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within the Bizerte lagoon, a highly anthropized Mediterranean ecosystem. The sediment of Bizerte lagoon is char-
acterized by a high dinocyst abundance, reaching a maximum value of 2742 cysts-g~! of dry sediment. The in-
vestigated cyst diversity was characterized by the presence of 22 dominant dinocyst morphotypes belonging

Editor: D. Barcelo to 11 genera. Two dinoflagellate species dominated the assemblage: Alexandrium pseudogonyaulax and

Protoperidinium claudicans, representing 29 to 89% and 5 to 38% of the total cyst abundance, respectively, depend-
Keywords: ing on the station. Seven morphotypes belonging to potentially toxic species were detected, including
Dinocyst assemblage Alexandrium minutum, A. pseudogonyaulax, Alexandrium catenella/tamarense species complex, Lingulodinium
Mediterranean Bizerte Lagoon polyedrum, Gonyaulax cf. spinifera complex, Prorocentrum micans and Protoceratium reticulatum. Pearson correla-
Spatial distribution tion values showed a positive correlation (o« = 0.05) between cyst abundance and both water content and fine
Toxic/noxious species silt sediment content. Clustering revealed that the highest abundance of cysts corresponds to stations presenting

the higher amounts of heavy metals. The simultaneous autoregressive model (SAM) highlighted a significant
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Organic/inorganic contaminants
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correlation (o« = 0.05) between cyst accumulation and two main factors: sediment water content and sediment
content for several heavy metals, including Hg, Cd, Cu, Ni and Cr. These results suggest that the degree of heavy

metal pollution could influence cyst accumulation patterns.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Resting cysts are resistance forms produced sexually. They allow di-
noflagellates to survive unfavorable environmental conditions, thus
playing an important role in the population dynamics of harmful algal
species (Anderson and Wall, 1978; Dale, 1983). Their capacity to be pre-
served in the sediment for long periods provides a reservoir of diversity
and a suitable tool to study temporal changes in phytoplankton popula-
tions in a given area (Belmonte et al., 1997). Resting cysts are closely in-
volved in the occurrence and spread of toxic blooms. Their distribution
and abundance are considered to be valuable predictors of the forma-
tion of toxic blooms, particularly in semi-confined areas (Satta et al.,
2013; Steidinger and Garces, 2006; Bravo et al., 2006; Genovesi et al.,
2009). A high cyst production rate ensures a continuous supply for the
cyst bank and a regular inoculation of the water column (Zmerli Triki
et al,, 2015a, 2015b; White and Lewis, 1982).

Cyst distribution could be controlled by various factors, including
sediment physical characteristics and hydrodynamics. Several studies
suggest that cysts act like fine sediment particles and that the highest
cyst abundance is correlated with the fine sediment fraction (<63 pm)
(Anderson et al., 2005; Anglés et al., 2010; Horner et al., 2011). The
cyst production rate and abundance are also influenced by many biolog-
ical and environmental factors (temperature decrease, nutrient defi-
ciency, turbulence). It has been suggested that nutrient supplies
discharged through river runoffs from land or re-suspended from bot-
tom surface sediment through upwelling could significantly increase
the abundance of dinocysts by promoting diatom biomass increases
and, consequently, also of heterotrophic predators such as dinoflagel-
lates and their resting cysts (Thorsen and Dale, 1997; Matsuoka, 1999;
Dale, 2001, 2009; Godhe and McQuoid, 2003). At the same time, higher
water temperatures increase the vertical stability of the water column,
influencing the growth rates and the metabolism of the autotrophic di-
noflagellates by inducing indirectly the cyst production at the end of the
bloom (Elshanawany et al,, 2011; Godhe and McQuoid, 2003).

Some studies showed that trace metals are preferentially associated
with the 5-80 pm fraction of plankton, mainly dominated by
microphytoplankton (Rossi and Jamet, 2008). Chemical contaminants
can affect negatively the metabolic activities of vegetative cells of vari-
ous phytoplankton species, inhibiting their growth and survival at de-
termined concentrations (e.g., Rai et al., 1998; Mosulén et al., 2003;
Wang et al., 2005; Miao and Wang, 2006; Herzi et al., 2013). Until
now, most of the ecotoxicological studies conducted on dinoflagellates
investigated the effects of contaminants only on vegetative cells. Few
studies examined their potential effect on cyst production and abun-
dance (e.g., Pospelova et al., 2005; Godhe and McQuoid, 2003; Aydin
etal., 2015; Liu et al., 2012). These authors studied the relationships be-
tween resting cyst abundance and the degree of heavy metal contami-
nation, suggesting that trace metals could potentially affect the
physiology of dinoflagellates by enhancing resting cyst production
rates. Nevertheless, to date, no study to evaluate the potential effect of
organic contamination on cyst abundance has been performed. In the
present study, we evaluated statistically any possible correlation be-
tween resting cyst abundance and the degree of inorganic and organic
contaminants in sediment of an anthropized Mediterranean lagoon.
For this purpose, a high resolution mapping study was conducted to
1) investigate the diversity of the dinoflagellates having relatively high
resting cyst densities (=50 cysts-g~ ! of dry sediment DS) and to 2)
measure the concentrations of the main contaminants within the
surface sediment, including trace metals, organotin compounds

(tributyltin, TBT), Polycyclic aromatic hydrocarbons (PAHs) and polar
pesticides (mainly herbicides). Field measurements and sampling
were performed within Bizerte lagoon, located along the north-eastern
coastline of Tunisia (Mediterranean Sea) which hosts important indus-
trial activities and intense coastal urbanization.

