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Abstract. Markov chain modelling has been previously used for hospital and com-
munity care systems, where the states in hospital care are described as phases, such
as acute, rehabilitation, or long-stay and likewise social care in the community may
be modelled using phases such as dependent, convalescent, or nursing home. This
approach allows us to adopt a unified approach to health and community care
modelling and management rather than focusing on the improvement of part of
the system to the possible detriment of other components. We here extend this
approach to show how the non-homogeneous Markov framework can be used to ex-
tract various metrics of interest. In particular, we use time-dependent covariates to
obtain the mean and variance of the number of spells spent by a patient in hospital
and in the community, and the expected total lengths of time in hospital and in
the community.
Keywords: Non-homogeneous Markov Models, Healthcare Performance Monitor-
ing.

1 Introduction

The cost of healthcare is increasing and, in addition, since there are escalating
proportions of elderly people, the problem of their care is becoming increas-
ingly important. A systems approach to healthcare planning is necessary
to facilitate understanding of the process and develop a holistic method for
management, monitoring and performance measurement of healthcare sys-
tems. Healthcare planning should therefore include care in the community
as well as care in hospital, otherwise policies may lead to an improvement in
hospital care at the expense of other components of the system.

Hospital patients may be thought of as progressing through phases such as
acute care, assessment, diagnosis, rehabilitation and long-stay care. Similarly,
once patients are discharged to the community they progress through phases
such as dependent, convalescent, or nursing home. Such processes may be
modelled using phase-type distributions [Faddy and McClean, 1999], which
describe the time to absorption of a finite Markov chain in continuous time,
when there is a single absorbing state and the stochastic process starts in a
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transient state. In addition, covariates may be incorporated into the models,
thus further increasing their ability to describe complex healthcare processes.

In this paper we model stay in hospital and stay in the community as two
separate phase type-distributions with transient states being phases of care in
hospital and the community respectively and death being an absorbing state.
Transitions can occur from all hospital phases to the first community phase,
representing discharge, and from all community phases to the first hospital
phase, representing admission. Transitions may also occur from all transient
states to the absorbing state, death. A non-homogeneous Markov representa-
tion is used to incorporate time-dependent covariates thus improving realism
of the model.

2 The Model

We have previously [Faddy and McClean, 1999,Marshall and McClean, 2003]
and [McClean and Millard, 2007] modelled the movement of patients through
a hospital using a Coxian phase-type model where we consider a system of
n+1 states (or phases) and a Markov stochastic process {X(t); t ≥ 0} defined
according to transition probabilities:

P{X(t + δt) = i + 1|X(t) = i} = λiδt + o(δt), (1)

for i = 1, 2, . . . , n − 1 and:

P{X(t + δt) = n + 1|X(t) = i} = µiδt + o(δt), (2)

for i = 1, 2, . . . , n. Here λ1, λ2, . . . , λn−1 describe sequential transitions be-
tween hospital phases 1, 2, . . . , n and µ1, µ2, . . . , µn describe transitions from
phases 1, 2, . . . , n to phase n+1 (Figure 1). If λ1, λ2, . . . , λn−1 and (at least)
µn are all positive then phases 1, 2, . . . , n are transient and phase n+1 (death
and discharge from hospital) is absorbing. Writing the vector:

p = (1 0 0 . . . 0 0), (3)

and matrix

Q =



−(λ1+µ1) λ1 0 ··· 0 0

0 −(λ2+µ2) λ2 ··· 0 0

...
...

...
...

...
...

...
...

...
...

