colour theorem? 

5 
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5This page appeared in The Collection of Feb 2000. 
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Two Simple Proofs 

Alexander Farrugia B.Sc. 4th Year 

Abstract 
My proofs of two simple results will be presented. These are: 

a) 0.999999 ... = 1 

b) The area of a circle is 7(7'2, where 7' is the radius of the circle. 

a) 0.999999 ... = 1 

Remark: This simple result is usually deduced by considering the number 

0.999999 ... as the series 

999 
10 + 100 + 1000 + .... 

and summing the series to infinity, whence it is equal to 1. My proof is 

different. 

PROOF. 'Ne don't know what 0.999999 ... is , so let's assign it to x. 

(0.1) x = 0.999999 

Multiplying both sides by 10, we get: 

10x = 9.999999 

Subtracting 9 from both sides, we get: 
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(0.2) 10x - 9 = 0.999999 

Comparing equations (1) and (2), we immediately note that their R.H.S is 

exactly the same, which implies that their L.H.S are also equal. So 

(0.3) 

(0.4) 

(0.5) 

lOx-9 

9x 

x 

x 

9 

1 

But we started with x = 0.999999 and we ended up with x = 1. 

So finally, 0.999999 = 1. 

b) The area of a circle with radius T is 7rT2. 

o 

Remark: The proof that the area of a circle is 7r multiplied the square 

of its radius is usually found by integrating the area under the graph of a 

semicircle with radius T, remembering to double the answer in the end. My 

proof takes a different approach altogether. 

PROOF. Consider any n-sided regular polygon. In the diagram below 

we have chosen a regular pentagon. (See the figure.) From the centre of 

the polygon we draw n lines to each of t he vertices of the polygon. Call the 

length of each of these lines T. The polygon is thus divided into n isosceles 

triangles (in our case n = 5). 

Let e be the angle at the centre that each of these lines makes with its 

subsequent line. It can be easily seen that e = 27r (using radian measure). n 

Now consider finding the area of t his polygon. It can be found by multiplying 

the area of one of the triangles by n, since obviously all of the triangles have 
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FIGURE 0 .1. The Regular Pentagon. 

the same area. The area of one of these triangles, knowing the length of two 

of its sides and the angle between them, is: 

1 2 1 2 2n 
-1' sine = -1' sin(-) 
2 2 n 

Therefore, the area of the n sided polygon is ~nr2 sin( 2:). 

Now comes the crucial step. If we allow n to become very large, the n sided 

polygon will approximate a circle. This implies that its area will be close 

to that of the circle. Therefore, as n approaches infinity, the area of the 

polygon approaches that of the circle. 

Mathematically speaking, 

Area of circle 

Now 

1 2 211" 
lim - 1' nsin(-) 

n -----t 00 2 n 

1 2 2n 
-21' lim nsin( - ) 

n-----too n 

1· s~nx 1 nn -- = . 
x-----tO X 



... 

Thus 

==? 

==? 

==? 

Editor: 1. Sciriha 

sine7l" ) 
lim n 1 

n---->oo 271" = 
n 

sin( 271") 
Z o n 1 
27TIn---->oon 27f = 

1 27f 
- lim nsin(-) = 1 
27f n---->oo n 

o 0 27f 
11m nsm(2-) = 27f 

n---->oo n 

Therefore the area of a circle is 7fr2
o 

9 

o 
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Remark: This letter appeared in the Times of the 9th Feb, 1999, in reply 

to a query by Mr. M. Pace of the 28th Jan, 1999.6 

Dear Editor, 

Playing with Nines 

In his letter which appeared in the issue of the Times of the 28th January, 

1999, Mr. M. Pace pointed out an interesting property of the number nine 

in the set of integers modulo ten. In general, when we work on the scale of n 

(where n is 3 or more) the number n-1 exhibits the same properties. So, the 

number 15 shows these properties in the hexadecimal scale. So does seven 

in the integers modulo 8. 

As Mr. Pace pointed out, if a number is divisible by 9 then the sum of its 

digits is a multiple of 9. He discussed the product 9x7. 

DeL, 
FIGURE 0.2. Areas 9x7= 10 x 6 + 3 

One way to see this is to place 9 rows of 7 squares in a rectangular shape. If 

a column of 9 squares is removed we are left with 9 rows of 6 squares. The 

9 squares are now placed as an additional row so that we end up with 10 

rows of 6 squares and an extra 3 squares. The product is the area and the 

sum of the digits of the product is the number of squares in the additional 

row. It is clear t hat whatever the number of columns, removing a column 

and placing the squares removed as an additional row, gives an easy way of 

working out the product. Besides, the number of squares in the additional 

row is always nine. 