2. Materials and methods
2.1. Study area and sampling

Bizerte lagoon (37° 8/-37°14’ N, 9°46’-9°56' E) is a shallow (8 m av-
erage water depth) area covering 128 km? (Fig. 1). It's economically im-
portant, holding nine shellfish farms (Mytilus galloprovincialis, Ostrea
edulis and Crassostera gigas). In the Bizerte lagoon, the surface current
is stronger than the bottom current at the northern, western and south-
ern parts and is relatively weak in the central part of the lagoon (Bejaoui
etal., 2008). The phytoplankton assemblage is mainly represented by 51
diatom taxa and 31 dinoflagellate taxa (Bellakhal-Fartouna and Daly
Yahia-Kéfi, 2004). In November 2007, a bloom of Alexandrium catenella
was recorded in Bizerte Lagoon, with observed cell concentrations
reaching levels of up to 20 - 10* cells-L™". No additional blooms were
recorded since 2007 (Turki et al., 2007).

The watershed of the lagoon currently hosts 277 industrial units
(petrochemical, textiles, food, steel and plastics processing) and re-
ceives numerous industrial runoffs, either directly or through river dis-
charge. The most polluting industries are the cement-production and
oil-refinery ones along the northern shores, and shipbuilding, ship-re-
pair and steel-production ones along the southwestern shores. Land
bordering the Southeast sector is mainly exploited for intensive agricul-
ture featuring cereal crops (7800 ha), vegetables (3400 ha) and tree
crops (500 ha) (Mansouri, 1996). The main pollutants released in this
lagoon are nitrates, phosphorus and trace metals, including iron, zinc
and arsenic (Comete-IHE, 2003). TBT and PAH contamination levels
within the lagoon are considered to be low to moderate (Mzoughi et
al., 2005; Barhoumi et al., 2014b). In terms of pesticide contamination,
Organochlorine pesticides (OCPs) were detected within sediments
(Barhoumi et al., 2014a; Ben Salem et al., 2016) with iodosulfuron,
mesosulfuron, 2,4-dichlorophenoxyacetic acid (2,4 b), glyphosate, and
fenoxaprops being the most abundantly-recorded herbicides, and
tebuconazole and epoxiconazole being the most abundant fungicides,
and deltamethrin being the most widely-used insecticides.

2.2. Sediment sampling and analysis

Sediment sampling was carried out at 55 stations (Fig. 1) during
July-August 2012 using cylindrical cores (26 cm long, 4 cm diameter)
operated by SCUBA divers. The sampling station depth ranged from
4.5 to 16 m. Only the superficial sediment layer (0-3 cm) was used.
Three replicates per station were collected and then stored in darkness
at 4 °C. The sediment mean particle diameter size was analyzed using
the laser particle sizer Malver Master sizer TM LSE (details are provided
in Zmerli Triki et al., 2014).

2.2.1. Organic matter (OM) and water content (H,0 %) analysis

Wet sediment samples from Bizerte lagoon (Ww) was dried for
7 days at 60 °C to evaluate their H,O %. The resulting dry sediment
was weighted (Wd), then heated at 450 °C for 12 h to eliminate any
OM. The final weight was registered as Wd1. The sediment water and
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organic content were calculated as follows: H20 % = [(Ww — Wd)
+100] / Ww, OM % = [(Wd — Wd1) = 100] / Wd1.

2.2.2. Contaminant analyses

They were carried out for 55 sampling stations, for trace metals and
butylin compounds, and for over 20 sampling stations for PAHs and pes-
ticides, since insufficient sediment was available to conduct all the
chemical analyses for all the sampling sites.

2.2.2.1. Trace metal analysis. Trace metals were analyzed through induc-
tively coupled plasma mass spectrometry (ICP-MS) using a X-Series II
ICPMS equipped with a collision cell technology chamber (Thermo Fish-
er Scientific). Digestion of samples was carried out in a microwave oven
(Discover SP-D Plus, CEM®) using the U.S. EPA method SW 846-3052. In
brief, 100 mg of sediment samples were digested using a mixture of 2 ml
HF (Suprapur 40%, Merck Millipore®) and 4 ml HNO3 (Suprapur 65%,
Merck Millipore®). Hg analysis was performed using the direct mercury
analyzer Milestone DMA-80 (Milestone GmbH, Germany) according to
U.S. EPA 7473 method (Mercury in Solids and Solutions by Thermal De-
composition, Amalgamation, and Atomic Absorption Spectrophotome-
try). Detection limits (ug-g~!) for trace metals adopted in this study
are: 0.00600 for Hg, 0.02620 for Cd, 0.06638 for As, 0.05631 for Cu,
0.05631 for Cu, 0.05578 for Ni, 0.06092 for Pb and 0.07220 for Cr. Results
were classified according to Long et al. (1995) into three categories, in
terms of their degree of adverse biological effects: rarely (<Effects
Range Low (ERL), occasionally (ERL-ERM) and frequently (> Effects
Range Medium (ERM).

2.2.2.2. Butyltin compounds. The tin-containing compounds TriButyltin
(TBT), DiButylin (DBT) and MonoButyltin (MBT) were analyzed using
a gas chromatograph (Focus GC - Thermo Fisher Scientific®) coupled
with an inductively-coupled plasma mass spectrometer (ICP-MS X Se-
ries II-Thermo Fisher Scientific®). The butyltin compounds analysis
steps included a gentle extraction to avoid Sn speciation modification,
followed by a derivatization step and extraction in the organic phase
(isooctane), as described in Carlier-Pinasseau et al. (1996). The certified

H.Z. Triki et al. / Science of the Total Environment 595 (2017) 380-392

reference marine sediment from the Canadian National Research Coun-
cil (National Research Council NRC, Canada), PACS-2, was used to check
for analytical precision and accuracy in trace metals and organotin
speciation.

2.2.2.3. Pesticide analysis. The ASE extraction (Dionex, France) was car-
ried out for 15 min with a solvent mixture (hexane/acetone (50/50))
at 120 °C and at 1500 psi of nitrogen. The internal standard (Atrazine
d5) was added to the sample prior the extraction step. After extraction,
the extract was cleaned on a Strata SAX (8B-S008-JCH). The elution step
was carried out with 3 ml of MeOH and with 3 ml of CH,Cl, so to recover
hydrophobic compounds. Purified extracts were completely evaporated
under a gentle stream of nitrogen and were then dissolved in 1.5 ml of
acetonitrile. All sample extracts were spiked before analysis with 120
ul of the deuterated internal standard simazine-d10 (1.2 mg-1~') and
analyzed through HPLC-MS/MS.

