
Cross-Platform Development Frameworks
Overview of contemporary technologies and methods for cross-platform application

development.

Keith Vassallo (Masters Student)

Department of Computer Information Systems

Faculty of Information and Communication Technology

University of Malta

Msida, Malta

keith.vassallo.11@um.edu.mt

Dr. Lalit Garg

Department of Computer Information Systems

Faculty of Information and Communication Technology

University of Malta

Msida, Malta

lalit.garg@um.edu.mt

Abstract— This is paper provides an overview of the

technologies currently (2016) available and in development which

allow the development of cross-platform applications. Both

server-side and client-side applications are considered, as well as

applications for web, desktop and mobile devices such as

smartphones and tablets. A web-based approach is recommended

for the development of truly cross-platform applications across

devices and operating system.

Topics discussed include the contemporary background

within which cross-platform technologies are developing, full-

stack web development using a MEAN stack, cross-platform

mobile development methodologies and web-based desktop

application development.

Keywords—cross-platform; full-stack; MEAN; mobile

applications; web-based desktop applications.

I. INTRODUCTION

A. Convergance

The development of software in contemporary times takes
many different forms, including but not limited to desktop, web
(client and server) and mobile applications as well as the
development of embedded devices. With the advancement in
web technologies in the past decade, nowadays “both desktop
and mobile software systems are usually built to leverage
resources available on the World Wide Web” [1]. Moreover, it
is clear that many devices that were previously the realm of
embedded device programmers, such as mobile phones,
televisions, car entertainment systems and electronic watches,
are now leveraging the capabilities of operating systems
initially designed for smartphones. Indeed, both the Android
and iOS

1
 operating systems are today available on a wide

variety of devices. With an emerging convergence between
embedded devices and general purpose computers, as well as
the already established convergence between desktop and web
computing, it is time to start looking at which technologies are

1
 As tvOS on Apple TV and WatchOS on Apple

Watch

available to allow developers to build applications that work
across a broad spectrum of devices and operating systems.

B. Structure of this paper

In this paper, literature available about different
contemporary technologies available for cross-platform
development is reviewed. Starting with web technologies,
popular development environments and frameworks available
for client-side and server-side development are mentioned,
with a focus on frameworks allowing the development of full-
stack web applications, i.e. from both the client and server side.
Next, this paper provides an overview of the native and cross-
platform technologies available for mobile application
development, and provides a comparison between the two.
Finally, these are merged into a discussion providing
recommendations for developers who wish to make their
applications as widely-available as possible.

II. FULL-STACK WEB DEVELOPMENT

A. Traditional Web Development

Traditionally, web applications were developed using a
LAMP [2] architecture. This provides all of the components
needed for the development of the back-end of a web
application; Linux as the server operating system, Apache as
the web server, MySQL as the DBMS and PHP as the server-
side language. Several alternatives are available, such as Ruby
on Rails, Java EE, Python, ASP.NET MVC and many more.
However, such technologies only cover the back-end, thus for
front-end development, a different set of skills is required,
using HTML, CSS, JavaScript and newer technologies such as
HTML5 Canvas, LocalStorage and WebGL. Hence, a full-
stack web developer would need to be proficient in a server-
side language, database management system, HTML, CSS and
JavaScript as well as other rapidly emerging and evolving
client-side technologies.

B. Node.js

Node.js (or simply Node) was developed in 2009 by Ryan
Dahl, as a single-threaded, non-blocking, server-side JavaScript
environment, written in C and C++ [6]. With the development
of Node, the idea was popularized to use the same language for

both back and front-end development, effectively
implementing „end-to-end‟ development. “The current
environment of web applications demands performance and
scalability” [3]. This is especially true with AJAX/Web2.0
applications. The traditional web-sever has been implemented
using a single-thread per connection approach, and follows a
request (from client) and response (from server) model.
Modern web application servers need to leverage multiple-
threads per connection, and support events. Node.js “achieves
[this] both through server-side JavaScript and event-driven
I/O.” [3].

At the core of the paradigm driving Node.js is the non-
blocking asynchronous model. The resources available on the
server-side are typically files and databases. Considering the
traditional web-server as a FIFO queue, and the resources as
shared and concurrently accessed, one can see that a traditional
web-server is blocking. It serializes requests into a queue and
does not allow faster processes (such as the smaller web
requests in an AJAX application) from completing prior to
larger requests – it is strictly a first-in, first-out queue. On
concurrent systems, blocking algorithms suffer from
performance degradation as resources are locked by the first
process that acquires a resource – therefore, if that process is
delayed for any reason, all other waiting processes will also be
delayed [4]. In contrast, non-blocking algorithms “guarantee
that if there are one or more active processes trying to perform
operations on a shared data structure, an operations [sic] will
complete within finite number of time steps” [4].