6See p.12. 
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A more general way to represent the process is to write 9 as 10-1. When a 

non-zero number z (between 1 and 9) is multiplied by 9 the product may be 

written as lOz-z or as 10(z-1) + (10-z). Thus the sum of the digits is (z-l) 

+ (10-z) = 9 whatever z is. To take Mr. Paces example namely 9x7, z is 

7 and the product has z-l as the tens digit and 10-z= 3 as the units digit. 

The same holds true for the other example namely 33x9, writing 33 as 3 

tens plus 3 units. Now if we were to work 6x7 in the octal scale, we can use 

the method of fingers mentioned by Mr. Pace. We hold out eight fingers 

and put down the sixth. The product is 42 modulo 10 which is 5 eights and 

2 units or 52 modulo 8 as given by the fingers to the right and left of the 

sixth. 

Playing with numbers can be intriguing as Mr Pace pointed out. The ex­

citement that gripped t he mathematical world two years ago when Andrew 

\iViles solved Fermat's Last Theorem are still vivid in our minds. 

Irene Sciriha. 





... 

· Any Maths Wizards? 

"The number nine has for decades been intriguing 
m e as a kind of magical number but I have never 
really discovered the reason why. The number nine 
has some curious properties that are unique. 

Try and multiply nine by any number and if you 
add up the digits of its products you always get nine. 
F or example 9x7=63 and 6+3=9. If the number 
multiplied is large (say 33x9=297) the component 
digits of the product when added up are still 
multiples of nine (2+9+7=18 and 1+8=9). If you want 
to know if a number is rnvisible by nine sinlply add 
up its digits. 

A well-known method of multiplying by nine whicb 
is popular with children is that of using the fingers . 

Thus if you want to multiply nine by seven you hold 
out your 10 fingers and put down your seventh 
finger. The number of fingers to the left of the 
seventil finger inrncate tile tens and those to the right 
indicate tile units and you thus get an answer of 63. 

I am convinced that since mathematics is logical 
and not metaphysical there must be some form of 
e:> .. '})lanation to my query. I am therefore asking any 
maths wizard anlong tile readers oHhis paper to put 
their brains in top gear and come up with an 
explanation. . 

MAruOPACE, 
Attard. 

7Ma.rio Pace's Letter: The Times, 28th Jan 1999. 

13 
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Divisibility Magic 
James L. Borg8 

Department of Mathematics 

University of Malta 

Abstract 
To check whether a number is divisible by 9 (or 3), it is enough 

to check whether the sum of its digits is a multiple of 9 (or 3). 

More generally, if numbers are represented with base b, t hen the 

divisors of b - 1 will have this property. 

Introduction In a letter to a local newspaper [1], a reader9 noted that the 

number 9 has the following "magical" property: if a number is a multiple 

of nine then the sum of its digits is itself a multiple of nine. He asked what 

the mathematical explanation of this phenomenon is. 

The property mentioned, together with its converse, are well-known facts. 

To test an integer for divisibility by 9 we sum the digits and check whether 

the answer obtained is a multiple of nine. If the digit sum is still very large, 

the process may be repeated until a two-digit integer is obtained. 

However, nine is not the only integer with this property. If we take any 

multiple of three, then the sum of its digits is also a multiple of three. 

Similarly, if the digit sum of any number is a multiple of three, then the 

number itself is a multiple of three. 

Since the representation of a number as a string of digits depends on the 

base chosen, the following question immediately arises: will 3 and 9 still 

have the same property if numbers are represented in a different base? 

8Email: jlborg@maths.um.edu .mt 

9See p.12 
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A quick check reveals that t his is not so. For example, the number written 

as 45 in base 10 will be written as 140 in base 5 and 55 in base 8. In both 

cases, the digit sum is not a mult iple of nine (or of three). 

Clearly, t he numbers 9 and 3 have this magical property only when integers 

are represented in base 10. We formulate two questions which shall be 

answered in the rest of t his talk. 

(i) Why do the numbers 3 and 9 have the above property in base 10? 

(ii) Which numbers (if any) have the same property in other bases? 

Main Theorem In the sequel, we shall only consider posit ive integers. 

Let us start with a definition. Recall that the number a is represented by 
n 

the string of digits anan-l ... ao in base b if a = L akbk. 
k=O 

Definition : The integer c has the sum-of-digits divisibility property 

in base b if for any integer a, 

n n 

cia ~ cl L ak , where a = L ak bk . 
k=O k=O 

The theorem we shall prove is: 

Theorem: The integer c has the sum-of-digits divisibility property in base 

b if and only if cl(b - 1). 