Pesticide analysis was performed through HPLC-MS/MS using an Al-
liance HPLC system (Waters Series 2695). Analytic separation was
achieved with a Kinetex C18 analytical column (100 mm * 4.6 L.D
+ 260 A, Phenomenex). Acetonitrile (A) and ultrapure water (B), both
with 0.05% formic acid, were used as mobile phases at the constant
flow rate of 0.4 ml-min~'. The Linear gradient was started at 40% for
0.2 min, ramped to 80% for 8 min, then to 100% for 1 min and finally
back to the initial conditions for 2 min. A triple quadrupole mass spec-
trometer (Micromass Quatro microTM, Waters) equipped with an
electrospray ionization source (ESI) was used as the detector device.
The spectrometer operated in positive ESI mode under the following
conditions: capillary voltage (3.5 kV), source temperature (120 °C),
desolvation temperature (300 °C), drying (600 I/h), and nebulization
gas (N2) flow (30 I/h). Argon was used as the collision gas. Acquisition
for each compound was performed in the multiple reaction-monitoring
mode (MRM). Two transitions were retained: one was used for the
quantification aspect and the other was used for the confirmation
aspect.
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Fig. 1. The Bizerte Lagoon sampling stations adopted within this study.
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2.2.2.4. PAH analysis. The ASE (350 Dionex, France) extraction was car-
ried out for 15 min with a solvent mixture (hexane/acetone (50/50))
at 120 °C and at 1500 psi of nitrogen. The extract was then kept in con-
tact with copper powder for 48 h in order to remove sulfur interfer-
ences. After extraction, the extract was cleaned on a Strata Florisil (FL-
PR, 32138). The elution step was carried out with 5 ml Hexane. Purified
extracts were analyzed through a GC-MS (Varian 450-GC and Varian
240 MS) working in the electron impact mode at 70 eV. A DB-5 ms
(Agilent) chromatographic column (30 m, 0.25 mm ID and 0.25 um of
film thickness) was used. The Helium flow rate was fixed at
1 ml-min~'. The extract (2 ul) was injected in the chromatographic col-
umn with a PTV 1079 injector maintained at 300 °C. The initial oven
temperature was increased from 120 °C (1 min) to 160 °C at 6
°Cmin~! (holding for 5 min); then the temperature was subsequently
increased to 310 °C at 10 °C min~! (holding for 5 min). The MS transfer
line and the ion source were retained at 310 °Cand at 220 °C, respective-
ly. Acquisition was carried out in the single ion monitoring (SIM) mode
using characteristic ions as standards for each target analyte. Internal
standard calibration was performed with Acenaphthylene-D8,
Acenaphthene-D10, Naphthalene-D8, Fluoranthene-D10 and Phenan-
threne-D10. The whole procedure (extraction, clean up and GC/MS
analysis) was validated using the certified sediment sample RTC-
CRM104-050 (LGC). PAH level results were classified according Long
et al. (1995) and the detection limit is reported in Supplementary
Table 4.

2.3. Resting cyst analyses

2.3.1. Resting cyst extraction

For resting cyst extraction, 1 g of wet sediment was re-suspended in
Filtered Sea Water (FSW), sonicated (3 min) and then sieved through
100 and 20 pm mesh sieves. The fraction recovered on the 20
um mesh sieve was centrifuged at 3000 rev-min~ ' for 10 min at 4 °C,
to recover the pellet containing dinocysts. Extraction was based on the
gradient-density method by adding Polytungstate Solution (Bolch,
1997) and centrifuging the pellet again. The supernatant containing
the cysts was then sieved through a 20 pm mesh and washed thorough-
ly to eliminate residues of PST.

2.3.2. Resting cyst identification and quantification

The taxonomic identification of resting cysts (RCs) is difficult and
several steps such as isolation, germination and culture implementation
are often required to confirm the identity of each species. Only the most
abundant living dinocysts encountered within the sampled sediment
were quantified and identified. The taxonomic identification of cysts
was made according to the Matsuoka and Fukuyo (2000) method
which is based on the photonic microscopic observation (Esselte Leitz
GmbH, Germany) of morphological characteristics of RCs and also on
germination experiments. Given the difficulty of identifying species be-
longing to the Spinifera group without using molecular tools, all related
species were grouped together and identified collectively as Spinifera
complex. A. pseudogonyaulax cysts were represented by different
morphotypes which could lead to mis-identification; to avoid this, all
related morphotypes were isolated and taxonomic identification was
only confirmed after germination (Zmerli Triki et al., 2016). Cyst quan-
tification was performed in duplicate according to the Uthermol meth-
od using a 3 ml sedimentation cell. Cyst densities were assessed per
gram of dry sediment.

2.3.3. Germination experiments and culturing

To confirm the taxonomic identity of RCs, they were isolated individ-
ually with a micropipette and placed into wells onto a 96-culture plate
(Nunc™ Delta surface) filled with.

Enriched Natural Sea Water (ENSW) culture medium (Harrison et
al., 1980) and incubated at standard conditions (20 °C, Salinity 36, 100
pmol-m~2-s~ !irradiance and 12 h:12 h light: dark). Cyst germination

was examined daily and those exhibiting unsuccessful incubation were
discarded after 30 days. Germling cell identification was done according
to Drebes (1974), Delgado and Fortuno (1991), Steidinger and Tangen
(1996). Cultures of the potentially toxic species Alexandrium
pseudogonyaulax and of the abundant species Scrippsiella rotunda were
established from excysted cells.

