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A workshop is being held on Tuesday, 27th February 2001 from 3.00 to 4.15 p.m. 
to sha,re some interesting mathematical ideas among people who find pleasure in 
the elegance and preciseness of mathematics. 

Venue: University of Malta 
Maths and Physics Building, 
Department of Mathematics, 
Room 316. 

Speakers: Ms. Fiona Farrugia 
Mr. Alex Vella and Ms. Louise Casha 
Mr. Peter Borg 
Mr. Alexander Farrugia 
Mr. Arthur Burlo ' 
Mr. Vincent Mercieca 

V\Te shall end with a brief session for spontaneous problem posing and/or solving. 
You are cordially invited to attend. 

Ahstracts of possible proofs or conjectures which you wish to share with us in 
this meeting, or in a future one, may be sent to Dr. 1. Sciriha or Ms. A. Attard, 
Department of Mathematics, (marked The Collection), at any time of the year. 

Dr. 1. Sciriha 
( Organisor) 

p.s. European "\i\Tomen in lVlathematics 2001 
10th International Meeting of EWM 
24-30 August, 200l. 
Plaza Hotel, Malta. 

http://www.maths.ox.ac.uk/-ewm01/ 
Budding, amateur or professional mathematicians who wish to become members 
of the EVi,TM may contact me. 
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A Result in Number Theory 

Fiona Farrugia 

Theorem 1 The prod7J,ct of 2 integers each of which is the S7J,m of 2 squares 
is itself the S'11,711, of 2 squares. 

Given: 

.Ji2 c JZl a 

b cl 

Then :Jp, q E Z s.L. 

VZ j Z2 ]J 

q 

Proof: 

Let Zl, Z2 E Z s.t. Zl = 0.
2 + b2 and Z2 = c2 + ct2, where a, b, c, dE Z 

'Ve show that :Jp, q E Z s. t. ZlZ2 = ])2 + q2 

:£[i) is a Euclidean Ring with N(a + bi) = a2 + b2 and having the property: 
N(gdN(g2) = N(glg2) 

Let g1 = CL + lIi and g2 = C + cli where gl, g2 E C 

So N(gI) = (L2 + /} and N(.92) = (:2 + d2 
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Now .91.(j2 = (0, + b1:) (c + (h) = (ac - bd) + i(bc + ad) 

Also (ac - bd) E LE: and (bc + ad) E LE: 

Let a,c - bd = p and bc + ad = q 

Now .91m E LE:[i], hence its norm is defined. 

So N(.91.92) = N[(ac - bd) + i(bc + ad)] = N(p + qi) = p2 + q2 

But we alrea.dy said that N(glg2) = N(gl)N(g2) 

T'lms N(gl)N(g2) = ])2 + q2 

But N(gl) = 0,2 + /)2 a.nd N(g2) = c2 + d2 

Thus (0,2 + b2)(C2 + d2) =])2 + q2 

Hence ZlZ2 = ])2 + q2 

4 
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Boolean Rings 

Louise Casha and Alexander Vella 

Ring (R, +,.) 

Abelian Group uncler + Distributivity of . over + Closed and Associative uncler . 

Figure 1: The definition of a Ring. 

Definition of a Ring: 
A ring is a triple comprising a set R and two binary operations + and· satisfying 
the following properties (refer to Figure 1): 

1. R is an Abelian group under + 

2. R is closed and associative under . 

3. . is distributive over + 

Remark: V'le write ab for a· band ;);2 for .T .:r. 

Definition of a Boolean Ring: 
R is said to be a Boolean Ring if :1:2 = X \:Ix E R 

Theorem 1 Let; R be a Boolean Ring. Then \:Ix E R, -x: = .1: 

Proof: It can be proved that if R is a ring, then Va, b E R, (-a)( -0) = ab and 
(_:1:)2 = (-:r)(-:I:) = (x)(x) = x2 . 

From the definition of a Boolean Ring, x2 = x 

Thus (_x)2 = -:1: 

But (_x)2 = ;);2 

=? :c = -:C, as required. 

Theorem 2 Let R be a Boolean Ring. Then R is commutative under· 
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Proof: Let :r, y E R. ''''e need to show that xy = yx. 