Proof of Sufficiency for Base 10 Let us start with the proof for the 

numbers 3 and 9 i.e. in base 10. 
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If a = anan-l ... ao then 

11. 

a Lak10k 
k=O 

n 

L ad9 + l) k 
k=O 

n 

Lak(9k + k9 k- 1 + ... + k9 + 1) 
k=O 

n n 

Lak(9k + k9 k- 1 + ... + k9) + Lak 
k=O k=O 

n n 

9 Lak(9k- 1 + k9 k- 2 + ... + k) + Lak 
k=O k=O 

n 

Hence 9 (or 3) divides a if and only if 9 (or 3) divides the digit sum Lak. 
k=O 

In fact, we have proved a slightly stronger result: the remainder left when a 

number is divided by nine is the same as the remainder left when the digit 
n 

sum is divided by nine. In the language of modular arithmetic, a == L ak 
k=O 

(mod 9). 

Proof of Sufficiency in an Arbitrary Base The above proof can be 

adapted very easily to an arbitrary base b. Then 

n 
,,"", k a ,L..akb 
k=O 

n 

Lak ((b -1) + l) k 
k=O 

11. 

L ak ( (b - l)k + k(b - 1)k-1 + ... + k(b - 1) + 1) 
k=O 

n 11. 

Lak ((b _l)k + k(b _1 )k-1 + ... + k(b -1)) + Lak 

k=O k=O 
n n 

(b - 1) L ak ((b_1)k-1 + k(b- 1)k-2 + ... + k ) + Lak 

k=O k=O 
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Once again it is clear that b - 1 divides a if and only if b - 1 divides the digit 
n 

sum L ak· Furthermore, any number c will possess the same property if c 
k=O 

n 

divides b - 1. As before, if cl(b - 1) then a == L ak (mod c). 

k=O 

For example, in base 8, it is the number 7 which has the "magical" divisibility 

property, while in base 13, the numbers 2, 3, 4, 6 and 12 will have this 

property. 

Proof of Necessity To prove necessity, it is enough to show that if c does 

not divide (b-1) , then there is either at least one multiple of c whose digit 

sum is not a multiple of c, aT at least one non-multiple of c whose digit sum 

is a multiple of c. 

Two cases arise: 

(a) if c < b, then let a be a two digit number such that 

(i) the first digit is 1, and 

(ii) the second digit is c - 1. 

Then the sum of digits is c, but the number is b+ (c-1) = c+ (b-1) 

which is not a multiple of c because b - 1 is not a multiple of c. [2] 

(b) if c 2: b, then the digit sum of c is positive but strictly less than c, 

and hence cannot be a multiple of c. 

Hence we prove that only those numbers which divide b - 1 have the sum­

of-digits divisibility property in base b. 

Taking it Further The proof for divisibility by 9 may be adapted to obtain 

a proof for the divisibility test for multiples of 11. This test consists of finding 

the alternating sums of the digits i.e. sum the 1st, 3rd, 5th etc. digits and 

then sum the 2nd, 4th , 6th etc. digits. If these two sums are equal or differ 

by a multiple of 11 , then the number is a multiple of 11. The proof of this 

is left as an exercise. 
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T he more adventurous readers may even develop tests for divisibility by 7 

and 13 in t he same fashion . 

Acknowledgment s I would like to t hank 1rene Sciriha for invit ing me to 

participate in this workshop. I would also like to t hank J oseph Muscat for 

several interesting and frui t ful discussions on this topic. 

R efe rences 1. M. P ace, "Any Maths Wizards?" in Th e Times, 28th 

January 1999. 

2. J. Muscat, private communication. 



A HOmOlTIOrphisn1 on Musical Notes 

David Suda 

B.Sc. 3rd year 

Abstract 

T he intervals between successive notes in the major and minor 

scales are not equal so that difficulties arose when modulating 

to new keys. Adjustment to the tempered scale, in which all 

intervals are equal, ensured portability in all keys. The tem­

pered intervals form a group under multiplication. Moreover, 

t he musical notes can be partitioned into equivalence classes by 

t he octave. A homomorphism can be defined on the set of tem­

pered intervals. The kernel is the set of exact number of octave 

and the range isomorphic to C12 . 

Introduction 

This article deals with applying group theory to musical notes. We start by 

t aking note of their mathematical and physical properties. 

1. The pitch of a musical note is defined by its frequency, that is the number 

of vibrations per second. 

2. The frequencies of pure musical tones form an infinite set of real numbers. 

The range between 20 and 20 ,OOOHz is within the lower and upper limits of 

audibility. 

3. Instruments with discrete musical tones are finite subsets of this infinite 

set. The pianoforte, for example, has a subset with 88 elements . 

19 
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4. Instruments with continuous musical tones are infinite subsets of this 

infinite set. Examples of these are the string instruments and some wind 

instruments like the trombone. 

5. There is an order relation, >, defined on the musical notes which IS 

antisymmetric and transitive. Given t hree musical notes a, band c: 

i. a < b does not imply b < a (antisymmetric) 

11. however, if a < band b < c, t hen a < c (transitive) 

6. Musical notes can also be divided into equivalence classes. 

Recall that if A is a set and rv is an equivalence relation, then the equivalence 

class of a E A is the set: {x EA: a rv x}. 