24. Statistical analyses

The degree of RC diversity was investigated using the Shannon-
Wiener's index (H’ bits-ind~') (Shannon and Weaver, 1949) and
Pielou's evenness (J) (Pielou, 1966), following these equations:

H (bits : incrl) = —¥"[(ni/N) * In(ni/N)]
J = H'/H' max

where H'max = log S (S: total species number in the sample), ni: num-
ber of individuals of a species in the sample and N: total number of in-
dividuals in the sample.

The Principal Component Analysis (PCA) test was performed to in-
vestigate the importance of different environmental factors in deter-
mining the distribution of cyst abundance within the sampling area.
Hierarchical Cluster analyses (HCA) was performed in order to group
sampling stations on the basis of the average heavy metal pollution
level they exhibit using the Ward aggregation method. A hypothesized
organized spatial structure for resting cyst distribution was investigated
using a spatial autocorrelation test, the Moran's I index which is based
on a Delaunay triangulation. This index was computed using Moran.mc
function from the spdep R-package. A Simultaneous Autoregressive
(SAR) model was developed to analyze the predictive power of pollut-
ant levels in the sediment for determining the resting cyst abundance.
All statistical tests were performed using R software (available online
at: http://www.r-project.org) and distribution maps for different pol-
lutants and dinocysts were generated using the MapInfo professional
10.0 software.

3. Results
3.1. Sediment texture and contaminant levels

The texture results for benthic sediment from Bizerte lagoon are
summarized in Supplementary Table 1. Sediment was mainly composed

of the sandy-mud and muddy fractions. The fine fraction (<63 pm) was
the prevailing one (Fig. 2), ranging between 50.48 and 97.6% of sample
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Fig. 2. Shepard and Folks representation of Bizerte lagoon sediment structure.
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composition in terms of weight, and was mainly represented by silt
(60.56 + 3.5%), whereas the clay fraction was less abundant (17.99 +
8.46% - Zmerli Triki et al., 2014).

Industrial contamination within Bizerte lagoon benthic sediments
was mainly represented by trace metals and TBT. The southern sectors
of the lagoon were the main areas impacted by Hg (171-524 ppm),
total butyltin (23.9-39.76 ng(Sn)-g~!) and PAH (3042-9948 ng-g~ 1)
contamination (Fig. 3, Supplementary Tables 2 and 3). All the trace
metals investigated in this study were recorded within all the lagoon
sampling sites. Cd (0.10-0.6 ppm), Cu (8.63-36.62 ppm) and Zn (93-
408 ppm) levels detected in Bizerte lagoon benthic sediments (Supple-
mentary Table 2) are unlikely to cause adverse biological effects. Re-
corded values for Cd and Zn were always below the ERL, at 1.2 ppm
and 410 ppm, respectively. Conversely, high concentrations for Cu
were registered and were above the ERL value of 34. Mercury contami-
nation was lower than the ERL at most sampling stations along the
northern side of the lagoon, whereas high values exceeding the ERL
(150 ppm) were recorded (175.68 and 524 ppm) within the southern
part. Four contaminants (As, Cr, Pb, Ni) were observed at most sampling

stations, with contamination levels exceeding the ERL proposed by Long
et al. (1995) (Fig. 3). Arsenic (As) levels ranged between 7.9 and
30.4 ppm (ERL = 8.2 ppm), Nickel (Ni) values ranged between 12.83
and 56.74 ppm (ERL = 20.9 ppm), Lead (Pb) levels from 23.87 to
123.92 ppm (ERL = 46.7 ppm) and finally Cr values ranged between
43.35 and 179.2 ppm (ERL = 81 ppm). High values for Ni were regis-
tered at four stations (15, 17, 24 and 54), with respective values of
56.48, 49.63, 52 and 56.74 ppm (>ERM = 51.6 ppm).

Moderate total butyltin levels (3 BT) were recorded, with concen-
trations falling in the 4.76 - 39.76 ng(Sn)-g™' range. MonoButyltin
(MBT) levels ranged between 3.86 and 18 ngSn-g~ ', DBT values ranged
between 0.17-6.61 ngSn-g~ ' and finally the range of TBT levels was
that of 0.14-14.91 ng(Sn)-g~'. The full pollutant contamination levels
recorded within the Bizerte lagoon benthic sediments are shown in
Supplementary Tables 2, 3 and 4.

The total PAHs measure comprises the sum concentration of the 16
parent PAHs. PAHs contaminants were present at 45% of the sampled
stations within Bizerte lagoon and were mainly localized along the
southern part of the lagoon. Stations 2, 5, 8, 10, 13 and 47 were slightly
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contaminated with Y PAHSs values, with concentrations ranging from
2.31t049.75 ng-g~ ! DS, whereas stations 9 and 27 were highly contam-
inated (9949 and 3043 ng-g~ ' DS, respectively). PCB contamination
was absent all over the lagoon and pesticides analysis revealed that ala-
chlor and DCPU were the most abundant pesticides present within the
sediment. DCPU ranged between 0.35 and 1.1 ng-g~ ! DS and alachlor
ranged between 0.67 and 4.95 ng-g~ ! DS.

3.2. Dinocyst distribution and abundance

The spatial distribution of dinocysts in the benthic sediment of Bi-
zerte lagoon is shown in Fig. 4. The highest cyst abundance was that
of 2742 cysts-g~ ' DS, recorded at station 49 and the lowest one was
203 cysts-g~ ' DS recorded at station 25. Shannon-Wiener's diversity
index values (H’) ranged between 0.21 and 0.73 bits-ind~' (Fig. 5). H’
values <0.5 bits-ind~! are normally associated with the dominance of
biotic assemblages by a relatively small number of taxa. The low H’
index values recorded in our study can be attributed to high densities

of A. pseudogonyaulax and P. claudicans. This was also confirmed by
low values obtained for the Pielou equitability (evenness) index
(Table 2).