(.7: + y)(.7: + y) = (x + y) from x2 = .7: 
') 2 

.T~ + 1:y + y.T + y = x + y 
') 2 But x~ =.T , Y = Y 

::::} x + y + :cy + yx = x + y 

::::} 1;y + y.T = 0 

::::} y.7: = -.7:Y 

But x = -x from Theorem 1 

Hence yx = xy, as required. 

6 

Theorem 3 Let R be a Boolean Ring. Then]i, is a field ~ R = {O, I} 

Proof: (=::::}) Let R be a field and let x I- 0 be in R. V-le need to show that 
R={O,l}. 

Since 11- is EL field, x has an inverse. 
Also .1:2 = 1; since R is also a Boolean Ring. 
Premultiplying bot.h sides by x;-J, we get x- 1x 2 =-: :z;-J x ::::} :z; = 1 

Hence if :r I- 0, .7: = l. Therefore, R = {O, I}, as required. 

(~.-) Let R = {O, I}, Vie need to show that R is a field, 

It can be shown that any field has only two ideals, {O} and itself. 

Nm"l in R the possible ideals are {O}, {I} and {O, I}. 

• Is {O} an ideal? 

Subgroup under + 
Absorption under . 

Hence {O} is an ideaL 

• Is {I} an ideal? 

o ± 0 = 0 (closure and inverse) 

0,1 = 0 

Absorption under· 0,1 = 0, hence absorption does not hold. 

Henee {O} is NOT an ideal 

• Is {O, I} an ideal? 

Subgroup under + Follows since R is a ring. 

Absorption under· Follows since R is a ring, 

Hence {O, I} is an ideaL 

Therefore, the only ideals of Rare {O} and R. Hence ]i, is a field, as required. 
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The Cantor Set 

Peter Borg 

Consider the following sets, where Cl is the real interval [0, 1] without the middle 
~ of the interval, and C\ is constructed by removing ~ of each real interval in the 
union of intervals in Ck - J • 

Cl = [o,l] U [~)1] 

C2 = [0, ;2] U [;2' lJ u [~, ~ + 312 ] U [2(l + ;2),1] 

[ 1] [2 1] [2 2 1 ] [( 1 1) 1] [2 2 1 ] 0) = 0, 33 U 33' 32 U 32' 32 + 33 U 2 32 + 33 ':3 U :3':3 + 33 

U [2 (l + ~i)' ~ + 3\] U [2 (} + 3\),2 (} + ;2) + 313 ] U [2 (} + 312 + ;3),1] 
... etc:. 

It can be proved by induction on n that 

where 

and 

The Cantor Set is: 

T· = .1 

2"-1 

Cn = U I j 

j=O 

'11-1 1· 71- 1 1· 1 
[2 L o,i (:3) 1,2 L o,i. (:3) 1 + 3

71
] 

i=() i=() 

o,i = { 0 if i mod 2-i = 0 
. 1 if i mod 2.1 = 1 

C = lim Cn 
'/1.--"00 

Hence, ill the limit, the intervals I j become points of the form 

00 (1)i 
2 L o,i :3 

i=() 

where o,i is 0 or 1. 

00 (1)i Hence :c E C ~ :1: = 2 L o,i :3 ' where o,i = 0 or 1 
i={) 



The Collection III 8 

Having established 'which points are in the Cantor set, we can now show that these 
points form an uncountable set. But first we shall show that C has measure 0, 
and we shall do this by considering the lengths (Lesbesgue measure) of a.ll the 
disjoint intervals removed from [0,1], Cl, C2 , . .. and C\~-l to obtain Ch, and then 
let k: --) 00. To obtain Cl an interval of length ~ was removed, for C2, 2(~)2 was 
removed, for C3, 22(~ y3 was removed and for CIe, 21e - 1 (~)k was removed. The sum 
of all the lengths removed is 

k (2)i (2)k Tl 0 3" = 1 - 3" --) 1 as k --) 00 

1,-1 

Hence having removed a total length of 1 from [0,1] we are left with a measure of 
o for C. 

The binary representation for any real number in the interval [0,1] is of the form. 

00 (l)i Y = ~ai 2 
i=l 

and moreover, since the real numbers in the interval in [0, 1] form an uncountable 
set and each have a binary representation, then the set B of such binary represen­
tations is uncountable. 

Now if we construct the function .r : C --) B defined by fCe) = y, i.e. 

( 

00 (l)i) 00 (1)1: 
f 2t;ai 3" = t;0'i 2 

'lITe get a one-to-one and onto mapping. Therefore one can say that there are as 
many points in C as there are in B, which implies that the set C is uncountable. 