0 0 0 ··· −(λn−1+µn−1) λn−1

0 0 0 ··· 0 −µn


(4)

then the time spent in the transient phases, after starting in phase 1,
before absorption has probability density function:

f(t) = p exp(Qt)q (5)
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where:
q = (µ1, µ2, . . . , µn−1, µn)T (6)

Given data on lengths of stay, the parameters λ1, λ2, . . . , λn−1 and µ1, µ2, . . .,
µn−1 can be estimated by maximum likelyhood using the form of the density
(5); starting with n = 1 phase, n can be increased until an adequate fit is ob-
tained. Such an approach may also be used to model social care in the com-

Fig. 1. The Coxian Phase-type Model

munity [Xie et al., 2005] and transitions between hospital and community
components of the system [Taylor et al., 1998], [Faddy and McClean, 1999]
and [Faddy and McClean, 2005] where we define m additional community
phases, with α1, α2, . . . , αm−1 describing sequential transitions between com-
munity phases 1, 2,. . . , m and β1, β2, . . . , βm describing transitions from phases
1, 2, . . . ,m to n+m+1 (death). In addition we represent transitions between
hospital phase i and the community phase 1 by νi : i = 1, . . . , n and transi-
tions between community phase i and the hospital phase 1 by γi : i = 1, . . . ,m
The whole system (hospital plus community) may then be represented by the
matrix:

Q =



−(λ1+µ1+ν1) λ1 0 · 0 ν1 0 0 · 0

0 −(λ2+µ2+ν2) λ2 · 0 ν2 0 0 · 0

· · · · · · · · · ·

· · · · · · · · · ·

0 0 0 · −(µn+νn) νn 0 0 · 0

γ1 0 0 · −(α1+β1+γ1) α1 0 0 · 0

γ2 0 0 · 0 −(α2+β2+γ2) α2 0 · 0

· · · · · · · · · ·

· · · · · · · · · ·

γm 0 0 · 0 0 0 0 · −(βm+γm)


where, λn = αm = 0.

Then the time spent in the transient phases, having started in phase
1 (admission to hospital), until absorption (death) has probability density
function, as before where now:

q = (µ1, µ2, . . . , µn−1, µn, β1, β2, . . . , βm−1, βm)T . (7)



4 McClean et al.

We now define the matrix A , corresponding to the transient states of the
embedded Markov chain, representing the next transition between states of
the continuous time model presented above. Here, A = {aij} where: aij =
Prob (next transition is to state j | currently in state i) and,

A =



0
λ1

(λ1+µ1+ν1) 0 · 0
ν1

(λ1+µ1+ν1) 0 0 · 0

0 0
λ2

(λ2+µ2+ν2) · 0
ν2

(λ2+µ2+ν2) 0 0 · 0

· · · · · · · · · ·

· · · · · · · · · ·

0 0 0 · 0 νn
(λn+µn+νn) 0 0 · 0

γ1
(α1+β1+γ1) 0 0 · 0 0

α1
(α1+β1+γ1) 0 · 0

γ2
(α2+β2+γ2) 0 0 · 0 0 0

α2
(α2+β2+γ2) · 0

· · · · · · · · · 0

· · · · · · · · · 0
γm

(αm+βm+γm) 0 0 · 0 0 0 0 · 0


.

Then, the expected number of entries to state j given initially in state i
is νij where, N = {nij} is given by:

N = (I − A)−1 (8)

Formulae for the corresponding variances and expected total times spent
in hospital and the community [Iofescu, 1980] can similarly be derived and
were presented in our previous paper [McClean et al., 2006]. An example of
such a system is presented in Example 1.

Example 1. Four hospital states and three community states: This model
has been previously fitted to data [Faddy and McClean, 2005,Millard, 1991]
and is illustrated in Figure 2. The data were described in [Millard, 1991].

3 The Non-homogenous Markov model

An important aspect of such an approach is the incorporation of covariates
into the models so that we can take account of significant heterogeneity be-
tween patients, caused, for example, by differences between patients due to
gender, age, year or socio-economic factors. Such differences may be partly
addressed by stratification, where we separately model groups of patients
with different covariates, e.g. we may fit different models for male and
female patients. However time dependent covariates, such as age, require
a different approach. In such cases we now develop a time-heterogeneous
Markov model where the parameters (of the matrices Q and A) are updated
every time a patient makes a transition. This can be achieved by having
the transition rates λi, µi, αi and βi depend log-linearly on covariates. Such
dependency parameters have previously been estimated by maximum likeli-
hood [Faddy and McClean, 1999]. The update time can then be represented
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Fig. 2. The Health and Social Care Markov System