In the laboratory, germination occurred mostly during the first three
days of incubation. Successful excystment of most brown (the prevail-
ing cyst colour) cysts frequently gave rise to motile cells belonging to
the genus Protoperidinium, whereas excystment of rounded, colorless
and walled cysts gave rise to motile stages of Alexandrium vegetative
cells. Dinocyst assemblage was mainly represented by two groups:
Peridiniales (33%) and Gonyaulacales (67%). A total of 22 cysts
morphotypes representing 11 genera belonging to the following 4 or-
ders were recorded within the entire Bizerte Lagoon sediment sampling
area (Table 3): Peridiniales (Fig. 6), Gonyaulacales (Fig. 7),
Gymnodiniales and Prorocentrales (Fig. 8). Two species dominated the
dinoflagellate assemblage: A. pseudogonyaulax (29-89% of total RCs)
and P. claudicans (5-38% of total RCs). A. pseudogonyaulax, the most
abundant species, was present all over the lagoon and contributed sig-
nificantly to the total cyst abundance.

Fig. 6. A-T: Peridiniales cysts isolated from surface sediments within Bizerte lagoon. Organic Peridiniales: Figs. A, B. Protoperidinium claudicans living cyst, Fig. C. Protoperidinium claudicans
empty cyst, Figs. D-F. Protoperidinium oblongum living cyst, Figs. G, H. Protoperidinium conicum RCs, Fig. I. Protoperidinium conicum vegetative cell, Fig. ]. Protoperidinium compressum, Figs. K,
L. Diplopsalis lenticula living cyst and empty cyst, Fig. M. Diplopsalis lenticula vegetative cell, Calcareous Peridiniales: Figs. N, O. Scrippsiella trochoidea living cyst and vegetative cells, Fig. P.
Scrippsiella cf. ramonii, Fig. Q. Scrippsiella cf. precaria, Fig. R. Scrippsiella rotunda, Fig. S. vegetative cells of Scrippsiella rotunda, Fig. T. Ensiculifera sp. Scale bar (10 pm).
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Fig. 7. A-L: Gonyaulacales cysts isolated from the surface sediment within Bizerte lagoon. Figs. A-C. Lingulodinium polyedrum living cysts and vegetative cell thequa, Figs. D, E.
Lingulodinium sp., Fig. F. Protoceratium reticulatum, Fig. G. Gonyaulax cf. spinifera complex, Figs. H, I. Alexandrium catenella/tamarense complex resting cysts and empty cysts, Figs. ], K.
Alexandrium pseudogonyaulax resting cyst and vegetative, Fig. L. Alexandrium minutum resting cyst. All scale bar (10 pm).

3.3. Correlations between chemical contamination and cyst abundance

The Pearson correlation analysis revealed a positive correlation
between cyst abundance and sediment water content (o« = 0.01)
and sediment fine silt content (o = 0.05). Results are presented in
Table 1. PCA was performed to investigate any correlation between
the RC densities (considered as a supplementary factor), the
sediment characteristics (texture, organic matter, HO percentage)
and the contaminant concentrations (Fig. 9). Axes 1 and 2 accounted
for 53.2% of this correlation. PC2 explained the highest part of the
correlation (39.6%) and was mainly represented by trace metal
concentrations. PC1 axis was mainly represented by sediment
characteristics. Hierarchical clustering on stations based on RC
abundance and contaminants revealed a correspondence between the

highly polluted stations and the highest RC abundances (Fig. 10).
The first cluster showed a mean abundance of 1114 cyst-DS™! (Sd +
660 cyst-DS™1!), the second cluster of 955 cyst-DS™! (Sd =+
629 cyst-DS™!) and the third one of 1015 cyst-DS™! (Sd =+
559 cyst-DS™1). Since Moran I index values revealed a strong degree
of co-linearity between the stations, we applied Simultaneous
Autoregressive Models (SAR) to remove this spatial autocorrelation in
the residuals, and a backward stepwise method was performed to retain
the most significant variables in explaining observed total cyst densi-
ties. The final SAR model was highly statistically significant (ac = 0.05,
P-value = 0.0335) and revealed six explanatory environmental factors
as shown in the following equation:

Total cyst density (cyst-g~' DS) = 13.43 Cr — 2.941 Hg — 2566 Cd
+ 82.25 Cu — 66.37 Ni + 23.67 H,0.

Fig. 8. A-H: Unidentified cysts, gymnodiniales and prorocentrales cysts isolated from the surface sediments within Bizerte lagoon. Fig. A. Polykrikos schwartzii/kofoidii complex, Figs. B, C,
Gymnodinium spp. vegetative cells germinated from sediment, Fig. D. Gymnodinium sp., Figs. E, F, H. unidentified cysts, Fig. G. Prorocentrum cf. micans. Scale bar (10 um).
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Table 1
Correlation coefficient between resting cysts (RCs) abundance and sediment
characteristics.

Pearson correlation Significance

RCs density 1

Water content % 0.414° 0.002
Organic matter (OM%) —0.130 0.343
Fine clay (0-2 um) —0.142 0.302
Coarse clay (2-4 pm) —0.147 0.283
Fine silt (4-30 pm) 0.269° 0.047
Coarse silt (30-63 pm) 0.174 0.204
Fine sand (63-200 pm) —0.027 0.844

Bold in the table highlight significance below 0.05 and their of corresponding pearson
correlation.

2 Significant correlation at 0.01 level.

b Significant correlation at 0.05 level.

4. Discussion

Cyst production occurs due to the occurrence of stressful environ-
mental conditions such as turbulence, a decrease in the seawater temper-
ature, nutrient deficiency or high densities of vegetative cells. This study
is the first to simultaneously measure in the sediment levels of major
pollutants (trace metals, butylin compounds, PAHs, polar pesticides,
PCB) and dinocyst abundance and diversity in order to evaluate if there
was any correlations between these contaminants and cyst abundance
in recently-deposited sediment of a southern Mediterranean lagoon.

