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The Collection 111

27" February 2001
3.00 to 4.15pm

A workshop is being held on Tuesday, 27" February 2001 from 3.00 to 4.15 p.m.
to share some interesting mathematical ideas among people who find pleasure in
the elegance and preciseness of mathematics.

Venue: University of Malta
Maths and Physics Building,
Department of Mathematics,
Room 316.

Speakers: Ms. Fiona Farrugia
Mr. Alex Vella and Ms. Louise Casha
Mr. Peter Borg
Mr. Alexander Farrugia
Mr. Arthur Burlo’
Mr. Vincent Mercieca

We shall end with a brief session for spontaneous problem posing and/or solving.
You are cordially invited to attend.

Abstracts of possible proofs or conjectures which you wish to share with us in
this meeting, or in a future one, may be sent to Dr. I. Sciriha or Ms. A. Attard,
Department of Mathematics, (marked The Collection), at any time of the year.

Dr. L. Sciriha
(Organisor)

p-s. Buropean Women in Mathematics 2001
10th International Meeting of EWM
24-30 August, 2001.

Plaza Hotel, Malta.

http://www.maths.ox.ac.uk/ " ewmO1/
Budding, amateur or professional mathematicians who wish to become members
of the EWM may contact me.
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A Result in Number Theory

Fiona Farrugia

Theorem 1 The product of 2 integers each of which is the sum of 2 squares
is itself the sum of 2 squares.

Given:

™
1)

Then dp, q € Z s.t.

5:2
™
)

P

Proof:
Let 21,20 € Z st 21 = a® + b% and 2z, = ¢ + d2, where a,b,c,d € Z
We show that 3p,q € Z s.t. 2129 = p? + ¢>

Z[i] is a Buclidean Ring with N(a + bi) = a? + b? and having the property:
N(g1)N(g2) = N(g192)

Let g1 = a + Vi and g9 = ¢+ di where g1,99 € C

So N(g1) = a*+0? and N(gg) = ¢* + d?
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Now g192 = (a + bi)(c+ di) = (ac — bd) + i(be + ad)

Also (ac —bd) € Z and (bc + ad) € Z

Let ac—bd =p and be+ ad = g

Now g¢192 € Z[i], hence its norm is defined.

So N(g1g2) = N[(ac — bd) + i(bc + ad)] = N(p + qi) = p* + ¢*
But we already said that N(g192) = N(g1)N(g2)

Thus N(g1)N(g2) = p* +¢*

But N(g;) = a? +b? and N(go) = c® + d?

Thus (a? 4+ 0?)(c? + d?) = p? + ¢*

Hence z29 = p? + ¢°
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Boolean Rings

Louise Casha and Alexander Vella

Ring (R, +,")

Abelian Group under + Distributivity of - over + Closed and Associative under -

Figure 1: The definition of a Ring.

Definition of a Ring:
A ring is a triple comprising a set R and two binary operations + and - satisfying
the following properties (refer to Figure 1):

1. R is an Abelian group under +
2. R is closed and associative under -
3. - is distributive over +

Remark: We write ab for a - b and 2?2 for = - z.

Definition of a Boolean Ring;:
R is said to be a Boolean Ring if x°2 =z Vz € R

Theorem 1 Let R be a Boolean Ring. Then Va € R,—x = x

Proof: It can be proved that if R is a ring, then Va,b € R, (—a)(—=b) = ab and

(—2)? = (—2)(—x) = (z)(z) = 2>

From the definition of a Boolean Ring, 2° = «
Thus (—z)? = —x
But (—2)? = 22

= & = —&, as required.

Theorem 2 Let R be a Boolean Ring. Then R is commutative under -
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Proof: Let x,y € R. We need to show that xy = yz.

(z+y)(z+y) = (x+y) from z* ==

Pty tyr+y’ =xty
But 2’ =z | ygzy
s c4+ytrzytyr=ax+vy
= ay+yzr =0
= yr = —2Y
But z = —z from Theorem 1
Hence yzr = xy, as required.
Theorem 3 Let R be a Boolean Ring. Then R is a field <> R = {0,1}

Proof: (=) Let R be a field and let z # 0 be in R. We need to show that
R=1{0,1}.

