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Abstract— This paper presents a new method for construct-
ing 2D maps of enclosed underwater structures using an
underwater robot equipped with only a 2D scanning sonar,
compass and depth sensor. In particular, no motion model or
odometry is used. To accomplish this, a two step offline SLAM
method is applied to a set of stationary sonar scans. In the
first step, the change in position of the robot between each
consecutive pair of stationary sonar scans is estimated using
a particle filter. This set of pair wise relative scan positions
is used to create an estimate of each scan’s position within
a global coordinate frame using a weighted least squares fit
that optimizes consistency between the relative positions of the
entire set of scans. In the second step of the method, scans and
their estimated positions act as inputs to a mapping algorithm
that constructs 2D octree-based evidence grid maps of the site.

This work is motivated by a multi-year archeological project
that aims to construct maps of ancient water storage systems,
i.e. cisterns, on the islands of Malta and Gozo. Cisterns, wells,
and water galleries within fortresses, churches and homes oper-
ated as water storage systems as far back as 2000 B.C. Using a
Remotely Operated Vehicle (ROV) these water storage systems
located around the islands were explored while collecting video,
still images, sonar, depth, and compass measurements. Data
gathered from 3 different expeditions has produced maps of
over 60 sites. Presented are results from applying the new
mapping method to both a swimming pool of known size and
to several of the previously unexplored water storage systems.

I. INTRODUCTION

Underwater robots are used to explore harsh environments,

dangerous caves, and underwater domains. Remotely Oper-

ated Vehicles (ROV) allow researchers to safely study these

places remotely by capturing video, images, acoustic data,

and measurements from underwater sensors. The field of

underwater robotics in the past decade has made substantial

progress in the areas of localization and mapping. Sonar

technology has been the primary choice of equipment to

assist in mapping underwater environments because sonar

waves propagate through water better than light. Recently

in [1], an ROV was used to inspect 1 km of an underwater
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Fig. 1: The VideoRay Pro 3 GTO is an underwater micro-

ROV with dimensions 36.8cm x 28.9cm x 21.6cm. It is

equipped with depth and compass sensors along with a front

and a rear video camera. Additionally, a Tritech Micron

scanning sonar can be attached to the ROV.

tunnel operated by Electricité de France for reasons of avail-

ability, safety, accessibility, and diagnostic quality. Another

example of underwater ROV research includes implementing

vision systems for underwater applications, to support shared

control, and 3D mapping [2].

More relevant, micro-sized ROVs have been developed

to help improve maneuverability within tight passages for a

variety of applications including the exploration of sensitive

ecosystems that one may not want to disrupt [3]. Other

environments ideal for micro-ROVs include ancient cisterns,

wells, and water galleries. The water storage systems found

in Malta are difficult to access due to their size (e.g. a typical

opening diameter of 0.3 m). To explore such envrionments, a

VideoRay Pro 3 ROV equipped with an underwater scanning

sonar head, depth sensor, and two video cameras, (seen

in Fig. 1), was used to generate 2D and 3D sonar based

maps. This paper proposes a new mapping and localization

technique used to reconstruct the explored cisterns as well

as document results from a recent expedition, (i.e. Spring of

2012).

Since the sites explored in this research have tunnels

of limited size and accessibility, the ROV sensor payload

must be minimal. Much research has focussed on developing

complex motion models to decrease uncertainty, accurately

model the ROV’s motion, and improve localization. Instead

of increasing the sensor payload of the ROV, this paper pro-

poses a 2D localization algorithm to be run offline that does
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Fig. 2: The pipeline created to generate 3D maps

not require a motion model, but instead uses a particle filter

to calculate relative translations between pairs of sonar scans

that are used to construct a global map of the environment.

This paper is sectioned into five parts. In Section II, a brief

background is provided on similar mapping and localization

techniques. Section III explains the mapping reconstruction

pipeline used to generate a map. In section IV, the results are

presented followed by section V with the current conclusions

and proposed future work.