Note: 1 The idea of defining measures using covers of sets was introduced by 
Caratll(~odory (1914). Hausdorff (1919) used this method to define the measures 
that now beaT his name, and showed that the middle third Cantor set has positive 

d f ' . f' d' . log2 an l111te 1nea8ure o' 1111enS10n log3' 

IThanks to Cettina Gauci Pulo for this information 
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A Problem inspired from 
the Cantor Set 

Vincent Mercieca 

9 

Required to find a subset of [0,1] S;;; JR; which is dense, does not contain 
intervals of [0,1], and whose measure lies between 0 and 1. 

Define 

Al = [1, ~J 
[ 1 2] [2 1 2 2 ] 

A2 = 33 '33 U "3 + 33' "3 + 33 

... etc. Then define A = Uoo Ai. S;;; [0,1]. 

T'he length of the first interval: ao = 1 The length of the second interval: 

al = ~- i = ~ 
2 3 

The length of the third interval: 

a) (1- (i)2) (1-~) (1- (j)2) 
a2 = = 2 22 

The length of the fourth interval: 

(1-~) (1- (~)2) (1- (1)3) 
(J,3 = 

23 

Therefore IAII = -§-ao = ~,IA21 = {zal,." 
. 1 2 ~ ~ Therefore I Uoo Ail = 3ao + 32"a] + 3:;(J,2 + 3'fa3 + ... 

Let Soo = I Uoo Ai \, then 

C) _1 (I-i-) (1-~)(I-G)2) (l-i)(I-(i)2)(1-(k)3) 
'- 00 - "3 + 32 + 33 + 34 + ... 

') _ ~ (3 - 1) (3 - 1)(32 - 1) (3 - 1)(32 - 1)(3~1 - 1) . " 
'- 00 - 3 + 33 + 36 + 310 + 

(3 - 1)(32 - 1) ... (3n - 1 - 1) ... + + ... 
3¥(n+l) 
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1 3 3 . 32 3 . 32 . 33 

Boo < "3 + 33 + ~ + ~", + '" 
1 1 1 1 

==? Boo < "3 + 32 + 33 + 34 + ... 
1 1 
3" 3" 1 

==? Boo < --1 = "2 = 2 
1- 3" 3" 

Also Boo > ~) hence ~ < Boo < ~. 

Thus if we consider all the irrational numbers in these intervals Ai) then we obtain 
a subset of [0,1] which is dense, contains no intervals, and its measure is between 
1 cl 1 3" an 2' 
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A Construction of the set of integers 
fZ 

Alexander Farrugia 

\;\,Te'll endeavour to show the construction of Z from N, the set of natural numbers. 
,Ne'll then shmv that the set just constructed is indeed the set of integers. 

To start \vith, we'll assume that the set of natural numbers N ha.c; already been con­
structed (set-theoretically or intuitively). Also, for uniformity's sake, we'll agree 
on the following set of natural numbers and integers: 

N={O,1,2,3, ... } 

Z= { ... ,-3,-2,-1,O,1,2,3, ... } 

i.c. we include the zero in N. However, if we choose to omit the zero, the following 
construction of Z would still work. 

Consider the set of all pairs of natural numbers, i.e. N x N (or N2). On this 
set, define an equivalence relation cv such that: 

v (0" /)), (c, d) E N x N, (0" b) cv (c, d) <==? 0, + d = b + c 

The relation cv can be easily shown to be an equivalence relation, thus: 

Reflexivity: 

(0" b) cv (0" b) <==? 0, + b = 0, + b, which is always true. 

Symmetry: 

Transitivity: 

( 0" b) cv (c, d) <==? (1, + d = b + c 

<==? b+c=a+d 

<==? (c, d) cv (a, b) 

(0., b) cv (c, d) and (c, d) cv (e, f) <==? a + d = b + c and c + f = d + e 

===> a+d+e=b+c+e 

===> a+c+f=b+c+e 

===> a+I=b+e 

===> (a, b) cv (e, f) 
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Now, since is an equivalence relation, it induces a partition on N x N into 
equivalence classes. Here are some examples: 

M = {(0,O),(1,1),(2,2), ... }={(a,a) :aEN} 

M = {(1,0),(2,1),(3,2), ... }={(a+1,a) :aEN} 

{(a, 1), (1,2), (2,3), ... } = {(a, 0,+ 1) : a E N} --- -(0,1) 

Let's introduce some notation. From now on, by [a, b] we mean the equivalence 
--------class of (a, b). In other words, [a, b] = (a, b). 

l\,iotivated by the above examples, we prove a very simple but very useful lemma: 

Lernma 1 V a, b, c E N, [a, b] = [a + c, b + cl· 

Proof: 

as required. 