Since R is a field, 2 has an inverse.
Also 2% = x since R is also a Boolean Ring.
Premultiplying both sides by 27!, we get 27 '2? = a7 'z = 2 =1

Hence if @ # 0, z = 1. Therefore, R = {0, 1}, as required.

(<=) Let R = {0,1}. We need to show that R is a field.

It can be shown that any field has only two ideals, {0} and itself.
Now in R the possible ideals are {0}, {1} and {0, 1}.

e Is {0} an ideal?

Subgroup under + 040 =0 (closure and inverse)
Absorption under - 0-1=0

Hence {0} is an ideal.
e Is {1} an ideal?

Absorption under - (-1 =0, hence absorption does not hold.
Hence {0} is NOT an ideal.

o Is {0,1} an ideal?

Subgroup under +  Follows since R is a ring.
Absorption under - Follows since R is a ring.
Hence {0,1} is an ideal.

Therefore, the only ideals of R are {0} and R. Hence R is a field, as required.
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The Cantor Set

Peter Borg

Consider the following sets, where C} is the real interval [0, 1] without the middle
é— of the interval, and Cj, is constructed by removing :,1))— of each real interval in the
union of intervals in Cj_y.

2
U il z
3
=Pl 310 b 33l b ) A0 B 343
Pl 3) 3 0BG )2 3 BB e e )

271
Co=J I
§=0
where J
n— X n—1
1ve 1y 1
=2 a(3) 2 a(3) + 5]
7==0 =0
and

o = 0 if i mod 27 =0
T l1lifimod 2 =1
The Cantor Set is:
C= lm C,

N OO

Hence, in the limit, the intervals /; become points of the form
2 S L'

2 (3)
where q; is 0 or 1.

o] 7
1
Hencez € C <= =2 E a; <§> , where a; =0 or 1

i=()
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Having established which points are in the Cantor set, we can now show that these
points form an uncountable set. But first we shall show that C has measure 0,
and we shall do this by considering the lengths (Lesbesgue measure) of all the
disjoint intervals removed from [0,1],Cy,Cy, ... and Cj—; to obtain Cy, and then
let k — oo. To obtain C; an interval of length % was removed, for Co, 2(%)2 was
removed, for ', 22(%)3 was removed and for Cj,, 2571 (%)1 was removed. The sum

of all the lengths removed is

ke 9 7 2 k
2“IZ<§> =1—<—> —lask— oo

[

Hence having removed a total length of 1 from [0, 1] we are left with a measure of
0 for C.

The binary representation for any real number in the interval [0, 1] is of the form

o] i
1
Y= E a; | =
Y 2 9
i=1
and moreover, since the real numbers in the interval in [0, 1] form an uncountable

set and each have a binary representation, then the set B of such binary represen-
tations is uncountable.

Now if we construct the function [ : C — B defined by f(z) =y, i.e.

() -£00)

=0 =0

we get a one-to-one and onto mapping. Therefore one can say that there are as
many points in €' as there are in B, which implies that the set C is uncountable.

Note:! The idea of defining measures using covers of sets was introduced by
Carathéodory (1914). Hausdorff (1919) used this method to define the measures
that now bear his name, and showed that the middle third Cantor set has positive

and finite measure of dimension %ggg

'Thanks to Cettina Gauci Pulo for this information
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A Problem inspired from
the Cantor Set

Vincent Mercieca

Required to find a subset of [0,1] C R which is dense, does not contain
intervals of [0, 1], and whose measure lies between 0 and 1.

Define

oolr2) 2 12, 2
27 |33 33 3 733" 33

... etc. Then define A =] A; € [0,1].

w

The length of the first interval: ag = 1 The length of the second interval:

The length of the third interval:

w(1-3)7) -H(-1))

0,2 == =

)
[a]
&

The length of the fourth interval:

Therefore |A1] = fag = §, |A| = 52.3(1,1,...