II. BACKGROUND

The recent advances of underwater robot sensing tech-

nology (e.g. sonar, imaging, doppler velocity logging) have

led to the ability to conduct Simultaneous Localization and

Mapping (SLAM) [4] in the underwater domain [5]. In many

SLAM algorithms, it is common to use robot odometry

to predict the new robot position with respect to the map

before using exteroceptive sensor measurements to correct

the robot’s position and update the map itself [6].

Analyzing raw measurements, as opposed to extracting

geometric features from a map, is known as scan matching.

A probabilistic algorithm called iterative-closest-points (ICP)

has taken popularity among the robotics community in many

different variations [7], [8], and [9]. In [10], the sonar prob-

abilistic model spIC was used to localize a mobile robot by

analyzing raw sonar data to correct odemetry errors for short

robot trajectories. This helped minimize the displacement

between noisy and sparse measurements.

Such applications have proven to work well in underwater

environments. The core of the ICP algorithm matches two

point clouds together in order to align the scans for map gen-

eration and/or vehicle localization. This algorithm has proven

to work well with noisy data, but remains computationally

heavy – O(P3) per iteration for P number of points. In [9],

Fairfield and Wettergreen developed a variation to ICP called

icLK to generate 3D maps of underground mines which

reduced the compexity of ICP to O(P2) by thresholding

the data; however, with 100 k points the approach remains

burdensome.

Other recent research has focused on generating maps in

real-time using a complex motion model in order to associate

each sonar measurement with a corresponding location in

the map. For example in [8], a pose-based algorithm was

developed to map unstructured and unfamiliar environments

using a probabilistic scan matching technique. The scan

matching techniques that extract ranges from sonar beans

explained in [10], [11], and [8] are most similar to the

techniques developed in this paper.

There has also been an increase in visual SLAM recently.

A technique called frameSLAM [12] uses bundle adjustment

techniques to match point features along with stereo vision

to track landmarks. The system developed was capable of

autonomously navigating an offroad vehicle with only the

use of stero vision. Visual SLAM has proven to work well

in terrestial environments, but murkey water (a common

condition in cisterns) would likely decrease performance.

Similar to detecting frames and features, the incremental

smoothing and mapping (iSAM) [13] technique uses an

informational filter to incrementally associate measurements

in large-scale environments to solve the full SLAM problem.

iSAM and frameSLAM are both feature based which differs

from the scan matching solution based on raw measurements

presented in this paper.

In the previous expeditions dedicated to mapping Maltese

cisterns [14], [15], [16] the mapping techniques included

sonar mosaicking, and underwater robot SLAM with both

a stationary and moving robot. Sonar mosaics are images

generated by piecing together different parts (scans) of the

image to create a single image. This is a manual and

time consuming job, but is able to successfully localized

an ROV through manual calculations. For underwater robot

SLAM, inadequate motion modeling led to reduced accuracy

in robot localization and hence mapping [15]. To ensure

highly accurate maps, the subsequent expeditions focussed

on obtaining a series of stationary sonar scans from several

positions in the tunnel [14].

The work reported here differs from the scan matching

techniques developed in [8] and [11] in that our robot has a

limited payload and no motion model or odometry is used to

predict the robot’s location. Instead, mapping is done offline.

A particle filter is first used to calculate relative positions

of the robot between consecutive pairs of stationary scans.

Then, a weighted least squares approach uses these relative

positions to calculate the absolute position of the robot for

each individual sonar scan. To note, the algorithm improves

the consistency of scan matching by considering how every

tuple and every triplet of scans fit together. Finally, the

scans and their estimated positions are used to create a 2D

octree-based evidence grid map. A detailed description of

this approach is presented below.
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III. MAPPING RECONSTRUCTION PIPELINE

In [15], it proved difficult to construct maps using sonar

data collected while moving. The localization uncertainty

accumulated at a far higher rate than could be corrected

with infrequent sonar measurements. This work attempts to

accomplish the following: given a series of stationary sonar

scans with corresponding depth and compass measurements,

where each scan overlaps with at least the immediately

following scan in the series, determine the locations of the

ROV scans such that SLAM can be accomplished with

relative scan positions and scan data.

The proposed solution uses the following stages to gener-

ate a map: Data Collection, Pair Wise Scan Matching, Scan

Localization, Mapping, and Visualization. These stages are

shown in Fig. 2.