Also recall that three properties define an equivalence relation rv . 

'<la, b, c EA, 

La rv a (reflexive) 

2.a rv b ====? b rv a (symmetric) 

3.a rv b & b rv c ====? a rv C (transitive). 

Classes of Notes 

In music, notes with the same name are part of the same equivalence class. 

The reason behind this is that notes with the same name are related by the 

following equivalence relation: a rv b if ~ = 2n , n E Z. 

1. rv is reflexive, since a = 20a 

2. rv is symmetric, sincea = 2x b ====? b = 2-x a 

3. rv is transitive, since a = 2x b & b = 2Yc ====? c = 2x+Ya given that x, yE Z. 

Thus the frequencies of successive notes in one equivalence class are in the 

ratio of 2: 1 and are said to be an octave apart. They sound similar since 

they have common vibrations, the higher note doing an extra vibration in 

between each of two consecutive vibrations of the lower note. Notes in the 

same class are given the same name. Middle C on the piano is 256 Hz and 
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the frequencies 128Hz and 512Hz are also C notes. On the tempered scale 

Middle C is adjusted to 261.6Hz. 

Problems on Modulating 

DEFINITION 0.0.3 . The interval beween two notes aHz and bHz with b > a 

is the ratio Q a' 

Of the seven Greek modes, the Ionian and Aeolian modes developed into the 

natural major and minor scales respectively, because the tonal symmetry 

among the intervals contributes to the ear 's ready acceptance of the scale. 

Tl . - . 1 -' 1 1 9 5 4 3 5 15 d 2 1 1 d 1 le mtelva s gIven )y I' 8'4' 3' 2' 3' if an T lave )ecome accepte as t le 

ones most pleasing to the ear and correspond to unison, major 2nd, major 

3rd, perfect 4th, perfect 5th, major 6th, major 7th and the octave resp. 

The function L1 : lR x lR --) lR defined by Ll : (a, b) 1-7 log2 ~ gives the 

interval in octaves. Thus if a rv b then ~ = 2n , n E Z, the notes a, bare n 

octaves apart and belong to the same equivalence class. Now if we have an 

interval of 12 perfect fifths starting from C, we expect to obtain C again 7 

octaves up, that is the interval 27 = 128. But one perfect fifth is ~ which 

when compounded gives (~)12 = 129.7, so that successive multiplication 

by ~ is not closed under successive multiplication by 2. The discrepancy 

represents the interval between BU and C which does not figure on the piano. 

Even with just intonation where each of the major triads F-A-C, C-E-G 

and G - B - D are in the ratio 4 : 5 : 6, the interval between two notes, one 

tone, is sometimes * (e .g.C - D) and sometimes 19°, (e.g. D - E), whereas 

one semitone (e.g. B - C) is i~. 

The interval between two notes, say C and D, is divided into two semitones 

which, in the natural scales, are not exactly equal in size since (i~) 2 1= * or 
10 
g' 

The function Lh2 : lR x lR --) lR defined by Lh2 (a, b) 1-7 log2i2 ~ gives 

the interval in semitones. 
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In the scale of C Major the 7 semitones from C to G form the interval ~ 

whereas the 7 semitones from D to A form the interval t = ~~ < ~. Thus 
8 

modulating to the scale of D reults in a slightly flat fifth which is therefore 

out of tune. 

The Solution: The Tempered Scale 

A keyboard instrument in which the scales in all keys have equal intervals 

would solve this problem. The tempered scale was thus constructed in which 

there are 12 equal semitones in an octave. These intervals are obtained by 
1 

placing eleven geometric means between 1 and 2. Since 212 is irrational, 

none of the intervals (except the octave) agree with those of the natural 

scale. However, although the scales in all the keys are slightly out of tune, 

the average ear is unable to detect a discrepancy of such small dimensions. 

The great advantage of the tempered scale is that the set of intervals {ah} is 

now a group under multiplication. Notes of the same name are octaves apart 

and equivalent intervals in the same class are in a ratio of 2r : 1, r E N. 

The interval from a, to b is equivalent to that between a and 2b. Thus a:2" rv 

.!!. bx2" 
Q. a 

The log scale L1( {ah}) gives fractions of octaves and equivalent inter­

vals differ by an integer. The log scale Lh2 (~) = 12 x L1 (~) is the 

simplest and the values form a group under addition homomorphic to 

C12 = {O, 1,2,3, , 4,5, , 6,7 ,8,9,10,11}x mod 12. 