. 9 2 3
Therefore ||, Ail = %ao + 53a1 + %gag + -:2,)7;0,3 N

SQQ:_+ -+ +
) 1 (3-1 3-1)(3%2—-1 3-1)(32-1)(3%* -1
S= b4 B0, BoDEED  BoDE N o),

(B-1)(3%-1).-- (31 -1) n

s 353 (m+1)
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g 1 1 1 1
e <3tEtyE Ty

wolofesi—

Also Sy > 13, hence % < Seo < %

10

Thus if we consider all the irrational numbers in these intervals A;, then we obtain
a subset of [0, 1] which is dense, contains no intervals, and its measure is between

1 1
3 and 5
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A Construction of the set of integers
7

Alexander Farrugia

We’ll endeavour to show the construction of Z from N, the set of natural numbers.
We'll then show that the set just constructed is indeed the set of integers.

To start with, we’ll assume that the set of natural numbers N has already been con-
structed (set-theoretically or intuitively). Also, for uniformity’s sake, we’ll agree
on the following set of natural numbers and integers:

N={0,1,2,3,...}
Z={.,6-3,-2-1,01,23,. .}

i.e. we include the zero in N. However, if we choose to omit the zero, the following
construction of Z would still work.

Consider the set of all pairs of natural numbers, i.e. NxN (or N?). On this
set, define an equivalence relation ~ such that:

V(a,0),(c,d) e Nx N, (a,b) ~(c,d) < a+d=b+c
The relation ~ can be easily shown to be an equivalence relation, thus:
Reflexivity:

(a,b) ~ (a,0) <= a+b=a+b, which is always true.

Symmetry:
(a,b) ~ (c,d) <= a+d=b+c
<= bt+c=a+d
A (C> d’) ~ ((1, b)
Transitivity:

(a,b) ~ {¢,d) and (c,d) ~ (e, [) a+d=bt+candc+ f=d+e
a+d+e=b+c+e
a+c+f=b+c+e

at+ [=b+e

(a,0) ~ (e, )

Frueg
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Now, since ~ is an equivalence relation, it induces a partition on N x N into
equivalence classes. Here are some examples:

(0,0) = {(0,0),(1,1),(2,2),..-} = {(a,0) : a € N}
1,0) = {(1,0),(2,1),(3,2),...} = {(a+ 1,a) :a € N}
0,1) = {(0,1),(1,2),(2,3),.. .} = {(a,a+ 1) : a € N}

Let’s introduce some notation. From now on, by [a,b] we mean the equivalence

class of (a,b). In other words, [a,b] = @.
Motivated by the above examples, we prove a very simple but very useful lemma:
Lemma 1 V a,b,c € N, [a,0] = [a+¢,b+ ]
Proof:
la,b] = {(z,y) :z,yeNand a+y=>b+x}
{(z,y):z,y€Nand (a+c)+y=(b+c)+ 2}
= la+¢ b+

as required.
Let’s define T to be the set of all equivalence classes of ~ on NxN, i.e.

I ={[a,bl:a,beN}
Now seems to be the right time to make the following claim:
Claim 1 I is the set of integers!

The above claim isn’t quite right yet, for we need to define addition and multipli-
cation of any two integers in terms of the addition and multiplication of natural
numbers. For this reason, from now on we distinguish between these operators by
writing the addition operator as + (as we were doing since we’ve started) and that
of the integers as @. Also, we write the product operator of the natural numbers
as - and that of the integers as ©.

Now let’s define @ and ©: ([a,b],[c,d] € )
[a,b) @ [c,d) = [a+c,b+d)
[a,b] ® e, d] = [ac + bd, ad + bc]
Immediately, however, we encounter the problem of the well-definition of the above
two operators. We have already shown by the lemma that [a,0] = [a + ¢,b +
] ¥ a,b,¢c € N and therefore there are an infinite number of ways of writing the
same equivalence class (which we claim is an integer). We need to show that

however we write the two equivalence classes, we still have the same answer when
added or multiplied together. That’s what the following theorem does:
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Theorem 1 & and © are well-defined.