Using such approaches, Node has achieved very good
performance results. In a study conducted in [3], and
corroborated in several other studies, Node outperforms both
Apache and EventMachine

2
 in tests consisting of a large

number of small requests to shared resources (see Figure 1).
However, more than performance gain, Node has managed to
achieve mind-share. In the 2016 developers‟ survey by Stack
Overflow [5], both Node and JavaScript on the server-side (i.e.
via Node) feature as the most used and loved technologies by
developers; “JavaScript is so pervasive that it‟s in all top 3-tech
combinations used by Back-End Developers. This suggests a
lot of these Back-End Developers are probably Full-Stack
Developers in disguise. Our internal stats suggest about 60% of
professional developers work full-stack” [5].

Fig. 1. Comparison of Apache, EventMachine & Node response time [3]

Node uses JavaScript on the server-side. By virtue of the
fact that JavaScript is the only standards-compliant language
supported by major web browsers, Node effectively makes
JavaScript a full-stack language. This development means that
developers can now stick to one language when developing

2
 An event-driven I/O library for the Ruby

programming language.

both client-side and server-side logic for web applications.
However, it leaves some gaps. Whereas JavaScript is
functional and event-driven, traditional DBMSs used for
hosting web-application content are relational. Moreover, as
Node applications tend to be Single-Page Applications (SPAs),
every page or resource accessed by the client will have the
same URL. This makes link sharing and search-engine
optimization difficult. Hence, with Node, developers must still
use other paradigms – at least the relational paradigm to
interact with databases, and a traditional web server to handle
the re-writing of client URLs into Node application function
calls.

C. MEAN

The development and rise of Node led to developers
looking elsewhere for their web-application data storage
requirements. Now that JavaScript was being used for the
server-side and client-side code, could it be extended to the
persistence layer? The answer came in the form of document-
databases, particularly MongoDB as it exposes a JavaScript
API to the data [7]. MongoDB stores data as documents in a
JSON format known as BSON. It uses functions to perform
CRUD operations on this data. Through JavaScript, callback
functions can be used to chain functions together for more
advanced operations [8]. Besides a continuity of paradigm,
research by several teams including Radulescu et. al. [8] show
that MongoDB outperforms traditional RDBMSs (Oracle in the
study mentioned) by a large factor (see Table 1). This is
especially true for a large number of small requests, as would
be generated by a modern web-application.

TABLE I. INSERT TIMES (MS) ORACLE VS MONGODB [8]

No. of records Oracle Database MongoDB

10 31 800

100 47 4

1000 1563 40

10000 8750 681

100000 83287 4350

1000000 882078 57671

The missing piece of the puzzle is routing. This is needed in
modern web applications since they tend to be single-page
applications. This means that rather than each user screen being
on a different HTML page and requiring a request/response
cycle with the web server, the single page uses JavaScript via
xmlHttpRequest to request data in the background, and then
update the browser‟s Document Object Model (DOM).
However, this means that a web application has only one URL,
making link sharing and search engine optimization difficult. A
URL router can address these issues. A router maps URLs
typed into the browser to function calls in the web application.
Several routers exist, but in maintaining the JavaScript theme,
routers working at the client side via JavaScript have emerged.
These include the popular Express

3
 router.

The stack is rounded off with a data-binding layer. New
programming paradigms such as promises are used to make it
easy for content shown in the browser DOM to be updated by
changes in data state, and vice versa. Libraries such as

AngularJS
4
, ReactJS

5
 and KnockoutJS

6
 have emerged which

use event streams to achieve this automatically. This allows the
web application to be updated in real-time, based on changes to
state or data; “most libraries construct a dependency graph
behind the scenes. Whenever an expression changes, the
dependent expressions are recalculated and their values
updated.” [9]

Together, MongoDB, Express Routing, AngularJS and
Node.js, provide the MEAN stack – an alternative web
application development stack intended for rich web
applications (also known as „thick clients‟). Although the stack
is called MEAN, and there is indeed a framework that is itself
called MEAN

7
, the term is also used to describe other

frameworks that use some or all of these technologies, but with
different implementing frameworks.

