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The use of a simple weak inorganic base such as potassium carbonate facilitated the formation of carbon-carbon bonds through
both the Henry and the Michael reactions with nitrocompounds. The application of this catalyst under environmentally friendly
solventless heterogeneous conditions gave satisfactory to good yields of 𝛽-nitroalcohols, involving aliphatic and aromatic starting
materials, as well as high to excellent yields in the formation of Michael adducts using several different Michael acceptors and
nitroalkanes.

1. Introduction

The formation of a carbon-carbon bond can be carried out
using various starting materials together with a vast amount
of homogeneous or heterogeneous catalysts. Two impor-
tant reactions which involve the synthesis of compounds
through carbon-carbon bond formation include the Henry
and the Michael reactions with nitroalkanes [1–3]. Under
basic conditions nitroalkanes are able to deprotonate to form
an intermediate compound known as the nitronate anion [4].
The nitronate anion can then react with aldehydes through
the Henry reaction to yield 𝛽-nitroalcohols [5]. In the case
of the Michael addition, the carbanion would react with
Michael acceptors or 𝛼,𝛽-unsaturated compounds to yield
polyfunctionalised nitroderivatives [6].

In recent years the nitroaldol and the Michael reactions
were carried out using extensive catalysts, some of which
containing complex structures. Various methodologies have
been employed; however, in some cases, disadvantages of
having such complex structures included applying either
very low or substantially high temperatures to obtain the
respective products at great yields [7–10]. A major drawback
of some catalysts is that they resulted in the increased

formation of secondary products in these reactions. In the
case of the nitroaldol reaction, the main side product is the
formation of the nitroalkene through a further condensation
reaction of the nitroalcohol. In some cases the use of certain
catalysts resulted in the production of a conjugated enone
through an aldol condensation side reaction, whereas some
highly activated catalysts which were applied to the Michael
addition were too reactive as reactions which resulted in the
formation of the double addition products [4–6].

Herein, as a continuation of ongoing study on the
development of environmentally friendlymethodologies [11–
13], our main interest in relation to this context was to
identify a simple alternative and cheap heterogeneous solid
catalyst useful for both the Henry and the Michael reactions,
in accordance with moderate reaction conditions and the
concept of Green Chemistry [14] to produce, respectively, 𝛽-
nitroalcohols (Scheme 1) and polyfunctionalised nitroderiva-
tives (Schemes 2 and 3) [15–17]. On this purpose potassium
carbonate [18, 19] was identified as a suitable catalyst and
produced average to good results for the nitroaldol reaction
(Table 3) and good to excellent results for the Michael
addition (Table 4). To the best of our knowledge, potassium
carbonate was previously reported to catalyse only a few
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Scheme 1: The Henry (nitroaldol) reaction.
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examples of Michael addition reactions, although never
under neat conditions but with the required assistance of
solvents [20, 21], ultrasounds activation, and ionic liquids
[22], or with the use of a limited number of substrates as
starting materials [23] or else not involving nitroalkanes but
different nucleophiles [24–26].

2. Results and Discussion

In both reactions, the first part of the study consisted of
the optimization screening through the investigation of some
Henry (Table 1) and Michael reactions (Table 2) using potas-
sium carbonate as the catalyst together with the variation
of both physical and chemical conditions and without any
solvent.

TheMichael reaction was first investigated by performing
a variety of trials using nitroethane (5) and methyl acrylate
(4) as model reaction (Scheme 2).

Following these preliminary investigations, the Henry
reaction gave good results when undergone at temperatures
of 60∘C, increasing the reaction rate substantially and using
10 molar% of catalyst (entry 5, Table 1). On the other hand,
high temperatures were detrimental to the Michael additions
as a second by-product was afforded, this most probably
being the double Michael adduct. In order to decrease the
formation of the bis-addition, the reaction temperature was
kept at room temperature to promote increased formation
of the desired monoaddition and together with the use of
30 molar% of catalyst the best result was obtained (entry
5, Table 2). These selected conditions were then employed
in other Henry and Michael reactions in order to verify a
more general applicability of the preliminary protocol, using

nitroalkanes and different aldehydes and 𝛼,𝛽-unsaturated
compounds, respectively.