Proof:
(i) We need to show that if [a1, as] = [a}, ab] and [by, b] = [0}, by], then [a1, as] &
(b1, ba] = [a), ab) & [V}, ) ¥ [an, @), [0, a5), [by, ba], b, b5) € I

Now [a1,as] = [a},ah] = a1 +ay = a] + ag (1)
and [b] , bg] = [ /]7, bIQ] = b + l)IQ = b/l + Do (2)

a1 + b1, ag + o] (definition of @)
a1 + by + ab + by, ag + by + ah + by) (by lemma 1)
by 4+ ag + b, ag + be + aj + bh] (from (1) and (2))
+ b, ah + by (by lemma 1)
ab) & [}, by (definition of @), as required.

So [ay, ag] @ [by, ba] = |
= |
a

1+
/
i+
/
1
!
ay,

= |
= [a
=
(i) We need to show that if [a1,as] = [a}, ah] and [by, ba] = [b], U], then [a1, as] ©
U)]v 172] = [a(ua'{z] © [llv bIQ} v [(1,1,(1,2], {U‘IDQ{ZL [bb b2]7 [ /]7b/2] el

(1) and (2) from (i) still hold.

So {(L) R (LQ] @ {171, bg]
= [a1b1 + a2ba, a1by + asby] (definition of ©)
= [a101 + agby + a1bh + asd} + ahd| + albh, a1bs + asd) + arbh + agby + ayby + ajby)
(by lemma 1)
= [a1(by + Uh) + aa(be + V) + ahb] + aibh, arbs + agby + a1bly + aghy + a5d) + ajby)]
(distributivity of N)
= [a) (b} + b2) + aa(Vh + b1) + ahb) + a{ by, arba + asby + a1l + asby + ahd| + a)bh)]
(by (2))
= [a1b] + aglly + a1bs + a2by + ahby + ajbh, arba + ashy + arby + agh] + ayby 4 aby)
(distributivity of N)

= [a1b] + asblh + abb) + ajbhy, a1by + agdy + ahd| + a’lb’] (by lemma 1)

[b’ (a1 + ab) + bh(ag + ai), arbhy + agb) + a4y + aqby] (distributivity of N)

= [0} (al + ag) + bh(ay + ar), arbly + agd} + aydi + ajbh] (by (1))

= [Dja} + Vjag + bhal + bhai, a1l + agb] + asdi + a)by) (distributivity of N)

= [a} b’ + ahbh, ahby + a\ by (by lemma and commutativity of N)

[(11,(1 5O [b’l, b5) (definition of ®), as required.

Now we can finally show that the set I is indeed the set of integers with respect
to the additive and multiplicative operators @ and © respectively. To do this, we
note that the axioms for the set of integers are only satisfied by a unique system
of objects (the integers, proved in Section 3.12 in Allenby). So if our system of
integers I satisfies all the axioms of the integers, we are done.
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Note that we could have shown that (I, &, ®) and (Z, 4, -} are isomorphic (it can be
easily shown), but we're assuming that Z does not exist (in fact we're constructing
it!)

Theorem 2 (I, ®,®) is the ring of integers.

Proof: We need to show that all the axioms for the integers are true. Let’s list
these axioms here:

For every three integers a, b, ¢ we have:

Al a®b=0b&a

A2 (a@b)®c=ad (b®c)

A3 A 0€elst.0®a=ad0=a

Ad Yo el -ast a®(—a)=(-a)®a=0

M1l a®Gb=b00Ga
M2 (a0b)Oc=a® (0O
M3 Al1elst. 10a=a®l=a

D a0 (b®c)=a0b®a0cand (a®b) Oc=a®cPbO¢

P T contains a non-empty subset N s.t.

(i) Va € I, a belongs to exactly 1 of the sets N, {0}, =N where —N = {—2:2 € N}
(ii) Va,be Nya®dbe Nanda®be N

I fUCNstleUanda€eU=a®1cU,then U =N

Let a = [a1,a2],b = [b1, ba], ¢ = [c1, co].

Let’s prove the above axioms one by one:

Al : a®b = {ar,as] @ by, bs)
= [ay + b1, ag + bo] (definition of @)
= [by + a1, by + a9} (commutativity of +)
= [b1, bo] @ [a1, as) (definition of @)

= b@® a, as required.