A. Data Collection

Data collection was performed using the VideoRay Pro 3

GTO as described in Sec. I. The process of collecting data

begins by visually investigating the site and sketching the

surroundings in order for one to uniquely identify each site

from a top-down perspective. The ROV is then lowered into

the cistern for exploration. Data is collected as follows: land

the ROV on the bottom or hover mid-depth without moving,

log ROV depth and compass sensor measurements, initiate a

sonar scan for one full revolution, move forward and repeat.

The collection of these measurements are defined as Zm
and collected at each time step t such that Zm = {Zt

m|t =
0...Tmax} where Zt

m represents all the sensor measurements

collected at time t, i.e at a new scan location. These include

robot yaw angle measurements zθ , depth measurement zd ,

and stationary sonar scans zs.

Zt
m = [zθ zd zs]

t (1)

Each sonar scan zs consists of a series of j = 1..A
scan angles α j, each with a corresponding vector of signal

strengths [ss j,i]. These signal strengths represent the echo

intensities of the discritized sonar signal returned from a

specific distance normal to the sensor that increases linearly

with the value of i= 1..Num Bins where Num Bins is defined

when configuring the sonar head.

zs = {[α j ss j,1 ... ss j,Num Bins] | j = 1..A} (2)

For cisterns that are bell-shaped or organically structured,

scans must be taken at multiple depths.

B. Pair Wise Scan Matching

Pair Wise Scan Matching takes the sensor measurements

Zm as input and outputs the measured position translations

zdi j m of the robot between each pair of stationary scans i and

j. To note, these relative translation vectors are aligned with

a global coordinate frame that has the X-axis aligned with

the direction of true North.

The pseudo code for Pair Wise Scan Matching is shown

in Table I. To begin, the robot’s position during scan si is

assumed to be at the origin of a cartesian coordinate frame

TABLE I: Pair Wise Scan Matching Algorithm

Calc Translation Measurements(s, Num Scans)
1: for i = 1 to Num Scans do
2: mi = construct map(si)
3: for j = i-1 to i+1 do
4: di j m = PF Localization(mi, s j)
5: endfor
6: endfor

TABLE II: Particle Filter Robot Localization

PF Localization(mi,s j)
1: initialize particle states()
2: for i = 1 to Num Iterations do
3: for k = 1 to Num Particles do
4: Xk = propagate robot state(Xk)
5: wk

i j = calculate weight(mi, s j)
6: endfor
7: resample particles()
8: if particles converged() break
9: endfor
10: di j = calculate translation(dm, wμ )

and map mi is generated with an octree-based evidence grid

(line 2) within this coordinate frame using a log-likelihood

approach [17].

In generating the map, the input data requires filtering due

to the noisy characteristics of the sonar data. The raw sonar

echo intensities negatively affect the scan matching algorithm

introducing inaccurate alignments caused by mistaking noise

as a wall. To handle this, a similar technique to beam

segmentation found in [11] was developed.

First, the signal strengths are normalized between 0 and

255 based on the maximum echo intesity found in the entire

scan. The echo intensities are then converted into range

measurements by iterating through each beam of the scan

and identifying the bin with the maximum echo intensity

that has at least one adjacent bin along the same beam. If

the maximum intensity is above a set threshold (50 in our

case), the bin’s value and the adjacent bins’ values are set

to 255 while all the other bins in the beam are set to 0.

This approach removes most of the noise and allows for two

scans with drastically different levels of echo intensities to

be accurately aligned.

Next, on line 4, the location of the robot during scan j with

respect to map mi is calculated using an implementation of

Particle Filter Localization [17] .

In this Particle Filter, as described in Table II, a collection

of k = 1..Num Particles particles is used to represent the

robot state during scan j. Each particle k consists of the

robot’s state [xkykzkθ k], and a weight wk that indicates how

likely particle k represents the true state. The particle position

states are initially sampled randomly (line 1 of Table II) from

a square uniform distribution centered on the origin of mi and

with dimensions Linit ×Linit meters.