[a,b] = {(:1:,y) :x,YEN anda+y=b+.y,} 

{ (:r, y) : x, yEN and (a + c) + y = (b + c) + :r} 

= [a+ c,b+ c] 

Let's define 1I to be the set of all equivalence classes of rv on NxN, i.e. 

II = {[a, b] : a, bEN} 

Now seems to be the right time to make the following claim: 

Claim 1 1I is the set of integers! 

The above claim isn't quite right yet, for we need to define addition and multipli­
cation of any two integers in terms of the addition and multiplication of natural 
numbers. For this reason, from now on we distinguish between these operators by 
"lvriting the addition operator as + (as we were doing since we've started) and that 
of the integers as EH. Also, we write the product operator of the natural numbers 
as . and that of the integers as 8. 

Now let's define El7 and 8: ([a, b], rc, d] Ell) 

[a, b] El) [e, d] = [a + c, b + d] 

[a, b] 0) [e, d] = lac + bd, ad + be] 

Immediately, however, we encounter the problem of the well-definition of the above 
two operators. ·We have already shown by the lemma that [a, b] = [a + c, b + 
cl V CL, b, c E N and therefore there are an infinite number of ways of writing the 
same equivalence dass (which we claim is an integer). Vve need to show that 
however we ,,,rite the two equivalence classes, we still have the same answer when 
added or multiplied together. That's what the following theorem does: 



'The Collection III 13 

Theorem 1 Ej3 and 0) aTe well-defined. 

Proof: 
(i) 'Ne need to show that if [0.],0.2] = [G.~,a;] and [b],b2] = [b~,b;], then [0.],0,2] EB 

, b2] = [a~, a;] Ej3 [b~, b;] \j [0,],0,2], [a; ,0.;], [h , b2], [b~ ,b;] E ll. 

Now [0.],0.2] = [a~, 0.;] =? a] + a; = a~ + 0.2 

and [b], b2] = [b~, b;] =? bl + b~ = b~ + b2 

So ral, (J,2] EB [b l , b2] = [0,1 + b], G.2 + b2] (definition of EB) 

= [a] + b] + a; + b;,(J,2 + b2 + a; + b;] (by lemma 1) 

(1) 

(2) 

= [a; + b~ + 0,2 + b2, 0,2 + b2 + (J,; + b;] (from (1) and (2)) 

= [a~ + b;, a; + b;] (by lemma 1) 
= [0.;, a;] El3 [b; ,b;] (definition of EB), as required. 

(ii) We need to show that if [0.],0.2] = [a;, a;] and [h, b2] = [b;, b;], then [0,1,0.2] (0 

[b] ,b2] = [a'l' a;] (0 [b; , b;] \j [a j , od, [a~, a;], [b1, b2], [b; ,b;] E IT. 

(1) a.nd (2) from (i) still hold. 

So [a], 0.2] C:) [b1 , b2 ] 

= [0.1 bJ + a2b2, a1b2 + a2bl] (definition of <:)) 
= [0.1 h + a2b2 + a] b; + a2b~ + a;b~ + a~ b;, a]b2 + a2b1 + alb; + a2b; + a;b~ + a; b;] 
(by lemma 1) 
= [0.1 (b] + b;) + adb2 + bD + a;b; + 0.; b;, 0.1b2 + a2bl + 0.] b; + 0.2b; + a;b; + a; b;] 
(distributivity of N) 
= [0,1 (1/1 + b2) + a2(b; + h) + a;b; + a;b;, al b2 + a2h + 0.] b; + (J.2b; + a;b'] + a; b;] 
(by (2)) 
= [aJ liJ + a2b; + a l b2 + a2b] + a;b'1 + a'l b;, a l b2 + a2bl + alb; + a2b; + a;b; + a; b;] 
(distributivity of N) 
= raj b'] + G'2b; + a;b'] + a; b;, alb; + a2b; + a;b'1 + G.; b;] (by lemma 1) 
= [b; (a1 + 0.;) + b;(a2 + aD, alb; + a2b~ + a;b~ + o.;b;] (distributivity of N) 
= [b; (a'] + 0.2) + b;(a; + ad, a1b; + a2b'J + a;b; + G.; b;] (by (1)) 
= [b; a'l + b; a2 + b;a; + b;a1, a] b; + G.2b; + a;b~ + a,;b;] (distributivity of N) 
= [0.; b'J + a;b;, a;b; + 0.'1 b;] (by lemma and commutativity of N) 
= [a~, a;] 0.) [b;, b;] (definition of <:)), as required. 