by mean time to make the corresponding transition from hospital to commu-
nity or vice versa. Dependence on covariates X = (X1X2 . . . Xm)T can thus
be incorporated into the model by having the transition rates λi, µi, νi, αi, βi

and γi take the form:
exp(a + bT X) (9)

with coefficient parameters a and b estimated for each of the transition
rates [Faddy and McClean, 1999]. For the data analysed here, there are two
time dependent covariates: x1 = patients age at admission (to hospital or
community care) and x2 = year of admission. Data were also available on
the different events that terminated the patient’s periods of care: for hospital
these were discharge or death, and for community they were re-admission to
hospital or death. Given this information and a fitted phase-type distribution
for the preceding period of care, probabilities θij for event j from phase i can
be obtained by conditional maximum likelihood [Faddy and McClean, 2005].
In this way, estimation of these θij is carried out after estimation of the
parameters λi, µi, νi, αi, βi and γi of the phase-type distribution of the time in
hospital and community care, respectively. Covariate X = (X1X2 . . . Xm)T

dependence in the θij probabilities can be included by putting:

logit(
θij

1−θi1−···−θij−1
) = a + bT X (10)

and estimating parameters a and b for each θij (i = 1, 2, . . . ,number of
phases, and j = 1, 2, . . . ,number of events) [Faddy and McClean, 2005]. In
order to implement time-dependence in the covariates we update the tran-
sition matrix every time there is a discharge or admission to hospital. The
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parameters λi, µi, νi, αi, βi and γi are then recalculated with the new updated
age and updated year as covariates. Using these updated values of parame-
ters, we recalculate the matrix A. Also, for each admission (or re-admission),
we calculate the expected total time spent in hospital and for each discharge
we calculate the expected total time spent in the community. This expected
total time is then used to update the age and the year after each admis-
sion (or re-admission) to hospital and each discharge to the community. For
each spell in hospital, we then calculate the probability of the spell ending
with discharge to the community as πd and the probability of the commu-
nity spell ending with re-admission to hospital as πr respectively, given by:
πd = (1 0 0 . . . 0)(I−A1)−1b1 πr = (1 0 0 . . . 0)(I−A2)−1b2

Here A1 and A2 are sub-matrixes of A given by:

A =
(

A1 b1 0

b2 0 A2

)
(11)

and b1 and b2 are column vectors. The probability of a patient, initially
admitted to hospital, surviving to eventual re-admitted to hospital, is then:

πs = πdπr (12)

In the case of the 7 transient state model presented in Example 1, we therefore
obtain:

πd= { ν1
(λ1+µ1+ν1)

} + { λ1
(λ1+µ1+ν1)

∗ ν2
(λ2+µ2+ν2)

} + { λ1
(λ1+µ1+ν1)

∗ λ2
(λ2+µ2+ν2)

∗ ν3
(λ3+µ3+ν3)

} + { λ1
(λ1+µ1+ν1)

∗ λ2
(λ2+µ2+ν2)

∗ λ3
(λ3+µ3+ν3)

∗ ν4
(λ4+µ4+ν4)

}

= a15 + a12 ∗ a25 + a12 ∗ a23 ∗ a35 + a12 ∗ a25 + a12 ∗ a23 ∗ a34 ∗ a45

and

πr= { γ1
(α1+β1+γ1)

} + { α1
(α1+β1+γ1)

∗ γ2
(α2+β2+γ2)

} + { α1
(α1+β1+γ1)

∗ α2
(α2+β2+γ2)

∗ γ3
(λ3+µ3+ν3)

}

= a51 + a56 ∗ a61 + a56 ∗ a67 ∗ a71

We then calculate the expected (mean) number of admission/ re-admission
to hospital

Admean = 1 + π(1)
s + (2 ∗ π(1)

s ∗ π(2)
s ) + . . . + (n ∗ π(1)

s ∗ π(2)
s ∗ . . . ∗ π(n)

s ) + . . .

and expected (mean) number of discharges to the community.

