Infinite Sets

Peter Borg
B.Sc 3rd year

Abstract

\section*{DEFINITIONS} - Two sets M and M^{\prime} are equivalent if there exists a one-to-one correspondence between their elements, i.e. $M \sim M^{\prime} \Longleftrightarrow \exists f: M \longrightarrow M^{\prime}$ such that f is bijective.

- A set M is finite if either it is empty or there exists a natural number n such that $M \sim\{1,2, \ldots, n\}$; otherwise M is infinite.
- A set M is infinite if it is equivalent to a proper subset of itself; otherwise M is finite. M is infinite $\Longleftrightarrow \exists M^{\prime} \subset M$ s.t. $M \sim M^{\prime}$.
- An infinite set M is countable if it is equivalent to the set of natural numbers, otherwise it is uncountable. That is, M is countable $\Longleftrightarrow M \sim N$.

THEORETICAL RESULTS

1. (a) A countable union of countable sets is countable.
(b) The set of rational numbers, Q, is countable, i.e. $Q \sim N$.