Now we call finally show that the set II is indeed the set of integers with respect 
to the additive and multiplicative operators Elj and (0 respectively. To do this, we 
llote that the axioms for the set of integers are only satisfied by a unique system 
of ohjects (the integers, proved in Section 3.12 in Allenby). So if our system of 
integers IT satisfies all the axioms of the integers, we are done. 
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Note that we could have shown that (1I, EB, ()) and (Z, +, .) are isomorphic (it ean be 
easily shown), but we're assuming that Z does not exist (in fact we're constructing 
it!) 

Theorem 2 (lI, ED, 0) is the 1'1:17,g of integers. 

Proof: '-"le need to show th,1t aU the axioms for the integers are true. Let's list 
these axioms here: 

For every three integers 0" b, C we have: 

Al a(flb=bElja 
112 (aEl3b) Eljc= aEl:l (bEF7C) 
A3 3! 0 E IT s.i;. 0 El) a = 0, El:! 0 = a 

A4 'I/o, E IT 3! - a, S./;. a, El=) (-0,) = (-a) EB a, = 0 

1111 0,0 b = bOa 
1112 (a0b)0c=a0)(b0c) 
!If 3 3! 1 E IT s.i:. 1 0 (1, = a 0 1 = a 

D (J. (:) (b EB c) = a 0) b EB a 0 C and (a, EB b) 0 C = a 0 C (-:D b 0 C 
P IT contains a non-empty subset N s.t;. 

(i) 'l/a E 1I, a belongs to exactly 1 ofthe sets N, {O}, -N where -N = {-x: .T E N} 
(ii) 'l/a, bEN, a EFl bEN and a 0 bEN 
J If U ~ N s.i.. 1 E U and a E U ==> a EB 1 E U, then U = N 

Let a = [aI, a2], b = [b1, b2], C = [Cl, C2J. 

Let's prove the above axioms one by one: 

Al : a EB b = [0.1, a2J El=) [bl, b2] 

= [0.1 +b1,a2+b2J (definitionofEF1) 

= [b 1 + aI, b2 + a2J (commutativity of + ) 
= [b], b2J C{) [a], a2J (def-inition of EB) 

= b EB a, as required. 

A2: (o,EBb)EBc= ([al,a2JElJ[b j ,b2])EB[cj,C2J 

= [al + b1 , a2 + b2] EB [Cl, C2) (def-inition of EB) 

= [(al + b1) + Cl, (0,2 + b2) + C2J (def-inition of El7) 

= [a] + (b] + cJ),a2 + (b2 + C2)J (associativity of +) 
= [(1.1, bJ] 8-) [b] + Cl, b2 + C2] (definition of EB) 

= [a], bd El, ([b l , b2J EB [C], C2]) (definition of EB) 

= (l, EH (b El~ c), as required. 
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A3 : Define 0 = [0,0]. 
Then [0,0] El3 [aI, a2] = [a], a2] = [a], a2] EH [0,0]. 

Now we show that 0 is unique, i.e. if [X], X2] EH [a], a2] = [a], ad = [a], a2] EEl [:1:] ,:1:2], 

then [:1:], .1:2] = [0,0]. 

[:r:] , .1:2] Elj [a1, a2] = [X] + aI, ·'"[;2 + od = [a], a2] 
By 1emrna, [a], a2] = [a] + :1:1, a2 + Xl] 
=? :C] = :1:2 

But by the lemma again, [X], X2] = [Xl, Xl] = [0,0] = 0, as required. 

/14: Define -(j, = [a2' all. 

