Converse of Wilson's Theorem

Vincent Mercieca

Theorem 1 (Wilson's Theorem) If p is prime, then $(p-1)!=-1 \bmod p$.
Theorem 2 (Converse to Theorem 1) If $(p-1)!=-1 \bmod p$, then p is prime.

Lagrange's Proof of Theorem 2:

It is clear that every prime greater than 2 can be written in the form of $4 m+1$ or $4 m-1$.
If we assume that $4 m+1$ is prime, $((2 m)!)^{2}=-1 \bmod n \Rightarrow n$ is prime.
And, if $4 m-1$ is prime, $(2 m-1)!= \pm 1 \bmod n \Rightarrow n$ is prime.

Let $n=4 m+1$, then

$$
\begin{aligned}
(n-1)!=(4 m)! & =1.2 \cdots(2 m) \cdots(4 m) \\
\therefore(n-1)!\bmod n & =1.2 \cdots(2 m) \cdots(4 m) \bmod (4 m+1) \\
& =1.2 \cdots(2 m)(-2 m) \cdots(-1) \bmod n \\
& =(-1)^{2 m} \cdot 1.2 \cdots(2 m)(2 m) \cdots 1 \bmod n \\
& =((2 m)!)^{2} \bmod n
\end{aligned}
$$

But $(n-1)!=-1 \bmod n \Rightarrow((2 m)!)^{2}=-1 \bmod n \Rightarrow n$ is prime.
Let $n=4 m-1$, then

$$
\begin{aligned}
(n-1)!=(4 m-2)! & =1.2 \cdots(2 m-1)(2 m) \cdots(4 m-2) \\
\therefore(n-1)!\bmod n & =(2 m-1)!(2 m) \cdots(4 m-2) \bmod (4 m-1) \\
& =(2 m-1)!(-2 m+1) \cdots(-1) \bmod n \\
& =(-1)^{2 m-1}((2 m-1)!)^{2} \bmod n \\
& =-((2 m-1)!)^{2} \bmod n
\end{aligned}
$$

$\operatorname{But}(n-1)!=-1 \bmod n \Longrightarrow-((2 m-1)!)^{2}=-1 \bmod n$
$\Longrightarrow((2 m-1)!)^{2}=1 \bmod n$
$\Longrightarrow(2 m-1)!= \pm 1 \bmod n$
$\Rightarrow n$ is prime.
QED

Alternative proof:

Let $(n-1)!=-1 \bmod n$.
Then $\exists \lambda \in \mathbb{Z}$ s.t. $(n-1)!=\lambda n-1 \Rightarrow \lambda n-(n-1)!=1$

Suppose n is not prime.
Then $\exists a, b \in\{2,3, \ldots, n-1\}$ s.t. $n=a b \Rightarrow n \mid(n-1)$!
Also $n \mid \lambda n$, hence $n \mid 1$, which is a contradiction.
$\therefore n$ is prime.
QED