III. CROSS-PLATFORM MOBILE DEVELOPMENT

A. Native Applications

The mobile smartphone market is fragmented between
major operating systems such as Android, iOS, Windows
Phone amongst others [10]. This makes the development of
cross-platform mobile applications a challenge, since each
operating system exposes different APIs, uses different
programming languages and supports different features based
on the model and device being used by the customer. In
response to this, several cross-platform mobile application
development suites have emerged, to simplify and quicken the
pace of development.

Development using the tools made for the platform (such as
Android Studio for Android and Xcode for iOS) is referred to
as native development. “From the end user perspective, native
apps provide the richest user experience. Source code is
efficient, with fast performance, consistent look and feel and
full access to the underlying platform hardware and data.” [11].
However, developing native applications requires a different
set of skills for each platform.

B. Web Apps

Cross-platform mobile development tools aim to address
this issue, whilst still maintaining as much of the user
experience and functionality of the native mobile device as
possible.

One approach is the creation of web apps. Rather than
building a native application, a web application optimized for
mobile devices is constructed. This can then be accessed via a
mobile browser, without the need for installation. The main
problem with such applications is that they have limited access
to the device‟s hardware and data, and they cannot be used (in
many cases) without an active Internet connection. They also
tend to be slower than native applications, and do not maintain
the consistent look and feel of the mobile operating system
[11].

4
 https://angularjs.org/

5
 https://facebook.github.io/react/

6
 http://knockoutjs.com/

7
 http://mean.io/

Web apps use HTML5 technologies, which include a set of
APIs for added functionality and reduced power consumption.
These include Web Storage, Indexed Database API, File API,
Web SQL Database, Offline Web and Geolocation API [12].

C. Hybrid Applications

Hybrid applications attempt to combine the advantages of a
native application with the speed of development and cross-
platform nature of a web application. Hybrid applications
embed a web application into a thin device-native container,
used to display the web content. Using specialized APIs, the
web application can then make calls to the container, which
will query and relay device-native system calls to the web app.
Some of the most popular implementations include PhoneGap

8

and Cordova
9
 [11]. Besides allowing more access to device

data and functionality, hybrid applications download the web
application‟s data to the local device, meaning the application
can be used even without an active Internet connection.

D. Interpreted Applications

With interpreted applications the user interface that the user
interacts with is generated automatically and uses native
components to provide a consistent look and feel. However, the
application logic can be built using a wide variety of languages,
depending on the skillset of developers. Supported languages
include, but are not limited to, Java, Ruby and XML.

Whilst such applications provide a native look and feel, the
developer is reliant on the interpreted framework for support of
any new user-interface elements introduced by the mobile
operating system. For example, when Google introduced
Material UI

10
 in Android, users of interpreted development

environments had to wait for their environment to support it
before they could use it. Popular interpreted development
environments include Appcelerator Titanium Mobile

11
 [11].

E. Generated Applications

Generated applications are compiled for a specific device,
just like their native counterparts. Hence, a different app is
created for each targeted device. Popular examples of
application generators include Applause

12
 for CRUD

applications, and the Unity game engine for game
development.

“In theory it is also possible to exploit the produced native
code, in order to meet specific needs… However, in practice
utilization of the generated native code is difficult because of
its automated structure.” [11].

F. Comparing Approaches

A comparison of the different approaches towards mobile
application development is beyond the scope of this paper, and
has already been covered by many including [11, 13, 14, 15].

8
 http://phonegap.com/

9
 https://cordova.apache.org/

10
 https://www.google.com/design/spec/material-

design/introduction.html
11

 http://www.appcelerator.com/
12

 http://www.applause.com/

The purpose of this paper, however, is to find technologies
whereby an application can be built across platforms, be it
mobile, web or desktop. By virtue of the fact that the web only
supports HTML, CSS and JavaScript, it is trivial to deduce that
the technology which would entail the less re-writing of code
to develop mobile applications from an existing source is the
web.

IV. CROSS-PLATFORM DESKTOP DEVELOPMENT

A. Cross-Platform GUI Toolkits

Compared to mobile application development and rich web
application development, desktop application development is a
mature space. For decades, technologies have been available to
develop desktop applications, and these include cross-platform
applications. The storage and business logic components of an
application can be written in almost any language of the
developer‟s choice, as compilers for most programming
languages are available for the major operating systems
(Windows, Mac OS, Linux). The stumbling block has
traditionally been the user interface, where the three operating
systems use different technologies, look and feel.