The Particle Filter iterates for Num Iterations or until

the particles converge. At each iteration of the algorithm,

the x, y, and θ of the particle’s state are propagated (line

4) by adding a sample drawn from a zero mean gaussian

distribution of variance σ2
p . This added randomness models
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Fig. 3: The particles’ weights are calculated by taking the

difference between the distance to a wall in the robot’s map

and in the range data with respect to the robot

errors introduced by drift, sensor measurements, and driver

control.

To calculate particle weights (line 5), scan s j’s range

data is compared to the map mi . Particle k’s weight wk
i j

is calculated as shown in (4) by calculating the difference

between δs, the distance to a wall acccording to the scan

s j’s range measurement scan angle α j, and δm calculated

as the distance from particle k’s robot state in the direction

of α j to the nearest occupied cell with a probability above

WEIGHT THRESHOLD in map mi as demonstrated in Fig. 3.

This difference δs − δm is plugged into the Gaussian

function ϕ (δs,δm) (3) where the standard deviation σc equals

twice the map’s cell size rc with parameter a set to equate

each of the Gaussain Function’s maximum value to one. If

this difference is less than a set maximum distance, δmax, then

the particle’s weight wk
i j is equal to ϕ (δs,δm); otherwise, wk

i j
is reduced by 1−ϕ (δs,δm) (4) in order to include negative

feedback.

ϕ (δs,δm) =
1

a
√

2π
e
− (δs−δm)2

2σ2c (3)

wk
i j =

{
ϕ (δs,δm) i f δs −δm < δmax

wk
i j − (1−ϕ (δs,δm)) otherwise (4)

For every iteration, the algorithm creates a new set of

particles (line 7) by resampling from the current set of

particles randomly where each particle has a probability of

being selected proporational to its weight wk
i j.

In order to determine if the particles have converged (line

8), an exponential average of the particles’ weights wt
i j μ =

χwwt
i j + (1 − χw)wt−1

i j μ and an exponential average of the

standard deviation of the particles’ states σ t
p μ = χσ σ t

p+(1−
χσ )σ t−1

p μ are calculated before the particles are resampled

where χw and χσ ∈ [0,1] are constant smoothing factors. The

algorithm iterates for scans i and j until the particles converge

or Num Iterations is exceeded. Convergence is determined

when both of the following criteria are met:

• The exponential average of the standard deviation of the

particles’ states σ t
p μ is less than or equal to the robot’s

map cell size rc.

σ t
p μ ≤ rc (5)

• The exponential average of the particles’ weights wt
i j μ

is greater than or equal to an experimentally determined

threshold τpw.

wt
i j μ ≥ τpw (6)

If the scans do not converge within Num Iterations, then

scan j is skipped and the next iteration begins. If the scans

i and j converge, the translation vector zdi j = {zdxi j ,zdyi j} is

calculated as the difference between the location of the ROV

for scans i and j.

C. Scan Localization

The Scan Localization stage of the pipeline inputs the set

of measured translation vectors zdi j from the Pair Wise Scan

Matching stage and aims to output the translation estimates

di j for scans i and j. This is accomplished by solving a

weighted least squares minimization that aims to reduce the

cost function S in (7).

S = ∑
i

i+1

∑
j=i−1

4

∑
n=1

wi j μ n(di j − d̂i j,n)
2 (7)

In this cost function, di j is the relative translation vector

between scans i and j being estimated. The variable d̂i j,n
represents n = 1..4 possible measurements extracted from

various combinations of di j m as outlined below:

• d̂i j 1 = zdi j

• d̂i j 2 =−zd ji , noting that zd ji �= zdi j

• d̂i j 3 = zdik + zdk j , the reciprical pseudo measurement

• d̂i j 4 =−zd jk −zdki is the reciprical pseudo measurement

Each translation vector has a corresponding weight wi j μ n
that represents the likelihood of the measurement’s accuracy

at the time the particles converged. wi j μ n is equal to wt
i j μ n

in (6) when t equals the time of convergence. The pseudo

measurements’ weights are calculated from the first two

translation measurements’ weights in the same manner.

