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Abstract. Dike monitoring is crucial for protection against flooding dis-
asters, an especially important topic in low countries, such as the Nether-
lands where many regions are below sea level. Recently, there has been
growing interest in extending traditional dike monitoring by means of a
sensor network. This paper presents a case study of a set of pore pressure
sensors installed in a sea dike in Boston (UK), and which are continu-
ously affected by water levels, the foremost influencing environmental
factor. We estimate one-to-one relationships between a water height sen-
sor and individual pore pressure sensors by parametric nonlinear regres-
sion models that are based on domain knowledge. We demonstrate the
effectiveness of the proposed method by the high goodness of fits we ob-
tain on real test data. Furthermore, we show how the proposed models
can be used for the detection of anomalies.

Keywords: Structural health monitoring, dike monitoring, nonlinear
regression, anomaly detection.

1 Introduction

Dikes are artificial walls that protect an often densely populated hinterland
against flooding disasters. Especially the Netherlands, with large areas below
sea level, has a rich history of dike failures that resulted in drowning deaths and
devastation of infrastructure. Although dike technology has improved over the
years, only 44% of the 2875 kilometers of main Dutch dikes met the govern-
ment’s dike regulations in 2006 [1]. Traditional dike monitoring involves visual
inspection by a dike expert at regular time intervals. Dike patrolling is, however,
a time consuming and costly process that does not always reveal weak spots of a
dike. In this light, the IJkdijk foundation1 has been established in 2007 with the
ambition to enhance dike monitoring by sensor systems. The largely successful
program initiated an EU-funded project, called UrbanFlood2, that also imple-
ments sensor systems in dikes, but intends to construct so-called Early Warning

1 Official website: http://www.ijkdijk.nl
2 Official website: http://www.urbanflood.eu
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Systems (EWS) for floodings [2]. As a consequence of both projects, more and
more dikes across Europe are being equipped with sensor systems, and therefore
there is an urgent need for algorithms that are capable of detecting damage to
the dike as early as possible.

Geophysical models [3,4] can be used to assess the stability of a dike by sim-
ulation of the underlying physical processes. Such models are computationally
intensive and thus not appropriate for (near) real-time dike monitoring. To over-
come such problems, data driven techniques were considered to detect indicators
for instability of a dike. In [2], the authors proposed neural clouds in order to
detect outliers in the sensor values. The main drawback of this approach is that
sensor values are highly influenced by environmental conditions, and thus out-
liers often correspond to rare environmental conditions rather than changes in
the internal structure of the dike. The same research group also proposed an
anomaly detection technique that uses one-step-ahead prediction of (non-linear)
auto regressive models [5]. Although such methods achieve high model fits, they
are not appropriate to detect gradual changes in a response of a sensor.

In this paper, we conjecture that in order to detect internal changes in a dike,
we first have to model the normal relationship between some environmental
conditions and dike sensors. We present a case study of a set of pore pressure
sensors that are installed in a sea dike in Boston (UK), and which are contin-
uously affected by water levels, the foremost influencing environmental factor.
Although the pore pressure signals vary significantly among the set of sensors,
we hypothesize that essentially two physical processes play a role. We estimate
the one-to-one relationships by parametric nonlinear regression models that aim
to reflect the underlying physical phenomena. In contrast to black box model-
ing techniques, such as Transfer Function Modeling and Neural Networks, the
proposed models are intuitive, interpretable and provide more insight into the
dynamics of the dike. Moreover, we demonstrate that the models can be effec-
tively used for anomaly detection.

2 Background

Fig. 1 shows a schematic overview of the concerned dike in Boston (UK) that
includes the placement of seven sensors that measure the pore pressure at time
intervals of 15 minutes. Although not shown in Fig. 1, there is a sensor that mea-
sures the water level nearby the dike with a sample interval of 15 minutes. In Fig.
2b, we show the water levels of the month of October 2011. It is characteristic of
the dike in Boston that water levels follow half-daily tides with extreme differ-
ences (up to seven meters) between high and low tides. Note that the amplitude
of the half-daily tides also varies with an approximately two-weekly period due
to the lunar cycle. It is also worth mentioning that the sensor cannot detect
water levels below −1.6 meters, which is reflected in the data by the flat lower
envelope of the water level signal. The estuary near the dike falls dry at that
point, although the actual sea levels are a little bit lower.

In Fig. 2a, we illustrate all seven pore pressure signals recorded in October
2011. The relationship between a pressure signal and a water level signal is
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Fig. 1. Schematic overview of the sensor setup in the Boston (UK) dike

influenced by the location of the concerned pressure sensor. For instance, the
AC1 sensor, which is placed at the top of the dike, does not respond to the
water level. On the other hand, the AC4 pore pressure, which is located at a
very deep level, seems to follow the same tidal fluctuations as the water levels.