A2 (a@b) @ c= ([ar,a2] ® [by,ba]) & [cy, col

[a1 + b1, ag + b} @ [c1, co] (definition of @)

[(a1 +01) + c1, (ag + by) + co] (definition of @)
[a1 + (b1 + ¢1), a2 + (by + o)) (associativity of +)
{

[

Il

Il

ay, b1] ® [by + ¢1,be + ¢o] (definition of @)
ay, b1] @ ([b1, 2] @ [c1, o)) (definition of @®)
a® (bd ), as required.

1l
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A3 : Define 0 = [0,0].
Then [0,0] & [a1, as] = [a1,a0] = [a1,a2] & [0,0].

Now we show that 0 is unique, i.e. if [z, xo] @ [a1, as] = [a1, ag) = [a1, ag)® [z1, 22],
then |27, 22] = [0, 0].

(1, 20) @ [a1,a2] = [21 + a1, 22 + a9] = [a1, a9
By lemma, [a1, a2] = [a1 + 21,02 + 1]
= L] = Ty

But by the lemma again, [21,22] = [z1,21] = [0,0] = 0, as required.

A4 : Define —a = [ag, a1).

Then a & (—a) = [a1, a2] & |as, a1]
= [a1 + a2, a9 + a1
= [0, 0] by lemma
=0

By Al, (—a)®a=0

Now we show that —a is unique, i.e. if [a1,a9] ® [z1,22] = [0, 0], then [z1,z2] =
[a2, a1].

a1, a2) @ [z, 22] = a1 + 21, a2 + 22) = [0, 0]

By lemma, [0,0] = [a) + 21,a; + 7]

= a1+ Ty =0a9 + Ty = T+ a] =Ty +an

For definition of ~, this implies that (z1,x2) ~ (ag,a1)
= (21, 22) and (az2,a1) are in the same equivalence class
= |21, 29] = [ag, a;], as required.

M1: a®b = [a1,as] © [b1, by

= [a1b1 + agby, a1be + agb] (definition of ®)

= [bia1 + bgag, b1ag + baas] (commutativity of - and +)
= [01, b2] © [a1, a2] (definition of ©)

= b®a, asrequired.

M2: (a@b)©c=(la,a] O [br, b)) © [e1, ¢o)
= [a1b1 + agbo, a1ba + a2bi] © [c1, ¢2) (definition of ©)
= [aibic; + agbacy + a1becy + agbico, ajbico + asbyco
+a1bgcy + agbicy] (definition of ©®)
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= [a1(bicy + baca) + ag(bycy + bacy), a1 (byca + bacy)
+ag(bicy + baco)] (distributivity in N)

= [a1, a2] © [b1c1 + bacg, bicg + baci) (definition of ©)

= la1,a9] ® ([b1,b2] ® [c1, ¢2]) (definition of ©)

= a ® (b © c¢), as required.

M3 : Define 1 = [1,0]
Then [1,0] ® [a,b] = [a,b] = [a,b] ©® [1,0].

Now we show that 1 is unique, i.e. if [z1,22] © [a1,a2] = [a1,a2] = (a1, a2] © [21, x2)
and a # 0, then [z1,22] = [1,0].

(1, 29) ® a1, ag] = [T101 4+ 2209, T102 + T2a1] = [a1, ag)
= 7101 + 2009 + as = T109 + Toaq + aq, since equivalence classes are equal and by

definition of ~.
= 1101 +ag(we + 1) = 2100 + ay(ze + 1) (3)

Let d = [dy, do], e = [e1, es],d, e 5 [0,0].
[d1,ds) # [0,0] = dy # dy and similarly, e; 5 eq.
= dye; # djes, diey # doey, doey # dieg and dees # daey
= diey + dges # dies + doeq (4)
Consider [dy, d2] © [e1, e2) = [d1ey + daes, dieq + daey] # [0,0] by (4).
Taking the contrapositive,
doe=0=>d=0ore=0 (5)

Now consider [z1, 22 + 1] © [a1, a2] = [z101 + (z2 + 1)ag, z1a9 + (22 + 1)a]
From (3), this is equal to [x1a; + (@2 + 1)ag, z1a1 + (z2 + 1)ag] = [0, 0] by lemma.