4.1. Contamination levels within Bizerte lagoon sediments

Inorganic contaminants within the Bizerte lagoon sediment were
mainly represented by trace metals and Tributyltin. The south-western
side of the lagoon, represented by stations 8, 9, and 27, was the most
polluted area. The degree of trace metal contamination could be classi-
fied into three levels: rarely (<ERL), occasionally (ERL-ERM) and fre-
quently (>ERM), in terms of its adverse biological effect (Long et al.,
1995). Based on the effect-range classification, As, Cr, Pb, Ni and Hg
were likely to pose environmental risks, with most values for their con-
centrations exceeding the ERL range. Trace metal levels recorded in this
study were mostly similar to those registered in previous studies for
most sampling stations (Barhoumi et al., 2014b; Pringault et al., 2015),
whereas, the highest concentrations for Zn, As, Pb and Ni were recorded
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here for the first time. When comparing results from the current study
to those of Yoshida et al. (2002), still conducted for Bizerte lagoon sed-
iment, six trace metals (V, Co, Al, Cu, Cr and Pb) presented higher levels
and three trace metals (Zn, As and Mo) presented lower levels than
those previously recorded for the same benthic sediments. Compared
with other Mediterranean ecosystems, Bizerte lagoon seems to be
more polluted than Thau Lagoon (France), Venice lagoon (Italy) and
the Turkey coastline, mainly in terms of Zn, Pb, Cr and Ni (Rigollet et
al,, 2004; Aydin et al., 2015).

Concerning butylin contamination, the spatial distribution of
organotin was homogeneous throughout the lagoon sediments, with
moderate levels (0.14-14.91 ngSn-g~ ') generally being recorded, ex-
cept for the two sampling sites 8 and 9 (39.76 and 23.9 ngSn-g~ !, re-
spectively), located near the industrial area and the shipyard of
Menzel Bourguiba. Butylin levels in the sampled stations within the Bi-
zerte lagoon are lower than those recorded from other comparable
Mediterranean coastal systems, such as those in Spain (Barcelona
port) 18.7 ngSn-g~ !, France (Port-camargue) 10.73 ngSn-g~ ! and Ven-
ice lagoon 39.3 ngSn-g~ . Whilst the degree of in situ TBT contamina-
tion is considered to be moderate, its impact on living organisms
could still be considerable (Mzoughi et al., 2005). It has been shown
that the Bizerte lagoon exhibited a high rate of imposex within mollusc
populations, with an incidence of 28-100% for Hexaplex trunculus and
77-100% for Bolinus brandaris. (Lahbib et al., 2012; Abidli et al., 2013).
PAHs contamination was mainly localized in the southern part of Bi-
zerte lagoon, with the highest concentration recorded being that of
9948.84 ng-g~ . In general, recorded PAHs concentrations ranged
from 2.3 ng-g~ ' t049.75 ng-g~ !, being lower than those recorded pre-
viously in Bizerte lagoon (Trabelsi and Driss, 2005; Barhoumi et al.,
2014b). When compared with other Mediterranean ecosystems, PAHs
levels were lower than those recorded in the French Thau lagoon (59-
76.79 ng-g~!) (Leaute, 2008) and in Pialassa Baiona (3.032-
87.150 ng-g~ ') in Italy (Guerra, 2012).

4.2. Dinocyst abundance and diversity

This study provides a database on dinocyst assemblage and abun-
dance in the Bizerte lagoon. This could help to detect a potential future
introduction of a non-indigenous harmful dinoflagellate species in this
ecosystem through human-assisted dispersal. Along the southern Med-
iterranean shores, few studies were conducted on dinoflagellate cyst

Variables factor map - PCA
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Fig. 9. Principal Component Analyses output results. Total resting cyst densities is included as supplementary factor.
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Fig. 10. Principal component analyses output results. Total resting cyst densities is included as supplementary factor.

distribution (Zmerli Triki et al., 2014, 2015b; Fertouna-Bellakhal et al.,
2014). We considered Speniferites species as a single speniferites
group morphotype so as to avoid potential mis-identification and, in ad-
dition, unidentifiable dinoflagellate cysts were not counted. Our data
showed that all dinoflagellate cyst morphotypes encountered in the
benthic sediment of Bizerte lagoon have been previously recorded in
other Mediterranean ecosystems as in Spain and Italy, where they
seem to be well-established. Within Bizerte Lagoon benthic sediment,
we found high dinoflagellate cyst abundances (203-2742 cysts-g~!)
as well as moderate cyst diversity (22 cyst morphotypes). Our results
concerning dinocyst abundance contrasted with those from other Med-
iterranean ecosystems which showed a high diversity and a low cyst
abundance. As an example, along the lonian coasts of Sicily (Italy), 34
cyst morphotypes were recorded, with cyst densities ranging from 34
to 828 cysts-g~ !, whilst in Alfacs and Fangar bays (Spain) 62 cyst
morphotypes were recorded, and densities ranging from 21 to
322 cysts-g~ ! (Table 3 and references therein). The difference between
the cyst morphotype richness values recorded in different studies could
be explained in terms of several factors, such as differential dinoflagel-
late species colonization rates, the thickness of the investigated sedi-
ment layer and the inclusion or not of the unidentified morphotypes
within the total count of cyst morphotypes and also in terms of the tax-
onomic identity of species belonging to the speniferites group (the lat-
ter is especially an issue when there is a high species richness for this
group). In our study, potentially toxic dinoflagellate species represented
30% of the total morphotypes. A. pseudogonyaulax was the dominant
morphotype, reaching a density of 1686 cysts-g~' DS, followed by
Lingulodinium polyedrum and the Alexandrium catenella/tamarense com-
plex with maximum values of 152 and 104 cysts-g~ ! DS, respectively.
Gonyaulax spinifera and Protoceratium reticulatum were the least repre-
sented toxic/noxious species in the current study, whereas they are, to-
gether with Lingulodinium polyedrum, common in other Mediterranean
coastal sediments (Montresor et al., 1998; Giannakourou et al., 2005;
Rubino et al., 2010; Satta et al., 2010) and are known to cause toxic
blooms, mainly in the northern Adriatic Sea (Honsell et al., 1992).