The minimizing function reduces the error among the four

types of d̂i j,n.

min

{
S = ∑

i

i+1

∑
j=i−1

4

∑
n=1

wi j μ n(di j − d̂i j,n)
2

}
, (8)

dS
d(di j)

= 0 , (9)

di j =
∑4

n(wi j μ n × d̂i j,n)

∑4
n wi j μ n

(10)

If neither permutations of scans i and j converge then there

is no possible path between scans i and j.
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(a) Mosaic of Swimming Pool (b) Occupancy grid representation (c) Model from visualization

Fig. 4: Pool at Cal Poly’s LAIR

(a) Cistern sonar mosaic (b) Occupancy grid from pair wise scan
matching

(c) Model from visualization

Fig. 5: Mdina private home cistern pipeline walkthrough

D. Map Generation

To generate a map of the robot’s environment, the sonar

scans are added to the robot’s map with a FastSLAM

algorithm that uses a log likelihood approach to combining

new sonar measurements to existing cells in the robot’s map.

The mapping algorithm, shown in Table III, moves the robot

to the localized positions according to the calculations made

by the pair wise scan matching algorithm and then calls

FastSLAM to update the robot’s map with the new sonar

scan.

In generating the map, a single reference scan is chosen to

be positioned at the center of the map based on the first scan

in the series that converges with another scan. The remaining

scans are added using the translation vectors calculated in the

Scan Localization step. If there is no path between scans re f
and i, then the remaining scans are discarded.

The pair wise scan matching algorithm explained in this

paper is currently only capable of matching scans for 2D

maps. Several of the cisterns explored in Malta contained

vertical walls. For these select cisterns, 3D maps were

generated by extrapolating the 2D map of a single 2D slice

of the cistern along the z-axis according to the depth sensor

measurement.

Many of the cisterns explored were bell-shaped. To adjust

for curved walls, several 2D maps of the cistern were

generated each at different depths and then the walls were

TABLE III: Mapping Algorithm

Generate ROV Map(di j , Num Scans)
1: sre f = choose reference scan(di j)
2: mre f = draw map(sre f )
3: for i = 1 to Num Scans do
4: if (si != sre f )
5: Xre f ,i = set ROV state(dre f ,i)
6: FastSLAM(Xre f ,i, si)
7: endif
8: endfor
9: return mre f

extrapolated along the z-axis to fill in the gaps. Manual mo-

saicking was used to align the scans in the third dimension.

E. Octree-based Evidence Grid Visualization

After an octree-based evidence grid representation of the

environment is generated, the map is visualized into a 3D

model using isosurface extraction and then textured and

visualized as described in [18].

IV. RESULTS

The mapping algorithm presented above was applied in

two scenarios. First, maps of a swimming pool located at Cal

Poly’s Lab for Autonomous and Intelligent Robotics (LAIR)

were created. Second, the algorithm was used to create maps

of ancient cisterns and tunnels found at archeological sites

in Malta.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Pair wise scan matching alorithm on the Gatto Pardo Bistro Cistern

The swimming pool located at the LAIR was used to

validate the accuracy of the mapping technique by comparing

the true dimensions of the pool to the measured dimensions

of the evidence grid maps. The true dimensions of the pool

were obtained using a tape measure and are accurate to

within 0.025m. The true width of the pool is 3.61m and the

length is 7.21m. Four stationary sonar scans of the pool were

obtained using the procedure for data collection explained

in Sec. III-A. The mosaic of these scans can be seen in 4a.

The measurements Zm were passed into the map generation

pipeline and the evidence grid with cell size 0.05m x 0.05m

seen in Fig. 4b was generated.

The accuracy of the mapping algorithm was determined by

comparing the actual dimensions of the pool to dimensions

extracted from the 2D map. The cells inside the map were

counted from one inside edge to the other. This resulted in

map estimated dimensions of 3.47m in width and 7.27m in

length. Since each cell is 0.05m in width and length, the

pools dimensions can not be accurate to better than 0.05m.

The Percent Difference (PD) of the ratio of the mean width

and length to the ratio of the true width and length was

calculated as 3.30%.