From (5), either [z, 29+ 1] = [0, 0] or [a1,as] = [0,0].
The second case is dismissed since a # 0.
Therefore, (2,29 + 1] = [0,0] = @1 = 29+ 1 = [21,29) = [1,0], as required.

D: a0 (&) = [ar,a2] O ([b1,be] & [c1, o))
= [a1, ag) © [b1 + ¢1, be + ¢o} (definition of )
= [a1(b1 + c1) + ag(by + c2),01 (b2 + c2) + ao(b1 + 1))
(definition of ®)
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= la1b) + a1cy + aghy + agca, arby + arco + agby + agcy]
(distributivity in N)

= [a1b1 + agba, arby + ashi] ® [ar¢1 + ascy, arca + asc]
(definition of &)

= la1, as] © [b1,b2) ® [a1,a2] @ [c1, ¢z] (definition of ©)

=agOb®adc, as required
The second case is treated similarly.

P : Define N = {[a,0] : « € N and a # 0}

(i) Va = [a1, a9] € 1, either a1 = ag or ag < a1 or a; < ag exclusively.

If a1 = ag, then a = [a1,a1] = [0,0] by lemma
=0, so a € {0}

If ay < ay, then [a1,a2] = [k + ag,as] where a; =k + a9

= [k, 0] by lemma, s0o a € N

If a1 < ag, then [a1,a2] = [a1, 5 + a1] where ag = 7 + a3
= [0, j] by lemma
= —[7,0] from A4, so a € —N, as required.

(i) Let a,b € N, so that a = [d/,0],b = [V/,0].
Then [a/,0] @ [V/,0] = [@' +V',0) € N
[@.0]®[V,0] = [a'V,0] € N, as required.

I:Let U C N. Then all the elements of U are of the form [u, 0], where u € N.

1,00e U (6)
If [u, 0] € U then [u,0]®[1,0] =[u+ 1,0 €U (7)

Suppose
3 [n,0] € N s.t. [n,0] ¢ U (8)

This may be possible since U C N

Putting v =1 1in (7) (as (6) tells us that [1,0] € U), we get [2,0] € U.
Applying the above and (7) (n —2) times we get [n,0] € U, which contradicts (8).

Therefore V [n, 0] € N, [n,0] € U, which means that N C U
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But U C N. Hence U = N, as required.

As an aside, we now revert to our usual notation for the integers. The proof
of axiom P above suggests that we write [n,0] as n and [0,n] as —n. Then we
might just as well rewrite @ as + and © as -, so that we end up with the familiar
notation for the integers!

Let’s give a few examples:

ey
m
<%
o

[2,0] @ [3,0] = [5,0] is written as 24+ 3 =15

[2,0] ®[3,0] = [6,0] is written as 2-3 =6

[2,0] & [0, 5] = [2,5] = [0, 3] is written as 2 + (—5) = —3
[2,0] ® [0, 5] = [0,10] is written as 2- (—5) = —10

0,2} & [0, 3] = [0, 5]

[0,2] © [0, 3] = [6,0)

RN

=
=)

I

@

Incidentally, the above is one way to prove that there is a ring isomorphism be-
twen (Z, +, -) and (I, @, ®), of course assuming that Z has already been constructed
beforehand.
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Subgraphs

Arthur Burlo’

Theorem 1 Let H be a graph and K be a subgraph of H. Let n(G) denote the
number of vertices of a graph G and k(G) denote the number of components
of G. Then n(K) —k(K) <n(H) - k(H).

Proof:
We prove this by constructing H from K by adding edges and vertices.

Let Vi = {n1,n2,...,ny} be the vertex set of K.
Let B = {e1,e2,...,¢q} be the edge set of K.

Also, let Viy and Ey be the vertex set and edge set of H.

Since K is a subgraph of H then Vi C Vg and Ex C Ey. Let 1 be the number of

vertices that are in Vi but not in Vi. In other words,
n(H)—n(K)=1

Add these | vertices to K to get graph K'. H and K’ have the same vertices but
H may have additional edges. If K has k(K) components then K’ has k(K) +1
components, since the additional { vertices that were introduced are not joined by
edges to any of the other vertices already present in I (otherwise they would be
vertices of K).