Dismean = π
(1)
d + (2 ∗ π(1)

s ∗ π
(2)
d ) + . . . + (n ∗ π(1)

s ∗ π(2)
s ∗ . . . ∗ π

(n)
d ) + . . .

where π
(n)
s is the probability of surviving both of the nth hospital and

community spells and π
(n)
d is the probability of discharge from the nth hospital

spell. Next we calculate the expected (mean) time in hospital:

Thmean = (π
(1)
d ∗TT

(1)
1 )+(π(1)

s ∗π(2)
d ∗TT

(2)
1 )+. . .+(n∗π(1)

s ∗π(2)
s ∗. . .∗π(n)

d ∗TT
(n)
1 )+. . .
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Similarly, the expected (mean) time in the community after the first admis-
sion to hospital is:

Tcmean = (π(1)
τ ∗TT

(1)
2 )+(π(1)

s ∗π(2)
τ ∗TT

(2)
2 )+. . .+(n∗π(1)

s ∗∗π(2)
s ∗. . .∗π(n)

τ ∗TT
(n)
2 )+. . .

where π
(n)
τ is the probability of re-admission to hospital after the nth spell.

TT
(n)
1 is the expected time in hospital at the nth admission and TT

(n)
2 is the

expected time in the community after the nth discharge from hospital. Also,
the variance of the number of admission to hospital is given by:

Vhos = Σi{(i − Admean)2 ∗ pi(1)s ∗ pi(2)s ∗ . . . ∗ pi(i−1)
s ∗ pi(i)s }

where i is the admission number: i = 1, 2, 3, . . . . Similarly the variance of
the number of discharge to the community is given by:

Vdis = Σi{(i − Dismean)2 ∗ pi(1)s ∗ pi(2)s ∗ . . . ∗ pi(i−1)
s ∗ pi

(i)
d }

We here note that all the above computations are terminated when the
probability of surviving the previous spells becomes very small, in this case
10−25 or less.

4 Results

We now obtain results for example 1, using parameters estimated from
[Faddy and McClean, 2005]. The corresponding results are presented in Ta-
ble 1. We here compare our previous results [McClean et al., 2006] with the
results from our new approach, which incorporates time-dependent covari-
ates, namely age and year. From Table 1 we can see that incorporating time

Metrics Performance
metrics excluding
time dependent
covariates

Performance
metrics including
time dependent
covariates

Change %change

Mean number of admissions
to hospital

1.73 1.7568 +0.0268 +1.55%

Variance of admissions to
hospital

1.26 1.3349 +0.0749 +5.94%

Mean number of discharges
to community care

1.24 1.2607 +0.0207 +1.67%

Variance of number of dis-
charges to community care

1.51 2.3993 +0.8893 +58.89%

Mean total time in hospital
(days)

60.66 43.0688 -16.5912 -27.35%

Mean total time in the com-
munity (days)

838.16 634.3818 -193.7782 -23.12%

Table 1. Results for Example 1

dependent covariates slightly increases the mean and variance of the number
of admissions to hospital and number of discharges. There is a substantial
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decrease in the number of days spent in hospital and the community respec-
tively, corresponding to higher death (absorbing) probabilities in all cases.
This is to be expected as older patients are more likely to die during a spell
in hospital or back in the community than younger patients. Our new non-
homogeneous Markov model is therefore likely to be more realistic than our
previous approach.

5 Conclusions and Further Work

We have described an extension to previous work that allows us to com-
pute key performance measures for the whole patient care system, including
both hospital and community components. Such an approach is particularly
important for assessing the effectiveness of geriatric care systems, which typ-
ically include significant components of both hospital and community care.
By including time dependent covariates, such as age and year, and utilizing
a corresponding non-homogeneous Markov model, we are able to develop a
more realistic model that describes key metrics.
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