The standard deviation of the pair wise scan matching

algorithm was calculated by measuring the width of the

pool at 10 different locations and then comparing those 10

different measured widths and lengths to the true width and

length of the pool. The calculated standard deviation of the

TABLE IV: Mean Dimension Differences (Grid vs. Mosaic)

Site Name Width (m) Length (m)
Mdina Home (Site 8) 0.000 -0.022
Gatto Pardo Bistro -0.026 0.033
Swimming Pool 0.105 -0.025

width is 0.119m and length is 0.060m.

This algorithm was then applied to several cisterns ex-

plored between 2008 and 2011. Results from applying the

algorithm to sensor measurements taken from two different

cisterns are provided here. First, a map of the Gatto Pardo

Bistro was generated with a map cell size of 0.05m x

0.05m using the automated scan matching algorithm. The

value used for τpw was experimentally determined as 6.0.

Regarding the exponential averaging of the particle weights

and their standard deviation, the following constants were

used: χw = 2.0
6.0+1.0 and χσ = 2.0

4.0+1.0 .

Fig. 6 presents the different pairings of sonar scans during

the Pair Wise Scan Matching stage. The position of the ROV

for the first scan used to create the map (line 2 of Table III)

is represented by the yellow robot model. The localized ROV

position corresponding to the second scan to be matched with

the first is represented by the green to white particleswhere

the whiter the color the higher the weight, (as calculated

using line 4 of Table I).

Second, an interesting site explored in 2008 was found at

a private home in the city of Mdina Fig. 5 (Site 8). This
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cistern was mapped with the new algorithm using a cell

size of 0.05m x 0.05m. This cistern demonstrates the ability

to converge a set of scans where the end point scans have

very limited overlap due to the robot being in two seperate

chambers and very little overlap.

Since no truth data regarding the size and shape of the

cistern was available, a mosaic of raw sonar scan images was

manually created. The result of this manual mosaic process

is shown in Fig. 5. To note, the average particle positions

obtained from the automated Pair Wise Scan Matching

converged to locations that correspond well to the localized

ROV positions in the manually created sonar mosaic in

Fig. 5. (These are the orange circles in the raw sonar scans

created by acoustic reflections from the robot itself). The

holes in the map are attributed to the mapping algorithm’s

method of fusing scans together by adding the log-odds of

each cell. Modifying the merging algorithm is also a topic

for future work.

Further comparison of three evidence grid-based maps was

done by comparing the width and length of the mosaics to

the width and length of the evidence grid. Since all the sites

are not linear in shape, width and length measurements were

chosen based on distinct features in the map, i.e. corners and

tunnels. Table IV outlines the difference in width and length

measurements between the mosaics and evidence grids of

three different maps.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This work demonstrates the ability to conduct offline

mapping of underwater tunnels with robots that have low

payloads. Specifically, maps were constructed without the

use of robot odometry or a motion model after collecting

data. By applying the newly developed pair wise scan match-

ing algorithm, octree-based evidence grid representations

of such tunnels, cisterns, wells, and water galleries were

produced with a best fit solution.

The results demonstrate that for the application at hand,

the algorithm is accurate up to a standard deviation of

0.119m calculated from the evidence grid of the mapped

swimming pool. The percent difference between the dimen-

sions of the pool’s evidence grid map and the truth data

was also measured as 3.30%. To reinforce these statistics

and the accuracy of the pair wise scan matching algorithm,

the dimensions of three manually created mosaic maps

were compared to their corresponding evidence grid maps

generated from the pair wise scan matching algorithm seen

in Table IV and resulted in the highest difference being just

over twice the cell size of the evidence grids.

B. Future Works

Future work includes expanding the algorithm to a sliding

window approach that compares each scan to a large set of

consecutive scans without introducing false positives. In the

current implementation, if one of the scans does not overlap

with either the scan before it or after it, then that scan along

with the remaining scans are eliminated. This last limitation

is avoided by collecting more scans with at least 50% overlap

between consecutive scans.

Additionally, this algorithm could be expanded to support

localizing an ROV in the third dimension. This is important

when working in an underwater environment with nonlinear

walls as do many cisterns in Malta.
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