The CYCLIC GROUP C12 

Consider the set of consecutive notes: 

C,C~,D, D~,E,F,F~,G,G~,A,A~,B, ..... Their set of frequencies is not a 

group; however the set of intervals: 
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FIGURE 0.3 . Musical intervals on a dodecahedron. 

c l c,c I CI,c ID ,C IDI,c I E,c IF ,c IFhc I e,c Je~,c IA ,c IA I,c IB , .... is a 

group Gc. If the intervals are taken relative to any note N, then GN will 

be the same group on the tempered scale . This is the great advantage of 

tempered intervals: Modulation produces a set of intervals compatible with 

the default set. 

Such a group G will always be of the form : 

1 2 3 4 5 G 7 8 9 10 11 . . 
{20, 212,212,212,212 ,212,212, 212 , 212,212 , 212 , 212, ... } under multiplica-

tion and is a subgroup of (Z, x). 

A Homomorphism on the Set of Intervals 

The homomorphism cjJ : 2-fi f--+ n mod 12 maps the infinite set G of intervals 

to their equivalence classes { c l c,C IChCID, ... ,C IB} ' The kernel Ker( cjJ) 

is t he set consisting of a whole number of octaves. Since G is Abelian, a 

subgroup is normal. The isomorphism theorems imply that 

i) cjJ( G) is isomorphic to C12, the set of rotational symmetries of the regular 

dodecagon; 

ii ) every normal subgroup of C12 corresponds to a normal subgroup of G. 

Such a subgroup and its cosets represent equivalent chords. 

The points on a dodecagon, starting from zero, that are ;~ 2f and 2p 
apart form subgroups of C12 . These are C12, {O, 2, 4, 6, 8, 10} and {O, 3, 6, 9} 

respectively. The cosets of the latter are t he chords of Diminished seventh. 

F inally we can define a mapping f : G ---7 Z by 

n l n J .f : 212 f--+ 12 . 

The first twelve elements of the cyclic group G are mapped onto 0, the 

second twelve elements of the cyclic group mapped onto 1, and so on. The 
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range {l ;2 J} corresponds to the octave above the default (that of middle 

however , is not a 

" 
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Equivalent Intervals 
Peter Borg 

To show that the open interval (0,1) and the closed interval [0,1] are equivalent. 
Problem posed by Mr. James Borg. 

Proof Required to find a bijection (l to 1 and onto mapping) from (0,1) to [0,1]. 
Consider the following diagram: 

be defined by 

.L 
2 

.1. 
1 

_ 1 
f: x H +-T - x X E (0, - 2 ] = 11 

2 
1 1 1 1 1 1 

-1 + ( - 2 + - 3 - x) X E (-2 ,-? + - 3 ] = 12 
2- 2 2 ' 2 2- 2 

1 I 1 11 11111 
- - + - + (- + - + - - x) X E (- + - - + - + -] = 13 
2 2 2 3 22 2 3 24 22 2 3 '2 2 2 3 24 . 

etc. 
1 1 1 1 1 1 

In general, for x E ( - ? + - 3 + ... + - " ' - 2 + - , + ... + -k -I ] ,k ~ 2, we have: 
2- 2' 2' 2 2 " 2 + 

1 1 1 1 
f(x) = 2( - ? + - 3 + ... + -, ) + -k - I - X = 

2- 2 2' 2 '+ 

1 1 
l - --+--- x 

2k - 1 2k+1 

1 1 
and for x E (0, -2 ] we have f(x) = -2 - X. 

2 2 
The first thing to note is that we have partitioned (0,1) into an infinite number of intervals Ik . 

1 I I 1 1 1 
This is because the sequence (-2 + - 3 + .. . + -k ) = (- - -k ) ~ - as k ~ 00 . Also, 

2 2 2 2 2 2 
we are practically mapping an interval of type (a,b] onto an interval of type [a,b) by mapping 
x E (a,b] onto a + (b - x); in particular b is mapped onto a. Secondly, one can easily realize 
that f is well-defined and injective because, on any interval Ik, a unique x value is mapped 

1 I 
onto a unique y value. It remains to prove that f is onto. Let y E [0, - ). If y E [0, -2 ) then 

2 2 
1 

there exists x E (0, - 2 ] such that f(x) = y. Otherwise, there exists a k ~ 2 such that 
2 

1 1 11 1111 
( - - -) ::; y < ( - - --). So Y should lie in an interval [- - - - - -- ) but f is 

2 2k 2 2k+1 2 2k ' 2 2 k+I ' 

1 1 I 1 1 
defined such that there exists an interval h = ('2 - 2!' '2 - 2 k+1 ] which is mapped onto [ '2 

1 I 1 - 2! ' '2 - 2k+1 ), i.e. there exists x E h such that f(x) = y. 

1 I 1 1 
So we have mapped (0, - ) onto [0, - ) . Similarly, we can map ( -, 1) onto (-, 1]. And 

2 2 2 2 

fi nally, we map ~ E (0,1) onto ~ E [0, 1]. The proof is hence complete. 
2 2 
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A second solution by James Borg. 