Since K’ and H have the same set of vertices and all edges of K’ (i.e. the edges
of K) are in H then k(H) < k(K"). But

k(K" = K(K)+1t
E(K)+n(H) —n(K)

Hence we obtain the result:
n(l) — k(K) < n(H) —k(H)
QED

Remark: n(K) — k(K) is defined to be the . Thus we have proved that the
removal of edges and/or vertices from a graph does not raise the .
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Converse of Wilson’s Theorem

Vincent Mercieca

Theorem 1 (Wilson’s Theorem) If p is prime, then (p —1)! = —1 mod p.

Theorem 2 (Converse to Theorem 1) If (p — 1)! = —1 mod p, then p is
Prime.

Lagrange’s Proof of Theorem 2:

It is clear that every prime greater than 2 can be written in the form of 4m + 1 or
4m — 1.

2
If we assume that 4m + 1 is prime, ((27?1)!) = —1 mod n = n is prime.

And, if 4m — 1 is prime, (2m — 1)! = +1 mod n = n is prime.

Let n = 4m + 1, then

(n—1=({[4m)l =1.2---(2m)---(4m)
S(n—=1)lmodn =12 (2m)-- (4m) mod (4m + 1)
=12---2m)(—2m)- - (=1) mod n
= (-=1)*.1.2---(2m)(2m)---1 mod n

= {(2m)! ’ mod n
((2m)

2
But (n - 1) = -1 mod n = ((2771)!) = —1 mod n = n is prime.

Let n = 4m — 1, then

(n—=1N=Um-2)1 =12---2m—1)(2m) - (4dm — 2)
Sn=1!'mod n = (2m —1)I(2m) -+ - (dm — 2) mod (4m — 1)
= (2m—-D(-2m+1) - (-1) mod n

— {_1y2m—1 _ 1 2
= (-1) (2m —1)!) modn

Il

- <(2m — 1)!)2 mod n

2
But (n— 1)l = -1 mod n = —((Qm - 1)!) = —1 mod n

2
= ((2m - 1)!) =1 mod n
= 2m -1}l =41 mod n
== n is prime. QED
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Alternative proof:

Let (n—1)! = —1 mod n.
Then N eZst. (n—Dli=n—-1=n—-(n-1)=1

Suppose n is not prime.
Then Ja,b € {2,3,...,n—1} st. n = ab = n|(n —1)!

Also n|An, hence n|1, which is a contradiction.

. n is prime. QED

21
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Emails

Alexander Farrugia
Peter Borg

Subject: Write-up

Date: Sat, 4 Nov 2000 22:58:55 +0100

From: "Alexander Farrugia" <xact@nextgen.net.mt>
To: "Irene Sciriha" <iscil@um.edu.mt>

Hi Dr. Sciriha! This email is to notify you that my write-up will
be sent to you next Monday 6th November. I’11 also send a draft
of my next item for the collection workshop. I don’t know if it’s
interesting, but basically it’s a construction of the integers Z
from the natural numbers N. During the "Introductory Mathematics"
course we learned the construction of ( from Z, R from § and C
from R, but we haven’t done Z from N. I thought it would be
interesting to fill that space :-D. It was actually inspired from
an exercise from the book "Rings, Fields and Groups" by Allenby.

1’11 email again next Monday to give my write-up and more details
of my mnext item.

Regards,

Alex.

Subject: new proof!

Date: Fri, 10 Nov 2000 16:35:52 +0100
From: Peter Borg <pbor(0i0Qum.edu.mt>
Organization: University of Malta

To: irene@maths.um.edu.mt

Dr. Sciriha,

I would like to tell you that I have another interesting proof
which might be considered for a future workshop activity. It has
to do with the divergence of the series 1 + 1/2 + 1/3 + 1/4 + ...
The proof is based on consideration of the series

1+ 1/3 +1/3 +1/3 +1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 +
179 + 1/9 + 1/27 + 1/27 + ... =1 + 3(1/3) + 9(1/9) + 27(1/27)
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+ ... =1+ 1+ 1+ ...
It can be shown that the latter series is less than the former,
but since the latter diverges then the former diverges.

Peter.

23
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