One solution to this problem has been to develop cross-
platform GUI libraries. Libraries such as QT

13
, GTK

14
 and

wxWidgets
15

 provide APIs for a wide variety of programming
languages. Developers can choose a language of their choice
and then integrate with the toolkit to create the interface they
need. Although successive versions of such libraries keep
improving, it is still easy to tell that applications built with such
libraries are not native, even if they differ only slightly from
the native application toolkit [16].

Another solution is to provide a GUI toolkit as part of a
programming language, which is the approach used by
languages such as Java, which uses AWT/Swing and more
recently JavaFX to address this issue. Here too, however, the
applications will approach, but not perfectly imitate, the native
look and feel of applications on the target platform. Moreover,
languages such as Java require a runtime environment to be
installed on the client machine.

B. A Web-Based Approach

Following the success of hybrid applications on mobile
devices, which use web technologies to develop mobile
applications, the same approach is now being used to develop
desktop applications. Electron

16
, NW.js

17
 (formerly known as

node-webkit), Chromium Embedded Framework
18

 and
AppJS

19
 are all frameworks that allow developers to use web

technologies to develop desktop applications using HTML5,
CSS and JavaScript. Although several frameworks and
technologies have been developed over the years for cross-

13

 http://www.qt.io/
14

 http://www.gtk.org/
15

 https://www.wxwidgets.org/
16

 http://electron.atom.io/
17

 http://nwjs.io/
18

 https://bitbucket.org/chromiumembedded/cef
19

 http://appjs.com/

platform application development (including Java and the
.NET framework), web/desktop frameworks do not require a
different skillset; the existing skills used for web application
development can be used for desktop development.

There are a number of challenges to this approach. In
essence, web applications and desktop applications have
traditionally been based on different paradigms, thus creating
an impedance mismatch that “reflects the fact that the World
Wide Web was originally designed to be a document
distribution environment – not a software platform” [1].
Moreover, these desktop frameworks are, in essence,
containers around web rendering frameworks, normally either
Chrome (via Chromium) or WebKit. There are subtle
differences in the way these renderers display content, which
has to be accounted for if, for example, the rendering engine
used by the cross-platform mobile tool is different.

This being said, web applications are becoming richer and
the features traditionally associated with desktop development
(multi-threading, graphics, instant response, etc.) are now
becoming cross-domain features, easing the transition from
desktop to web development, but also, as is this case, vice
versa.

V. A UNIFIED APPROACH

A. The Case for Web

From the research carried out in this paper, it is suggested
that applications based on web technologies are a viable way
forward for true cross-platform applications, regardless of
device and operating system. By building applications for the
web first, and then integrating them into mobile devices as
hybrid applications and as desktop applications via available
frameworks, one can preserve the vast majority of not just the
application persistence and logic, but also user interface.

Modern web applications tend to be responsive. This means
that the user interface of such applications adapts to the size of
the user‟s device. Hence, the developer can focus on first
creating a responsive web application using modern
technologies and then, with considerably little effort, such
applications can then be ported to the mobile space using a
hybrid framework. Similarly, the same base code can then be
ported to the desktop. There are a number of different
technologies that can be used to achieve this. In the next
section, a selection of technologies will be recommended based
on the aforementioned research.

B. Recommended Technologies

It is recommended that development begins by creating a
web application based on Node. This application will be based
on a MEAN stack, i.e. using a JavaScript document-oriented
database, a client-side router, a JavaScript data-binding
framework and the Node server.

One efficient approach is to use a framework that can
automatically generate hybrid mobile applications from web
application code. Such frameworks include Meteor

20
. Meteor

uses a MEAN stack approach to the development of mobile

20

 https://www.meteor.com/

applications. However, it adds on top of Node by providing
additional features such as templating engine support and in-
browser document database. This means that the client
maintains a restricted local copy of the database in cache, to
speed up and reduce requests that would normally go directly
to the server. Meteor supports a number of data-binding
frameworks including AngularJS, ReactJS and Blaze.
Additional features for rapid development include hot-code
push (the ability so see changes in the app without refreshing)
and quick deployment.