As reported in Table 3, aliphatic aldehydes gave the
best results in the least amount of reaction time while
aromatic aldehydes with electron withdrawing substituents
gave better yields than those containing electron donating
groups. Parasubstituted aromatics were the most difficult
substrates to react and when utilising 4-nitrobenzaldehyde a
small amount of CH

2
Cl
2
was required as the startingmaterial

was solid. In general average to good yields were obtained
with this catalyst as the reaction itself is reversible [2] and thus
it is difficult for it to reach completion.The major role played
by the catalyst was that reactions only afforded in a selective
way the nitroaldol product and no traces of any condensation
side product were present.

The previous conditions were then applied to Michael
reactions using different nitroalkanes and diversely func-
tionalised Michael acceptors (Scheme 3) and the catalyst
performed even better providing good to excellent product
yields (Table 4). Only when using nitromethane were very
low yields recorded, since the formation of the bis-addition
side product was revealed due to the fact that it is a small and
unhindered molecule, while using a secondary nitroalkane
the temperature was increased to 60∘C as there is no possible
formation of the bis-adduct. Also the results obtained from
these trials indicated that 30mol% of catalyst gave good
yields at room temperature when using methyl acrylate
as the Michael acceptor. However, reaction temperatures
were increased to 60∘C and 90∘C when using cyclic and
sterically hindered Michael acceptors like cyclic enones and
trans-methyl crotonate in order to increase the speed of
the reaction, whereas reactions which involved the use of
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Table 1: Optimization of nitroaldol reaction using K
2
CO
3
.

Entry R R
1

R
2

Mol (%)
catalyst

Temperature
(∘C) Time (h) Yielda of 3

(%)
1 Ph CH

3
H 10 25 24 35

2 CH
3

CH
3

H 30 25 24 54
3 CH

3
CH
3

H 10 60 4 48
4 CH

3
CH
2
CH
2

CH
3

H 30 25 24 58
5 CH

3
CH
2
CH
2

CH
3

H 10 60 4 68
aYield of pure isolated products.

Table 2: Optimization of Michael reaction using model reaction.

Entry Mol %
catalyst

Time
(h)

Temperature
(∘C)

Yielda of 6
(%)

1 10 5 25 47
2 10 27b 25, 60b 50
3 20 24 25 58
4 10 7 60 54
5 30 7.5 25 60
6 30 48 25 61
7 30 6 50 58
8 30 7 35 55
aYield of pure isolated product.
bReaction was carried out at room temperature for 24 hours; temperature was increased to 60∘C for 3 hours.

Table 3: Henry reaction using 10 mol% K
2
CO
3
at 60∘C.

Entry R R
1

R
2

Time (h) Yielda of 3 (%)
a CH

3
CH
3

H 4 48
b CH

3
CH
2
CH
2

CH
3

CH
3

5 46
c CH

3
H H 4.5 75

d Ph CH
3

H 4.5 60
e CH

3
CH
3

CH
3

4 48
f PhCH

2
n-C
2
H
5

H 5 50
g CH

3
CH
2
CH
2
CH
2

n-C
2
H
5

H 4.5 60
h PhCH

2
CH
2

n-C
3
H
7

H 6.5 58
i n-C

5
H
11

n-C
3
H
7

H 8 72
j p-NO

2
C
6
H
4

n-C
4
H
9

H 72 55b

k Ph H H 3.5 60
l c-C

6
H
11

H H 5 65
m p-OCH

3
C
6
H
4

H H 24 60
n p-NO

2
C
6
H
4

H H 4 66b

o CH
3

Br H 5 62
aYield of pure isolated product.
bReaction was carried out under CH2Cl2 solvent as the starting aldehyde was solid.

acrylonitrile required lower temperatures of 0∘C to prevent
immediate polymerization of acrylonitrile from occurring,
which was evident through the formation of a thick yellow
solid.

3. Conclusions

In summary, the utilisation of potassium carbonate in neat
conditions is a very versatile and green synthetic method and

thus shows great applicability with a variety of substrates,
containing different backbone structures, such as aliphatic
straight chain and cyclic and aromatic compounds, to
undergo both Henry and Michael reactions. Compared with
the reported methods using expensive or unavailable organic
catalysts, a common and inexpensive inorganic base (K

2
CO
3
)

was here employed as the base catalyst. The presented reac-
tions proceeded with complete regioselectivity providing the
nitroaldol and Michael monoaddition products, respectively,
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while tolerating many different functionalities. The common
catalyst and the ready availability of the starting materials
and the simplicity and versatility of the procedure and the
valuable productsmake the protocol potentially practical and
useful to synthetic chemists.