If f maps the irrationals to themselves identically, the rest of the intervals 
(0,1) and [0,1] are equivalent since they are countable. 

A third solution by Vincent Mercieca. 

This solution is similar to that of Peter Borg. The intervals are divided into 
sub intervals with end points expressed in Ternary form. 

Let f map the interval [0,1] to (0,1). 

The interval [0 , 1] is divided into sub intervals [0,0.1), [0.1,0.11), 
[0.11,0.111) , ... (0.2,1) , (0.12,0.2]), (0.112,0.12]' ... Now f(O.l)=O.l1, 
f(.11)=0.111, ... and f(0.2)=0.12, f(.12)=0.112, . 

All other points are mapped identically. 

1 



Proof (] a): 

Let A I = {al I, a12, aJ3, ... }, A2 = {a21, a22, a23, ... }, ... , Ak = {akl' ak2, ak3 ... }' ... 

For all i, Ai is a countable set. A = A luA2uA3u .. . is a countable union of countable sets. 

Hence the elements of A can be li sted in the following way: 

a l I al2 al3 al4 

a21 /.22 a23 

a31./' a32 

~I /.. etc. 

Let f: A -7 N be defined by f : a ij H iI,2(n) + i = (i + j - 2 Xi + j -1) + i , where i, j > O. 
n~ 2 

It is required to prove that f is well-defined, one-to-one, and onto, i.e. f is bijective. 

f is obviously well-defined since f(aij) can take only one value. 

i+ j-2 p+q-2 

To prove f is one-to-one suppose that f(aij) f(apq). Hence I (n)+ i = I (n)+ p . 
11=0 11=0 

Suppose (i + j) ::F (p + q) . Therefore either (i + j) > (p + q) or (i + j) < (p + q), but it is 

i+j- 2 p+q -2 

enough to just consider (i + j) > (p + q). f(aij) = f(amn) => p - i = I (n) - I, (n). Hence 
11=0 n=O 

i+j-2 

P - 1 = I (n) 2': p + q - 1. So 1 - i 2': q. But i 2': 1 (i > 0), and hence 0 2': q. This is a 
l1 =p+q-1 

i+j-2 p+q-2 

contradiction since q 2': 1 (q > 0). So (i + j) = (p + q), and from I,(n)+i = I,(n)+p it 
11=0 11 =0 

follows that i = p. Hence j = q. So apq = aij-

To prove f is onto let us consider any natural number k. We need to find i and j such that 

111 111(m + 1) 111+1 (m + 1X111 + 2) 
f(aij) = k, where i, j > O. Let 111 be such that In = < k :s; I11 = . 

11 =0 2 11 =0 2 

m 

Hence 0 < i = k - I, n :S; 111 + 1. Let j = 111 - i + 2 (i .e. III = i + j - 2). Since 111 - i 2': -1 
11 =0 
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then j = (m - i) + 2 :2: -1 + 2 = 1. Hence j > O. So we have found i and j such that 

;+j-2 

f(a ;j) = I (n) + i, where i, j > 0 as required. 
11 =0 

However, it was not necessary to prove onto in order to prove that A-N. First of all , for 

all i N - Ai. Suppose f was not onto N but onto N', an infinite proper subset of N, then 

we have that A - N' c N c A. In fact, by definition, an infinite set is equivalent to a 

proper subset of itself. So A must be equivalent to N. 

Proof J(b) : 

Let aij = J/ j in proof 1 (a). The denominators in Q are elements of N and for all 

denominator i E N there exists a set Ai which is the set of all positive rationals with 

denominator i. Hence the union A = AI U A2 U A3 U ... covers all the denominators and 

hence fo rms the set of all positive rationals. Hence by result 1 (a) Q+ is countable. The 

set Q- of negative rationals is equivalent to the set of positive rationals, hence also 

countable. Again , by result 1 (a), Q:= Q+ U Q- is countable. 

2. (a) The set of real numbers, R, is uncountable. 

Cb) The set of irrational numbers, J, is uncountable. 

Proof2(a): 

Suppose R is countable. Therefore R is equivalent to N, and hence its elements can be 

li sted. Let us just consider the real interval [0,1]. Hence let the elements in [0,1] be 

li sted as {ai, a2, a3, ... }. Also let each rational element in [0,1] be written in its infinite 

decimal expansion, e.g. 0.5 = 0.4999_ .. Hence we have the following list: 

al = O.all al 2 a13 aI4· ·· 

a2 = 0.a21 a22 a23 a24··· 

a3 = 0.a3 1 a32 a33 a34··. 

etc. 

Let b = 0.b lb2b3 ... be a real number in [0,1] such that bi = 1 if aii = 0 and bi = ° if aii = 1. 

