Interlacing and Carbon Balls

Monique Inguanez, Sarah Buttigieg and Amanda Attard

Abstract

The Interlacing Theorem gives a relation among the eigenvalues of a \(n \times n \) matrix \(A \) and those of a \((n-1) \times (n-1) \) principal submatrix.

We deduce the Generalized Interlacing theorem which interlaces the eigenvalues of a \(k \times k \) principal submatrix of \(A \) with those of \(A \). We apply this theorem to the hypothetical Carbon ball \(C_{40} \) which has two dodecahedral 6 pentagon caps.

Theorem 2.2 (The Interlacing Theorem) Let \(A \) be an \(n \times n \) symmetric matrix and let \(B \) be a matrix obtained from \(A \) by deleting a row and the corresponding column. Then if \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) are the eigenvalues of \(A \) and \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_{n-1} \) are those of \(B \), then \(\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \lambda_{n-1} \geq \lambda_n \).

Theorem 2.3 (The Generalized Interlacing Theorem) Let \(A \) be an \(n \times n \) matrix with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \). Let \(B \) be a principal \(k \times k \) submatrix of \(A \) where \(1 \leq k \leq n-1 \), having eigenvalues \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k \). Then \(\lambda_1 \geq \mu_1 \geq \lambda_{n-k+1} \).

To deduce the Generalized Theorem from the Interlacing Theorem:

\(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) are the eigenvalues for an \(n \times n \) symmetric matrix \(A \). Let submatrices of \(A \) be formed such that \(B_k \) is a principal \(k \times k \) submatrix of \(A \), where \(k = n - j \) for \(1 \leq j \leq n-1 \).

So that:

\[B_{n-1} \text{ has eigenvalues } \omega_1 \geq \omega_2 \geq \ldots \geq \omega_{n-1}, \]
\[\vdots \]
\[B_{n-m} \text{ has eigenvalues } \pi_1 \geq \pi_2 \ldots \geq \pi_{n-m}, \]
\[B_{n-(m+1)} \text{ has eigenvalues } \mu_1 \geq \mu_2 \geq \ldots \geq \mu_{n-(m+1)}. \]

To prove the generalized Interlacing Theorem, induction is used. \(B_k \) varies from \(B_{n-1} \) to \(B_1 \). So let \(B_k \) be represented by \(B_{n-j} \), where \(j \) varies from 1 to \(n-1 \). The induction is performed on \(j \).

1. Verify for \(j = 1 \) (i.e. \(k = n-1 \))

Figure 1 visualizes the result, where, for example

\(\lambda_2 \leq \omega_1 \leq \lambda_1 \):
The Collection VII

1. Assume true for \(j = m \) (i.e. \(k = n - m \)) The diagram below illustrates this assumption:

\[
\begin{pmatrix}
\lambda & \lambda_{-1} & \ldots & \lambda_{n-1} & \lambda_{n} \\
\omega_{1} & \omega_{2} & \ldots & \omega_{n-1} & \omega_{n}
\end{pmatrix}
\]

Figure 2: The above diagram visualizes the result for \(j = m \)

\(B_{n-m} \) is an \((n - m) \times (n - m)\) principal submatrix of \(A \), having eigenvalues \(\pi_1 \geq \pi_2 \ldots \geq \pi_{n-m} \)

Assume Generalized Theorem holds for \(k = n - m \):

\[
\therefore \lambda_i \geq \pi_i \geq \lambda_{n-k+i}
\]

\(\iff \lambda_i \geq \pi_i \geq \lambda_{n-(n-m)+i} \)

\(\iff \lambda_i \geq \pi_i \geq \lambda_{m+i} \ldots (*) \)

3. Prove true for \(j = m + 1 \) i.e. \(k = n - (m + 1) \):

The following diagram illustrates the result:
Figure 3: The above diagram visualizes the result for \(j = m+1 \)

\[\mathbf{B}_{n-(m+1)} \] is an \((n - (m + 1)) \times (n - (m + 1))\) principal submatrix of \(\mathbf{A}\), having eigenvalues \(\mu_1 \geq \mu_2 \geq \ldots \mu_{n-(m+1)}\). It is also a submatrix of \(\mathbf{B}_{n-m}\) which have eigenvalues \(\pi_1 \geq \pi_2 \geq \ldots \geq \pi_{n-m}\).

Rule to prove: \(\lambda_i \geq \mu_i \geq \lambda_{n-k+i}\)

(a) To prove \(\lambda_i \geq \mu_i\):

By Interlacing Theorem,

\[\pi_1 \geq \mu_1 \geq \pi_2 \geq \mu_2 \geq \ldots \mu_{n-(m+1)} \geq \pi_{n-m} \]

\[\Rightarrow \pi_i \geq \mu_i, \quad 1 \leq i \leq n-m-1 \]

But from assumption (*) we know that \(\lambda_i \geq \pi_i\)

Combining these two inequalities gives \(\lambda_i \geq \pi_i \geq \mu_i \Rightarrow \lambda_i \geq \mu_i\) as required.

(b) To prove \(\mu_i \geq \lambda_{n-k+i}\):

By Interlacing Theorem,

\[\pi_i \geq \mu_i \geq \pi_{i+1}, \quad i = 1 \ldots n-(m+1) \]

By Inductive Hypotheses:

\[\pi_i \geq \lambda_{m+i}, \quad i = 1 \ldots n-m \]

Thus

\[\mu_i \geq \pi_{i+1} \geq \lambda_{m+i+1}, \quad i = 1 \ldots n-(m+1) \]

But \(k = n - m - 1\)

\[\Rightarrow \mu_i \geq \pi_{i+1} \geq \lambda_{n-k-1+i+1} \]

\[\Rightarrow \mu_i \geq \lambda_{n-k+i}, \quad i = 1 \ldots n-(m+1) \]
Since Generalized Interlacing Theorem holds for $j = 1$, and if it holds for $j = m$ then it follows for $j = m + 1$, thus it holds for all integral values of j, $1 \leq j \leq n - 1$.