The available data set consists of one year of sensor values, and ranges from
October 2011 till October 2012. The data set has a lot of missing values. In
particular, approximately 10% of the water levels and 20% of the pore pressure
values are missing. Moreover, measurements of different sensors are not syn-
chronized. As a preprocessing step, we therefore linearly interpolate the water
level signal in order to align it with the pore pressure signal in question. In this
way, we also fill small gaps in the water level signal of at most 2 samples (i.e.
30 minutes). The models we propose use some history of water levels to model
the current pore pressure. We exclude the sample from the training set if either
the pore pressure value is missing, or there is a gap of at least two water level
measurements in the history. In Fig. 2, a sequence of missing values is visible as
a straight line.

3 Model Estimation

In general, we expect that two physical phenomena play a role in the response
of a pore pressure sensor:

Short-term effect. An almost immediate response to the water levels due to
water pressure at the front of the dike. Therefore, the regular rise and fall of
the water levels cause peaks in the pore pressure signals.

Long-term effect. A much slower effect that accounts for the degree of satu-
ration of the dike. A dike that is exposed to high water levels absorbs water,
which increases the degree of saturation of the dike, which in turn increases
the pore pressure.

Fig. 2b clearly shows that the long-term effect does not play a role in all sensors.
For example, the sensors AC4 and AC5, that reside deep in the dike, do not
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Fig. 2. The raw signals of one month of data of (a) the water level sensor and (b) the
seven pore pressure sensors installed in the dike in Boston (UK). The straight lines
indicate missing values.

have significant changes in the baseline. The saturation degree at that location
in the dike is not heavily influenced by the dike’s exposure to water levels. In the
following, we refer to these sensors as short-term effect sensors, and we propose
a model for them in Section 3.1.

The other sensors follow a mixture of both effects. A typical example is the
AS1 sensor, of which an example month of data is shown in Fig. 2b. There are
significant changes in the baseline of the signal that seem to follow the two-weekly
cycle of the water levels, but there are still half-daily peaks that are superimposed
on this baseline. We model these mixed effect sensors in Section 3.2.
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3.1 Short-Term Effect Sensors

In the following, we select a subset of the complete data set as training data.
Formally, we consider N pore pressure values y[1], . . . , y[N ] (equally spaced in
time) and water level measurements x[1], . . . , x[N ] that are aligned in time. We
model the current pore pressure value y[n] as a function of recent history of water
levels x[n −M + 1], . . . , x[n]. Here, M > 0 represents the number of historical
water level measurements. It should be chosen large enough in order to reliably
predict the pore pressure. We choose M = 100, which translates to roughly one
day of water levels. The training set contains P = N − M + 1 examples, and
consists of a set of water level input vectorsX = {xi = x[i+M−1], . . . , x[i] | i =
1, . . . , P} and pore pressure output y = {yi = y[i+M − 1] | i = 1, . . . , P}.

We propose to model the short-term effect sensor by the following parametric
nonlinear regression model3:

f(θ;xi) = b + a

M−1∑

m=0

exp(−λm)xi[m+ 1] with θ =
[
b a λ

]
(1)

where λ controls the rate of decay, and a and b are affine transformation param-
eters. Our model corresponds to the solution of a first-order constant coefficient
differential equation4:

y′(t) = −λy(t) + ax(t) with initial condition y(0) = b (2)

By rewriting the right hand side to λ (cx(t) − y(t)) with c = a
λ , our model

assumptions become clear. First, the water level linearly relates (by factor c)
to the pressure on the front of the dike. Second, the rate of change of the pore
pressure is proportional to the difference between the current pressure on the
front of the dike and the pore pressure of the sensor.

We estimate the parameters of the model by minimizing the sum of squared
residuals:

S(θ) =
P∑

i=1

r2i (θ) where ri(θ) = yi − f(xi; θ). (3)

which is identical to the Maximum Likelihood Estimator (MLE) under white
Gaussian error terms. We optimize the cost function by a Gauss-Newton solver,
which is appropriate to optimize a least-squares problem [6].