By AI, (-a) EH 0,= 0 

Then a ffi (-a) = [aI, od EB [a2' al] 

= [a1 + a2,a2 + all 

= [0,0] by lemma 

=0 

Now we shmv that -a is unique, i.e. if [a1, a2] EH [Xl, .');2] = [0,0], then [Xl, :r:2] = 

, all· 

[a] , ad El, [x 1, :1:2] = [0,1 + :1:1, a2 + X2] = [0,0] 
By lemma, [0,0] = [o,j + :r:1, al + .T1] 
=? a] + :C1 = (12 + :C2 =? :r:l + 0'1 = :C2 + a2 
For definition of rv, this implies that (Xl, X2) rv (a2, al) 
=? (:1:1,.'1:2) and (a2,a1) are in the same equivalence class 
=? [.'1:1, :C2] = [a2' all, as required. 

Ml: 0,8b= [al,a2] 8 [h,b2] 

= [albl + a2b2,a1b2 + a2b1] (definition of 8) 

= [blal + b2a2, b1a2 + b2al] (commutativity of· and +) 
= [b l ,b2]8 [a],a2] (definitionof8) 

= b 8 a, as required. 

A12: (a (-) b) (:) c = ([a1' 0.2]8 [h, b2]) 8 [c], C2] 

= [al b] + a2b2, 0.1 b2 + a2bl](:) [Cl, C2] (definition of 8) 

= [a1 b1 Cl + a2 b2CJ + a] b2C2 + a2b1 C2, 0.1 bl C2 + a2b2C2 

+0.] b2C1 + a2bl cd (definition of (:») 
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1113: Defi.ne 1 = [1,OJ 

= [aJ (bJ C] + b2c2) + a2(b J C2 + b2cJ), 0,1 (h C2 + b2 cJ) 

+a2(b1C1 + b2C2)] (distributivity in N) 

= [0,1, a2]0 [bJcJ + b2c2, bJc2 + b2C1] (definition of ("0) 

= [aJ, a2J 0 ([b], 172] 0 [c], C2]) (definition of 0) 

= 0,0 (b 0 c), as required. 

Then [1, 0] (~) [a, b] = [a, 17] = [a, 17] C0 [1,0]. 

16 

Now we show that 1 is unique, i.e. if [x], X2] C;) [a1' a2] = [aJ, a2] = [aj, a2] (0 [xJ, X2] 
and aiD, then [XJ, ;[;2] = [1,0]. 

[:CJ, :C2] 0) [a1 ,a2] = [:1;] (11 + X2(12, Xl (12 + X2(11] = [(11, od 
::::? :7:1 a] + :1:2(12 + a2 = :1;1 (12 + :'C2(1J + (11, since equivalence classes are equal and by 
definition of rv. 

::::? :V](1J + (12(:1:2 + 1) = :1;](12 + a] (X2 + 1) 

Let d = [ell, rh], e = [C], C2], cl, e i [0, D]. 

[el 1 , d2] i [0,0] ::::? cl] i d2 and similarly, Cl i C2· 

::::? dlcl i d]C2,d1 C I i d2 C1,d2C2 i d1 C2 and d2e2i- d2 Cl 

::::? d 1Cl + d 2C2 i d 1C2 + d2c] 

Consider [dl, d2] C;) [eJ, C2] = [dtc] + d2C2, dJC2 + el2C1] i [0,0] by (4). 

T'aJ.;:ing the contrapositive, 

d 0 e = 0 ::::? d = 0 or C = 0 

Now consider [.T1,X:2 + 1]0 [(11,(12] = [X1(11 + (X2 + 1)(12,X1a2 + (:1;2 + 1)(11] 

(3) 

(4) 

(5) 

From (3), this is equal to [Xl(1j + (X2 + 1)(12, x:1a1 + (X2 + l)a2] = [0,0] by lemma. 

From (5), either [.TJ, :1;2 + 1 J = [0,0] or [(1],0,2] = [0,0]. 

The second case is dismissed since a i O. 

Therefc)re, [:1:1, :1;2 + 1] = [0,0] ::::? :1:1 = X2 + 1 ::::? [Xl, .'2:2] = [1,0]' l-lli required. 