4. Experimental Section

4.1. General Information. All commercially available chem-
icals and reagents were purchased from Aldrich and used
without further purification. IR spectra were recorded on a
Shimadzu IRAffinity-1 FTIR Spectrometer, calibrated against
a 1602 cm−1 polystyrene absorbance spectrum. Samples were
either analysed as a thin film or in a Nujol� mull, between
sodium chloride discs. The 1 H- and 13C-NMR spectra were
recorded on Bruker AM250 NMR spectrometer fitted with a
dual probe at frequencies of 250MHz and 62.9MHz for 1H
and 13C NMR, respectively. An Aspect 3000 computer using
16K complex points for 1H NMR and 64K complex points
for 13CNMRwas used for processing. Samples were dissolved
in deuterated chloroform (with TMS): 5mg in 0.8mL CDCl

3

for 1H NMR and between 35mg and 50mg in 0.8mL
CDCl

3
for 13C NMR. Reaction monitoring was done by

TLC and GC analysis. Ready-purchased silica on PET sheets
with fluorescent indicator, 254 nm, was used as stationary
phase for TLC. Gas chromatography was carried out on a
Shimadzu GC-2010 plus gas chromatograph equipped with
a flame ionisation detector and HiCap 5 GC column with
dimensions of 0.32mm (internal diameter) × 30m (length)
× 0.25 𝜇m (film thickness), using nitrogen as carrier gas. The
synthesised compounds are known. Supplemental material
(available online at https://doi.org/10.1155/2017/6267036) is
available from the correspondence author.

4.2. Typical Procedure for the Nitroaldol Reaction and the
Formation of 3-Nitro-2-butanol (3a). The nitroalkane, ni-
troethane (20mmol), and the aldehyde, acetaldehyde
(20mmol), were mixed together. After thorough mixing,
potassium carbonate (10mol%) was added to the mixture.
The reaction temperature was increased and monitored until
it reached 60∘C. Immediately after the reaction finished
as observed from TLC, the catalyst was filtered off using a
Grade 1 filter paper and dichloromethane as solvent. The
solvent was evaporated and the crude product was purified
by column chromatography using a mixture of cyclohexane
and ethyl acetate giving (48%) of 3a as 6 : 4 diastereomeric
mixture: IR (neat): ]max 3421, 2985, 2943, 2910, and 1548,
cm−1 and 1H NMR (250 MHz, CDCl

3
) 𝛿 1.24–1.3 (dd, J =

9.66Hz, 3H), 𝛿 1.54–1.59 (dd, J = 6.72Hz, 3H), 𝛿 2.26–2.40
(dd, J = 6.1Hz, 1H), 𝛿 4.08–4.22 (m, 0.6H), 𝛿 4.32–4.42 (m,
0.4H), and 𝛿 4.43–4.56 (m, 1H).

4.3. Typical Procedure for the Michael Reaction and the
Formation of Methyl 4-Nitropentanoate (6). The nitroalkane,
nitroethane (10mmol), was mixed with the Michael accep-
tor, methyl acrylate (10mmol). After through mixing, the
potassium carbonate catalyst (30mol%) was added to the
mixture. Heating or cooling was applied only when required,

according to staring materials (Table 4). The reaction was
left standing for the appropriate time. The catalyst was then
filtered using a small column fitted with cotton and Florisil.
The filtrate was then evaporated in vacuo and the crude
product was purified via column chromatography using a
mixture of cyclohexane and ethyl acetate affording the pure
6: IR (neat): ]max 3001, 2956, 2850, 1732, and 1556 cm−1; 1H
NMR (250MHz, CDCl

3
) 𝛿 4.74–4.59 (m, 1H), 𝛿 3.70 (s, 3H),

𝛿 2.45–2.01 (m, 4H), and 𝛿 1.59–1.54 (d, 3H, J = 6.72Hz); 13C
NMR (62.9MHz, CDCl

3
) 𝛿 172.4, 82.4, 51.9, 30.0, 29.9, and

19.3.
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