I-Ience b is not in the set {ai , a2, a3, ... }. This is a contradiction and [0,1] is therefore 

uncountable. So, obviously, R is uncountable. 



Proof 2(b): 

R = Q u 1. Suppose J is countable. Again, by result 1 (a), this implies that R is countable 

since Q is also countable. So this is a contradiction and J is therefore uncountable. 

3. (a) N has measure 0 . Q (or any countable set) has measure 0. 

(b) J n [0,1] has measure 1. 

Some properties of Measure: 

• The measure of the empty set 0 is 0. 

• For any real interval [a,b], b > a, the (Lebesgue) measure is given by (b - a). 

• Let MA denote the measure of set A. If A = B u C then MA = Ms + Mc - Msnc. 

Proof 3( a): 

Let n E N be covered by a real interval of radius £I(2n), i.e. [n - £/(2'), n + £/(2n)] . For any 

£ > 0, all natural numbers are covered. Taking all the covers we get that the measure of N 

is less than 2 t ~ = 2E(_I_/_) = 4E. We can let £, tend to ° without uncovering any 
11=02 1-1 2 

natural number, whereby the measure tends to 0. Hence N has ° measure. 

Since (by definition) any countable set is equivalent to N, then any countable set has ° 
measure. In particular, Q has ° measure. 

Proof 3(b): 

The (Lebesgue) measure of the real interval [0,1] is given by 1 - ° = 1. By definition, 

J = QC = R \ Q (R without Q), i.e. the set of all real numbers which are not rational 

(irrational) . R = J u Q and J n Q = 0 (empty set) . 

[0,1] = [0,1] n R = [0,1] n (1 u Q) = ([0,1 ] n 1) u ([0,1] n Q) . 

Let A = [0, 1], B = [0, 1] n J, C = [0,1] n Q. B n C = 0. Hence Msnc = 0. Also, since C 

is cou ntable, Mc = 0. Therefore MA = Ms + Mc - Msnc = Ms + ° -° = 1. So Ms = 1, i.e. 

the measure of the irrationals in [0,1] is 1. 

Problem: If M is an uncountable set in [0,1] , does it necessarily have measure 1 ??!! 

Remark: This will be tackled in a future workshop. 
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Infinite Sets 
Peter Borg 

B.Sc 3rd year 

Abstract 

• Two sets AI and ]..;[/ are equivalent if there exists a one-to-one correspon­

dence between their elements, i.e. ]..;[ rv 1\;[/ ~ 3f : 1\;[ ~ 1\;[/ such that 

f is bijective. 

• A set 1\;[ is finite if either it is empty or there exists a natural number n 

such that 1\;[ rv {I , 2, ... , n}; otherwise ],,1 is infinite. 

• A set ],,1 is infinite if it is equivalent to a proper subset of itself; otherwise 

M is finite. 111 is infinite ~ 3111/ C 111 s.t. 111 rv ],,1/. 

• An infinite set 111 is countable if it is equivalent to the set of natural 

numbers, otherwise it is uncountable. That is, 11;[ is countable ~ 1\;[ rv N . 

THEORETICAL RESULTS 

1. ( a) A countable union of countable sets is countable. 

(b) The set of rational numbers, Q, is countable, i.e. Q rv N. 
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A Reconstruction Game 

J uanita Formosa 

M.Sc. student 

Abstract 

We propose a game in which the number of players is 2 - the 

robber and the detective. The detective is not after revealing 

the identity of the robber but in disclosing what the robber 

stole, given some hints by the robber himself. The winner is 

the robber if the detective fails to reveal the stolen property; 

otherwise the detective wins. We apply this to Ulam's Recon-

struction Conjecture, a problem which is still open and which 

states that for a graph of order three or more, it is possible to 

reconstruct the original graph G from the deck of one vertex­

deleted subgraphs of G. 

What is a Graph? 

Let us begin by considering the figure below: 

~ V 2 

I~~v; 
V5 V

4 

FIGURE 0.4. A road map 

27 
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It is clear that it can be represented diagrammatically by means of points 

and lines as in Figure 0.5 below. 

Vi V2 

CXJ>----"a V3 

V5 V4 

FIGURE 0.5. The corresponding graph 

The points {Vl' V2 , ... , Vn } are called vertices and the lines are called edges; 

the whole diagram is called a graph. Usually, we stick to the following 

notation: 

In general a graph G has a set V(G) = {Vl' V2, ... , vn } of n vertices and 

an edge set E( G) of m edges such that every edge joins a pair of distinct 

vertices. The degree or valency of a vertex is the number of edges which 

have that vertex as an endpoint and corresponds in figure 1.1 to the number 

of roads at an intersection. thus the degree of the vertex V2 is 4. If all the 

verices have tha same valency r, then G is said to be regular. 

What is the Reconstruction Game? 