IJ: Cl. C:) (I> Elj c) = [aj, (12] (;) ([171, b2] EI~ [c], C2]) 

= [a], 0'2] C:) [I>] + Cl, b2 + C2] (definition of El)) 

= [(1j (b 1 + cd + (12(b2 + c2),al(b2 + C2) + Cl.2(bt + Cl)] 

(definition of 0) 
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b1 + al Cl + a2b2 + a2C2, a1 b2 + a1 C2 + a2 b1 + a2C1] 

(distributivity in N) 

= [a] h] + a2b2, alh2 + a2h] El) [a1 Cl + a2c2, a] C2 + a2C1] 

(definition of El)) 

= [a], (J,2] () [b], b2] El) [a], a2] () [C], C2] (definition of 0) 

= a 0 b El) a 0 c, as required 

'rhe second case is treated similarly. 

P : Define N = {[a, 0] : a E N and a -=I- O} 

(i) \fa = [a], a2] Ell, either a1 = a2 or a2 < al or al < a2 exclusively. 

If a] = a2, then a = [a], all = [0,0] by lemma 

= 0, so a E {O} 

If a2 < aJ, t.hen [0,1, a2] = [k + a2, od where aj = k + a2 

= [k,O] by lemma, S0 a E N 

If 0,1 < a2, then [a1' a2] = [al,) + all where a2 = j + a] 

= [O,.J] by lemma 

= -[j,0] from A4, so a E -N, as required. 

(ii) Let n,b EN, so that n = [o,',O],b = [b/, 0]. 
Then [0,/,0] EEl [b', 0] = [0./ + b', 0] E N 
[a/, 0] (;) [1/,0] = [a'b',O] E N, as required. 

J : Let U s;:; N. Then all the elements of U are of the form ['(1,,0], where 1J, E N. 

[1,0] E U 

If [1/,,0] E U then ['11,,0] ffi [1,0] = rtf, + 1,0] E U 

Suppose 
:3 [n,O] E N s.t. [n,O] ~ U 

This may be possible since U s;:; N 

Putting u = 1 in (7) (as (6) tells us that [1,0] E U), we get [2,0] E U. 

17 

(6) 

(7) 

(8) 

Applying the above and (7) (n - 2) times we get [11.,0] E U, which contradicts (8). 

Therefore \f [71,,0] E N, [n, 0] E U, which means that N s;:; U 
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But U ~ N. Hence U = N, as required. 

As an aside, we now revert to our usual notation for the integers. The proof 
of axiom P above suggests that we write [11,,0] as 11, and [0,11,] as -11,. Then we 
might just as well rewrite Ejj as + and 8 as " so that we end up with the familiar 
notation for the integers! 

Let's give a few examples: 

[2,0] Ejj [3,0] = [5,0] is written as 2 + 3 = 5 
[2,0] 0 [3,0] = [6,0] is written as 2 . 3 = 6 
[2,0] El7 [0,5] = [2,5] = [0,3] is written as 2 + (-5) = -3 
[2,0] C:) [0,5] = [0,10] is written as 2· (-5) = -10 
[0,2] Elj [0,3] = [0,5] is written as (-2) + (-3) = -5 
[0,2] (?) [0,3] = [6,0] is written as (-2) . (-3) = 6 

Incidentally, the above is one way to prove that there is a ring' isomorphism be­
twen (Z, +,.) and (JI, El7, 0), of course assuming that 7l has already been constructed 
beforehand. 
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Subgraphs 

Arthur Burlo' 

Theorem 1 Let; FI be a gmph and J{ be a subgmph of H. Let; n(G) denote the 
nmnbeT of vCTtices of a gTaph G and k(G) denote the nwnbeT of components 
of G. Then n(K) - k(K) ::; n(H) - k(H). 

Proof: 

\1\1e prove this by constructing H from K by adding edges and vertices. 

Let VI< = {nJ, 11,2,' .. ) np} be the vertex set of K. 
Let El{ = {el, e2,"" eq } be the edge set of K. 

Also, let VI1 and EH be the vertex set and edge set of H. 

Since K is a subgraph of J-1 then VI< ~ VI-! and El{ ~ EH. Let 1, be the number of 
vertices that are in VH but not in Vl{. In other words, 

n(H) - n(K) = t 

Add these I, vertices to K to get graph K'. Hand K' have the same vertices but 
H may have additional edges. If J{ has k(K) components then K' has k(K) + 1, 

components, since the additional f, vertices that were introduced are not joined by 
edges to any of the other vertices already present in K (otherwise they would be 
vertices of K). 