4.3. Correlation between the contaminants and dinocyst abundance and
distribution

It's generally assumed that dinocyst distribution and abundance are
greatly influenced by the sediment characteristics and the hydrodynamic

features of a given area. Our results showed that the sediment in the Bi-
zerte lagoon with the highest silt and water content was characterized
by the highest RCs densities and that the hydrodynamics of this marine
system influences the cyst dispersal patterns (Zmerli Triki et al., 2014).
However, cyst accumulation remains a complex process which cannot
be explained exclusively in terms of sediment characteristics and hydro-
dynamics. Our data suggest that contaminant levels in the sediment
could be an additional parameter in explaining the cyst abundance and
distribution patterms. In fact, hierarchical clustering on stations per-
formed on RC abundance values and sediment contaminant levels re-
vealed a relationship between the highly polluted stations and the
highest RCs abundance. Moreover, the Simultaneous Autoregressive
(SAR) model, computed in order to analyze the predictive power of con-
taminant levels for determining resting cyst abundance, showed that
cysts densities in Bizerte lagoon were associated mainly with trace
metal concentrations, including those for Hg, Cd, Cu, Ni and Cr, as well
as with sediment water content, suggesting that concentrations for
these pollutants could influence RC abundance in the sediment. These
results are consistent with previous studies which discussed the effect
of contaminants on cyst abundance and distribution. For instance,
Horner et al. (2011) investigated the effect of the Cd concentration on
Alexandrium catenella cyst distribution and they highlighted a signifi-
cant positive correlation between the two. Aydin et al. (2015) showed
that autotrophic cysts were dominant close to highly contaminated sta-
tions in Izmir bay in Turkey. In addition, significant positive correlations
between the abundance and distribution of some dinoflagellate species,
such as Lingulodinium machaerophorum, Dubridinium caperatum and
Polykrikos kofoidii, and the sediment concentration of some metals as
Cd, Pb, Cu and Zn were reported from Izmir bay. Liu et al. (2012)
suggested that a high degree of sediment contamination by industrial
pollutants might cause a decrease in cyst abundance or heterotrophic/
autotrophic rate.

Within Bizerte lagoon, an anthropized ecosystem, high dinocyst
densities were recorded in the surface sediment, whereas no dense
blooms related to this phytoplankton group were observed in this eco-
system except for one caused by Alexandrium catenella in 2007. This ap-
parent paradox could be partially explained by: a) the high cyst
production rate and the low natural germination rate of the dominant
assemblage species (A. pseudogonyaulax), b) the physiological stress in-
duced on the vegetative cells by the remobilized pollutants in the water
column could enhance cyst production and c) the inhibition of the
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Table 2

Dinocyst species recorded within the surface sediment of Bizerte lagoon. The potential toxicity of these species as recorded within different Mediterranean case studies is indicated.

Groups Dinocyst species Abundance Toxine/toxic effect Presence in the Mediterranean Sea
in Bizerte
lagoon
Gonyaulacales  Alexandrium pseudogonyaulax ~— *** Goniodomine A Naple, Adriatic sea (Italy), Alfacs Bay (Spain) (Montresor, 1995; Bravo et al., 2006;
(Biecheler) (Zmerli Triki et al., Penna et al., 2010; Satta et al., 2013)
2016)
Alexandrium minutum Halim * Paralytic shellfish Harbour of Alexandria (Egypt), Catalonia, Arenys del mar (Spain); lonian sea, Adriatic
toxins (Bravo etal,  sea, Tyrrhenian sea, Olbia (Italy), Aegean Sea (Turkey) (Ismael and khadr, 2003;
2006) Anglés et al., 2010; Rubino et al., 2010; Penna et al., 2010; Aydin et al., 2011)
Alexandrium * Paralytic shellfish Aegean Sea (Turkey), lonian Sea, Olbia, (Italy), Thau lagoon (France), Tarragona and
catenella/tamarense (Whedon toxins (Laabir et al.,  Barcelona Harbours (Spain) (Bravo et al., 2006; Satta et al., 2010; Rubino et al., 2010;
& Kofoid) Balech 2013) Aydin et al., 2011)
Lingulodinium polyedrum o Yessotoxin (Paz et lonian Sea, Adriatic sea (Italy), Catalan sea, Arenys del mar, Alfacs and Fangar bays
(Stein) Dodge Lingulodinium sp al., 2004) (Spain) (Rubino et al., 2010; Penna et al., 2010; Satta et al.,, 2010, 2013)
Gonyaulax cf. spinifera complex * Yessotoxin (Rhodes  Arenys del mar (Spain), Olbia (Italy) (Satta et al., 2010)
(Claparéde et Lachmann) et al., 2006)
Diesing
Protoceratium reticulatum * Yessotoxin (Paz et Adriatic sea (Italy), Alfacs and Fangar bays (Penna et al., 2010; Satta et al., 2013)
(Claparéde et Lachmann) al., 2004)
Butschli
Protoperidinium claudicans o Adriatic sea, Tyrrhenian sea, Olbia and Syracuse bay (Italy) Arenys harbour, Catalonia,
(Paulsen) Balec Alfacs and Fangar bays (Spain) (Penna et al., 2010; Garcés et al., 2010; Satta et al.,
2013)
Protoperidinium leonis * Non toxic Ionian sea (Rubino et al., 2010)
Protoperidinium compressum * Non toxic Arenys harbour, Alfacs and Fangar bays (Spain), Adriatic sea, Olbia and Syracuse bay
(Abé) Balech (Italy) (Garcés et al., 2010; Penna et al., 2010; Satta et al., 2010, 2013)
Organic Protoperidinium conicum . Non toxic Aegean Sea (Turkey), Arenys harbour, Alfacs and Fangar bays (Spain), Olbia, Adriatic
peridiniales  (Gran) Balech sea, Syracuse bay and Ionian sea (Italy) (Garcés et al., 2010; Satta et al., 2010, 2013;
Rubino et al., 2010; Penna et al., 2010; Aydin et al., 2011)
Protoperidinium oblongum * Non toxic Arenys harbour, Alfacs and Fangar bays (Spain), Olbia and Syracuse bay, Adriatic sea,
(Aurivillius) Parke et Dodge lonian sea (Italy) (Garcés et al., 2010; Penna et al., 2010; Satta et al., 2010, 2013)
Zygabikodinium lenticulatum * Non toxic Arenys harbour (Spain), Olbia and Syracuse bay (Italy) (Garcés et al., 2010; Satta et al.,
(Paulsen) Loeblich 2010)
Diplopsalis lenticular . Non toxic Ionian Sea (Rubino et al., 2010)
Scrippsiella cf. precaria * Non toxic Arenys harbour (Spain), Olbia and Syracuse bay (Italy) (Garcés et al., 2010; Satta et al.,
Montresor et Zingone 2010)
Scrippsiella cf. ramonii * Non toxic Arenys harbour, Alfacs bay (Spain) (Satta et al., 2010)
Montresor
Scrippsiella trochoidea (Stein) ~ ** Non toxic Arenys harbour, Alfacs and Fangar bays (Spain), Olbia and Syracuse bay, lonian Sea,
Catalan sea, Tyrrhenian sea (Italy) (Garcés et al., 2010; Satta et al., 2010; Rubino et al.,
2010)
Ensiculifera cf. acminata * -
Scrippsiella rotunda * -
Gymnodiniales Polykrikos kofoldi/schwartzii * Non toxic Aegean Sea (Turkey), Adriatic sea, Olbia (Italy) Alfacs and Fangar bays (Aydin et al.,
complex 2011; Penna et al., 2010)
Gymnodinium spp * -
Prorocentrales Prorocentrum micans * Toxic