Consider the following game with the following rules: 

(1) Number of players is 2 - the robber and the detective. Strangely 

enough, in our case the detective is not after revealing the identity 

of the robber but in disclosing what the robber stole, given some 

hints by the robber himself! 

(2) The winner is the robber if the detective fails to reveal the stolen 

property; otherwise the detective wins. 

Let's say that the stolen property is the graph G given below: 
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VI 

V5 V2 

V4 G 

FIGURE 0.6. The stolen property 

and the hints given to the detective are the five subgraphs (cards) below , 

commonly known as the deck D(C) of C. Each card is obtained by stepwise 

removing V i, V2, . . . , V5 and any adjacent edges from C. 

\. • • • I 
G-VI 

I· • • • I 
G-v 2 

I· • • • I G-VJ 

I· • • • I G-v 4 

I· • • · 1 G-v 
5 

FIGURE 0.7 . Deck of cards 

The basic question, which is Ulam's Reconstruction Game, is very simple 

indeed: is it possible to reconstruct the original graph C '? In this 

particular case, the answer is yes. The method how to go about it is as 

follows: 

From the given information deck, we deduce that n = 5. Also, the number 

of edges in each card is 4 so that the same number of edges are deleted with 

each vertex Vi. Thus the parent graph C is regular. Hence, it is clear that 

regularity of C is recognisable from D(C) . To recover C, it suffices to add a 
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vertex to anyone of the subgraphs in t he deck and join it to those vert ices 

having the minimum degree. 

Hence, in this case the detective is the winner. The case for regular graphs is 

very simple but the problem has proved to be very difficult for the arbitrary 

graph and is still open for about half century of history. In mathematical 

terms, the game is called "Ulam's Reconstruction Conjecture" and it reads 

as follows: 

Every graph with at least 3 vertices is reconstructible. 

It is clear that we consider n ~ 3 because the problem fails for n = 2. 

What is the Polynomial Reconstruction Game? 

Now there exists a parallel reasoning using polynomials, rather than graphs. 

T he conjecture is called "The Polynomial Reconstruction Conjecture 11 

and it is a variant of Ulam's reconstruction conjecture originated by D. 

Cvetkovic in 1973. It states t hat : 

Every graph with at least 3 vertices is polynomial reconstructible. 

Equivalently, for n ~ 3, given a p-deck P D (G) of n cards, each showing a 

characteristic polynomial cjJ( G - Vi A) as v runs t hrough the n vertices of G, 

the characteristic polynomial cjJ(Gi A) can be recovered. 

Even in this case, the problem is still open in general, although it has been 

solved for some classes of graghs such as regular graphs. Hence we will re­

consider the previous game, this time using polynomials rather than graphs . 
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But let us first define what we understand by polynomial: 

The adjacency matrix of a graph G with vertex set VI, V2, ... , Vn is the 

(O,l)symmetric n x n matrix A(G) = (aij) whose (i})-entry aij is equal to 

the nmnber of edges the vertex Vi to the vertex Vj. As an example, the ad­

jacency matrices of the graph in Figure 1.2 and its vertex deleted subgraph 

are given below: 

A(G) = 

o 1 001 

1 0 100 

01010 

o 0 101 

10010 

o 100 

1 0 1 0 
A(G - Vi) = 

o 1 0 1 

o 0 1 0 

The characteristic polynom.ial of a graph G is defined to be the charac­

teristic polynomial of its adjacency matrix A = A( G) and if I denotes the 

identity matrix, then 

<jJ(G) = <jJ(G; A) = I(AI - A)I 

is a polynomial ~~~O(aiAn-l) with integer coefficients ai. 

The characteristic polynomials of G and G - Vi are x 5 - 5x3 + 5x - 2 and 

:r:4 - 3x2 + 1 respectively. 

A useful result which enables the recovery of most of the terms of the charac­

teristic polynomial of the parent graph G from the P D( G) is the following: 



.. 

32 The CollecLion-II 2000 

THEOREM 0.0.4. 

q/(G;.\) = L <p(G - Vi;.\) 
PG 

Thus by integrating the previous result , we obtain <p( G; A), save for the 

constant term. This can be checked out by adding up x4 - 3x2 + 1 for 

all 5 subgraphs and then integrating with respect to x to obtain the 

characteristic polynomial of G save for the constant -2. Thus a boundary 

condition is required to determine q)( G; .\) completely. 

It is interesting to point out that a positive answer to the Polynomial 

Reconstruction Game would imply the validity of Ulam's conjecture. But 

this approach depends on the resolution of a major problem: which graphs 

are determined by their spectrum? Unfortunately, all non trivial graphs 

known at present to be characterised by their spectra are regular, while 

Ulam's conjecture is trivially true for regular graphs. Thus it would be 

interesting to find some non trivial classes of non regular graphs which are 

characterised by their spectra. 

30th October 
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