Since K' and H have the same set of vertices and all edges of K' (i.e. the edges 
of K) are in H then k(H) ::; k(K'). But 

k(K') = k(K) + t 
= k(K) + n(H) - n(K) 

Hence we obtain the result: 

n(K) - ~~(K) ::; n(H) - k(H) 

QED 

Remark: n(K) - k(K) is defined to be the. Thus we have proved that the 
removal of edges and/or vertices fro111 a graph does not raise the. 
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Converse of Wilson's Theorem 
Vincent Mercieca 

Theorem 1 (Wilson's Theorem) r1' p is p1"irne, then (p - 1)1 = -1 mod p. 

Theorem 2 (Converse to Theorenl 1) rr (p - 1)1 = -1 mod p, then p is 
P 1"1,177. e. 

Lagrange's Proof of Theorem 2: 

It is clear that every prime greater than 2 can be written in the form of 4m + 1 or 
4m -l. 

If we assume that 4m + 1 is prime, ((2m)!) 2 = -1 mod n =? n is prime. 

And, if 4m - 1 is prime, (2m - 1)1 = ±1 mod 17, =? 11, is prime. 

Let 17, = 4m + 1, then 

(11, - I)! = (4m.)! = 1.2··· (2m,)'" (4m) 

... (11, - I)! mod 11, = 1.2··· (2m)··· (4m) mod (4177. + 1) 

= l.2··· (2m)(-2177.)··· (-1) mod 17. 

= (-1)2111.1.2 ... (2m) (2m) ···1 mod 11, 

2 
= ((2m)!) mod 17, 

But (n - I)! = -1 mod n =? ((2m)!) 2 = -1 mod n =? n is prime. 

Let n = 4m - 1, then 

(71. -I)! = (4771. - 2)! = 1.2··· (2177. -1)(2m.)··· (4m - 2) 

... (11, -1)1 mod n = (2m -1)1(2m)'" (4m - 2) mod (4m - 1) 

= (2171, -1)!( -2m, + 1)··· (-1) mod n 

= (_1)2m-1 ((2m - l)!f mod n 

= -((2m-l)!f mod 11, 

B'Ld (17, - I)! = -1 mod 11, ==} -((2m -l)lf = -1 mod n 

==} ((2m -l)!f = 1 mod n 

==} (2m, - I)! = ±1 mod n 

==} n is prime. QED 
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Alternative proof: 

Let (17, -I)! = -1 mod n. 
T'hen :lA E Z s./;. (11, - I)! = An - 1 =} An - (11, - I)! = 1 

Suppose 17, is not prime. 
Then :la, bE {2, 3, ... ,11, - I} s.t. 17, = ab =} 11,1(71, - I)! 
Also nlAn, hence 71,11, which is a contradiction . 

. '. n is prime. QED 

21 
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Subject: Write-up 

Emails 

Alexander Farrugia 
Peter Borg 

Date: Sat, 4 Nov 2000 22:58:55 +0100 
From: "Alexander Farrugia" <xact@nextgen.net.mt> 
To: "Irene Sciriha" <iscil@um.edu.mt> 

Hi Dr. Sciriha! This email is to notify you that my write-up will 
be sent to you next Monday 6th November. I'll also send a draft 
of my next item for the collection workshop. I don't know if it's 
interesting, but basically it's a construction of the integers Z 
from the natural numbers N. During the "Introductory Mathematics" 
course we learned the construction of Q from Z, R from Q and C 
from R, but we haven't done Z from N. I thought it would be 
interesting to fill that space :-D. It was actually inspired from 
an exercise from the book "Rings, Fields and Groups" by Allenby. 

I'll email again next Monday to give my write-up and more details 
of my next item. 

Regards, 

Alex. 

Subject: new proof! 
Date: Fri, 10 Nov 2000 16:35:52 +0100 
From: Peter Borg <pbor010@um.edu.mt> 
Organization: University of Malta 
To: irene@maths.um.edu.mt 

Dr. Sciriha, 

I would like to tell you that I have another interesting proof 
which might be considered for a future workshop activity. It has 
to do with the divergence of the series 1 + 1/2 + 1/3 + 1/4 + 
The proof is based on consideration of the series 
1 + 1/3 + 1/3 + 1/3 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 1/9 + 
1/9 + 1/9 + 1/27 + 1/27 + ... = 1 + 3(1/3) + 9(1/9) + 27(1/27) 

22 
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+ ... = 1 + 1 + 1 + ... 

It can be shown that the latter series is less than the former, 
but since the latter diverges then the former diverges. 

Peter. 

23 
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