The resting cyst abundance within the sediment of the Bizerte lagoon: 50 < * < 10 cysts-g~ ' dry sediment (DS); 10% < ** < 10® cysts-g~ ' DS; *** > 10 cyst-g ' dry sediment.

excystement process by the contaminants within the sediment could
lead to a considerable cyst accumulation in the sediment.

Liu et al. (2012) showed that toxic compounds in the sediment could
induce a decrease of the proliferation of vegetative cells; hence, some
cells might die whilst others perform sexual reproduction, resulting
in large volumes of resistant cysts enhancing cyst banks. Several

laboratory studies have been conducted to date to test the degree of
stress posed by metal contamination on vegetative cells. Contaminants
affect the physiology of vegetative cells by acting on the levels of oxida-
tive stress in cells (Okamoto and Colepicolo, 1998; Pinto et al., 2003) or
by reducing their light-harvesting capacity and by inhibiting cell growth
(Miao and Wang, 2006; Herzi et al., 2013). Under high levels of iron, cell

Table 3

Comparison of the number of cyst morphotypes and the total cyst abundance (cysts-g~') in sediment of different coastal ecosystems. NR: not recorded.
Location Sampling method Number of stations ~ Morphotypes  Densities References

number number (cysts-g— 1)

Gulf of Olbia and Arenys del Mar harbour ~ Cores (1 cm) 68 42 20-5484 Satta et al. (2010)
Alfacs and Fangar bays Cores (1 cm) 16 62 21-322 Satta et al. (2010)
lonian coasts of Sicily Cores (3 cm) 4 34 43-828 Rubino et al. (2010)
Lisbon Bay, Portugal Manual vacuum pump (0-2 cm) 23 58 212-574 Ribeiro and Amorim (2008)
[zmir Bay Corer (0-2 cm) 13 41 3292 Aydin et al. (2011)
Thermaikos Gulf, Aegean Sea, Greece Corer (0-10 cm) 36 385-5718 Giannakourou et al. (2005)
Sishili Bay, Yellow Sea, China Core (0-5 cm) 22 35 122-1322 Liuetal. (2012)
Labrador fjords (canada) Corer (5 mm) 13 16 1000-6000 Richerol et al. (2012)
Estuarine south Korea Corer (2 cm) 23 47 1000-8900 Pospelova and Kim (2010)
Mexico Birge Ekman style box sediment sampler 7 17 NR Pena-Manjarrez et al. (2005)
Eastern coast of Russia Corer (2 cm) 44 40 NR Orlova et al. (2004)
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mobility and protein production could be altered, so that vegetative
cells can promptly undergo encystment so as to survive the induced
high levels of pollutant stress (Lage et al., 1994; Okamoto et al., 1999;
Liuetal, 2012). Wang et al. (2001) revealed that the intensity of the ef-
fect of pollutants on vegetative cells is largely dependent on the rates of
nutrient availability.

It has been shown for instance that organic pollutant such as PAHs
(phenanthrene, anthracene, pyrene and fluoranthene) could inhibit
the cell growth of some phytoplankton species (Wang et al., 2008;
Hong et al., 2008; Echeveste et al., 2010; Ben Othman et al., 2013).
Mouhri et al. (1995) showed that the exposure of phytoplankton to
TBT induced the intracellular accumulation of nitrogen and phosphorus
without their assimilation, resulting in a decrease of the cellular bio-
mass. da Leitao et al. (2003) showed a harmful effect of Arochlor 1254
and PCB derivative on phytoplankton cells, inducing the oxidative dam-
age of proteins and causing cell growth inhibition.

Laboratory ecotoxicological studies on phytoplankton only assessed
the effect of the pollutants on vegetative cells. Until now, no studies
have been conducted to test the potential effect of the pollutants on re-
sistant cysts of the dinoflagellate species responsible for the major
Harmful Algal Blooms. This consideration should set the agenda for fu-
ture research on coastal benthic sediments since such laboratory studies
could help us better understand the effect of pollutants on the bloom
dynamics of HAB-forming species.
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