The dodecahedral G_{20} is a 20-vertex cubic graph embedded on sphere. It contains 12 pentagons. The dodecahedral cap Cap_{15} is an induced subgraph of G_{20} and contains 6 pentagons.

Cap_{15}

![Figure 4: Cap15](image)

Introducing a layer of hexagons between two Cap_{15} graphs gives G_{40}

![Figure 5: G40](image)

Problem: Verify that if $\{\lambda_i, 1 \leq i \leq 40\}$ are the eigenvalues of G_{40} and $\{\mu_i, 1 \leq i \leq 15\}$ are those of Cap_{15}, then $\lambda_{21} \geq \mu_1 \geq \lambda_{2+19}$; that is $\lambda_2 \geq \mu_1 \geq \lambda_{11} \geq \mu_{12} \geq \mu_6 \geq \lambda_{21} \geq \lambda_{22} \geq \mu_{11} \geq \lambda_{31} \geq \lambda_{32} \geq \mu_{15}$ and similarly for $\lambda_4 \geq \mu_2 \geq \ldots \lambda_6 \geq \mu_3 \ldots \lambda_9 \geq \mu_4 \geq \ldots$ and $\lambda_{10} \geq \mu_5 \geq \ldots$

Explain how the interlacing theorem justifies this result.

G_{40} has eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{40}$

Cap_{15} has eigenvalues $\mu_1 \geq \mu_2 \geq \ldots \mu_{15}$

Included in the structure of G_{40} is Cap_{15}, which is seen twice. If from G_{40} we
remove the vertices that do not belong to either \(\text{Cap}_{15} \) (i.e. we remove \(40 - (15 + 15) = 10 \) vertices), we obtain a structure with 30 vertices having eigenvalues \(\mu_1, \mu_1, \mu_2, \mu_2, \ldots, \mu_{15}, \mu_{15} \).

Let \(\mu_{15} = \mu'_{30} \)
\[
\mu_{15} = \mu'_{29} \\
\vdots \\
\mu_1 = \mu'_{2} \\
\mu_1 = \mu'_{1}
\]

The following diagram illustrates this structure:

\[
\begin{array}{cccccccc}
\lambda_0 & \lambda_0 & \cdots & \cdots & \lambda_0 & \lambda_0 & \lambda_0 \\
\downarrow & \downarrow & \cdots & \cdots & \downarrow & \downarrow \\
\mu'_{30} & \mu'_{29} & \cdots & \cdots & \mu_1 & \mu_1 & \mu_1 \\
\end{array}
\]

By the Generalized Interlacing Theorem:
\[
\lambda_i \geq \mu'_i \geq \lambda_{n-k+i}
\]

For \(n = 40 \) and \(k = 30 \)
\[
\lambda_i \geq \mu'_i \geq \lambda_{10+i} \ldots (**)
\]

We now prove: \(\lambda_{2i} \geq \mu_i \geq \lambda_{2i+9} \)

- Starting from \(\mu'_{30} \):
 - For \(i = 30 \): \(\lambda_{30} \geq \mu'_{30} \geq \lambda_{40} \ldots \) from (**)
 - \(\Rightarrow \lambda_{30} \geq \mu_{15} \geq \lambda_{40} \) (since \(\mu'_{30} = \mu_{15} \)) \ldots (a)

- For \(i = 29 \): \(\lambda_{29} \geq \mu'_{29} \geq \lambda_{39} \ldots \) from (**)
 - \(\Rightarrow \lambda_{29} \geq \mu_{15} \geq \lambda_{39} \) (since \(\mu'_{30} = \mu_{15} \)) \ldots (b)

By combining a and b: \(\lambda_{30} \geq \mu_{15} \geq \lambda_{39} \) which agrees with \(\lambda_{2i-1} \geq \mu_i \geq \lambda_{2i+9} \)
 - \(\Rightarrow \lambda_i \geq \mu_i \geq \lambda_{2i+9} \).
• Starting from μ'_1:
 For $i = 1 : \lambda_1 \geq \mu'_1 \geq \lambda_{11} \ldots$ from (**)
 $\Rightarrow \lambda_1 \geq \mu_1 \geq \lambda_{11}$ (since $\mu'_1 = \mu_1$) ... (c)

 For $i = 2 : \lambda_2 \geq \mu'_2 \geq \lambda_{12} \ldots$ from (**) $\Rightarrow \lambda_2 \geq \mu_1 \geq \lambda_{12}$ (since $\mu'_2 = \mu_1$) ...
 (d)

By combining c and d: $\lambda_2 \geq \mu_1 \geq \lambda_{11}$ which also agrees with $\lambda_{2i} \geq \mu_i \geq \lambda_{2i+9}$

In general $\lambda_{2i} \geq \mu'_2 = \mu_i \geq \lambda_{n-k+2i}$ and $\lambda_{2i-1} \geq \mu'_{2i-1} \geq \mu_i \geq \lambda_{n-k+(2i-1)}$.
Thus for $n=40$ and $k=30$, $\lambda_{2i} \geq \mu_i \geq \lambda_{2i+9}$.
Thus we have shown that the inequality $\lambda_{2i} \geq \mu_i \geq \lambda_{2i+9}$ holds.