Of added interest, mobile platforms can be added to a
Meteor project, which will cause Meteor to automatically
package an application using Cordova, to build a hybrid iOS or
Android application. Once bundled for deployment, Meteor
applications can be run in a Node container, without the need
for the Meteor framework to be installed. Hence, with one
development sprint, the developer would have created a web-
application and a mobile-friendly web app, as well as a cross-
platform mobile application supporting Android and iOS.

The web content created could then be transferred to one of
the desktop web app frameworks such as Electron. With
relatively little effort, the application can hence become a
desktop application.

When any updates are required to the application code, it is
only the web content that needs to be updated, and then be also
copied to the new version of the desktop application. Despite
being written using web technologies, native features will still
be available, as Meteor exposes the Cordova APIs to the web
app, and desktop applications such as Electron can expose
natively functionality.

C. Known limitations

As mentioned in other sections of this paper, there are
limitations to the web technology approach. Firstly, the
application will not have access to all of the functionality
provided by the native platform, but rather will be limited to
the subset of functionality offered by the framework in use.

Also, despite very close approximation, it is still the case
that web applications are not a perfect facsimile of their native
counterparts, especially when the native operating system
introduces new UI widgets.

Finally, although a web-application itself is cross-platform,
the containers used for the mobile and desktop aspects of the
applications are not. Hence, implementation differences may
be present and need to be accounted for.

VI. CONCLUSION

It is suggested that web technologies are the future of
development not just for rich web applications, but also for
mobile and desktop applications. Developers should strive to
support as many platforms as possible, to allow their
application to reach a wider audience regardless of device and
operating system.

REFERENCES

[1] T. Mikkonen and A. Taivalsaari, "Apps vs. Open Web: The
Battle of the Decade In Proceedings of the 2nd Workshop on Software
Engineering for Mobile Application Development", in 2nd Workshop on
Software Engineering for Mobile Application Development, MSE'11,
2011, pp. 22-26.

[2] J. Lee and B. Ware, Open source Web development with LAMP.
Boston: Addison-Wesley, 2003.

[3] R. McCune, "Node.js Paradigms and Benchmarks",
Undergraduate, University of Notre Dame, 2011.

[4] M. Michael and M. Scott, "Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms", University of
Rochester, Rochester, NY, USA, 1995.

[5] "Stack Overflow Developer Survey 2016 Results", Stack Overflow,
2016. [Online]. Available: http://stackoverflow.com/research/developer-
survey-2016. [Accessed: 24- Mar- 2016].

[6] S. Tilkov and S. Vinoski, "Node.js: Using JavaScript to Build
High-Performance Network Programs", IEEE Internet Computing, vol.
14, no. 6, pp. 80-83, 2010.

[7] J. Dickey, Write modern web apps with the MEAN stack. San
Francisco, CA: Peachpit Press, 2015.

[8] A. Boicea, F. Radulescu and L. Agapin, "MongoDB vs Oracle -
database comparison".

[9] K. Kambona, E. Gonzalez Boix and W. De Meuter, "An
Evaluation of Reactive Programming and Promises for Structuring
Collaborative Web Applications", in European Conference on Object-
Oriented Programming, Lancaster, UK, 2011, p. Article 3.

[10] StatCounter, "Top 8 Mobile Operating Systems from Feb 2015 to
Feb 2016", GlobalStats, 2016.

[11] S. Xanthopoulos and S. Xinogalos, "A Comparative Analysis of
Cross-platform Development Approaches for Mobile Applications", in
6th Balkan Conference in Informatics (BCI'13), Thessaloniki, Greece,
2013, pp. 213-220.

[12] "HTML5", W3.org, 2016. [Online]. Available:
https://www.w3.org/TR/html5/. [Accessed: 25- Mar- 2016].

H. HeitkÖtter, S. Hanschke and T. Majchrzak, "Proceedings of 8th
International Conference on Web Information Systems and
Technologies", in WEBIST '12, Porto, Portugal, 2012, pp. 299-311.

[13] M. Palmieri, I. Singh and A. Cicchetti, "Proceedings of 16th
International Conference on Intelligence in Next Generation Networks",
in ICIN '12, Berlin, Germany, 2012, pp. 179-186.

[14] W. Jobe, "Native Apps Vs. Mobile Web Apps", Int. J. Interact.
Mob. Technol., vol. 7, no. 4, p. 27, 2013.

[16] M. Wojtczyk and A. Knoll, "Proceedings of The Third
International Conference on Software Engineering Advances", in ICSEA
'08, Sliema, Malta, 2008, pp. 224-229