We fit the model on 12 days of AC4 sensor values. We obtain the parameters
bmle = 430.13, amle = 3.17 and λmle = 0.1142, and show the predicted values by

3 For initial rest (i.e. b = 0) the proposed model is a Linear Time Invariant (LTI)
system with an exponential decaying impulse response function. Linear constant co-
efficient differential equations can be represented by causal LTI systems if and only
if they satisfy the initial rest condition. We refer the interested reader to http://

ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/

lecture-notes/MITRES_6_007S11_lec06.pdf.
4 See http://web.mit.edu/alecp/www/useful/18.03/Supplementary-CG.pdf for
more details.

http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf
http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf
http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf
http://web.mit.edu/alecp/www/useful/18.03/Supplementary-CG.pdf
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Fig. 3. A comparison between the predicted and observed values for (a) the AC4 and
(b) the AC5 sensors. The black bar separates the training and test sets.

our model in Fig. 3a. Note that the model almost perfectly follows the observed
pore pressure. We quantify the goodness of fit by:

R2 = 1−
∑P

i=1(yi − f(θ;xi))
2

∑P
i=1(yi − ȳ)2

with mean ȳ =

P∑

i=1

yi
P
, (4)

which, roughly speaking, measures how successful the model is in explaining
the variation of the data. For the above example, we find R2 = 0.9867, which
indicates that the estimated model fits very well. We consider as test data the
12 days that follow the training data. For this period we also obtain a very high
value of R2 = 0.9760, which demonstrates that the proposed regression model is
not prone to over-fitting.

To give an impression of the duration of the exponential decay, note that λ =
0.1142 corresponds to a mean lifetime of τ = 1/0.1142 = 8.756 measurements,
which in our case amounts to slightly over 2 hours. The corresponding half-life
is τ1/2 = 8.756/ ln(2) = 6.070 which corresponds to roughly 1.5 hours.

In a similar way, we estimate the parameters for the model on 12 days of
AC5 pore pressure values, and obtain bmle = 671.78, amle = 3.09 and λmle =
0.1458. We show the predicted values obtained by our model in Fig. 3b, and
point out that the predicted values are quite close to the observed pore pressure
measurements. This is confirmed by the goodness of fit, R2 = 0.9786. For the
next 12 days, we obtain R2 = 0.9743, which demonstrates its effectiveness on
unseen data.
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Fig. 4. Extraction of the top envelope of the water levels. The circles indicate the local
maxima which are connected by straight lines using linear interpolation.

3.2 Mixed-Effect Sensors

We extend the models that we proposed above to sensors that are also affected by
the degree of saturation of the dike. Intuitively speaking, a dike is only saturated
if it is exposed to high water levels for a longer period. That is to say, we assume
that the process varies slowly and it is not influenced by half-daily tides, but it
is related to the two-weekly cycle of the water levels.

We extract the top envelope of the water levels in order to capture the general
trend (the underlying fortnightly cycle). To this end, we extract the local maxima
by taking into account the fact that local maxima are expected to be separated by
12 hours. Fig. 4 shows the extracted local maxima for the water levels in October
2011. This extraction decreases the resolution of the signal considerably. We use
linear interpolation to fill in the gaps between the extracted local maxima, such
that we obtain the same resolution as the given water level signal. We denote
by x̂[1], . . . , x̂[N ] the estimated general trend of the water levels, and plot it in
Fig. 4.

We model the long-term effect with a first-order constant coefficient differen-
tial equation that is similar to the short-term model defined in Eq. 2, but here
we use the general trend of the water levels x̂ as input signal. The underlying
assumption is that the rate of change in saturation degree is proportional to the
difference between the current trend in water level (i.e. how much water the dike
is currently exposed to) and the current saturation degree. In other words, a dike
that is exposed to high water levels absorbs water much faster whenever it is
not saturated. We propose to model the mixed-effect sensors by superimposing
the short-term model on the long-term one:

f(θ;x, x̂) = b + al

Ml−1∑

ml=0

exp(−λlml) x̂[ml + 1]pl

+ as

Ms−1∑

ms=0

exp(−λsms)x[ms + 1]ps , (5)

where θ =
[
b al λl pl as λs ps

]�
, and subscripts s and l indicates the variables

for short- and long-term effect, respectively. Note that we have included new
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Fig. 5. A comparison between predicted and observed pore pressure values for (a) the
AS1 sensor and (b) the AS2 sensor. The black bar separates the training and test sets.

parameters pl and ps that raise the water levels x̂ and x to the powers of pl
and ps, respectively. This means that the relation between water level (general
trend of water level) and the pressure (saturation degree) on the front of the
dike is assumed to be c(x[n])p. Exploration of the sensor signals revealed that
the response of some sensors is much higher to water levels above a particular
threshold. There are several explanations for such an effect, which include the
vertical height of the sensor that is below or above a particular water level,
a change in slope of the dike front or a change in material covering the dike
around that height. From the actual setup of the dike, as shown in Fig. 1, it is
not immediately clear which of these the underlying reason might be.

In general, we expect that the long-term effect is based on a longer history than
the short-term effect; i.e. Ml � Ms. Here, we set Ml = 2000 and Ms = 100,
which correspond to roughly 21 and 1 day(s), respectively. The mixed-effect
model is more richly parameterized than the short-effect model, and therefore
we also need more data to reliably estimate the parameters. For the mixed-
effect sensor, the training set is of size P = N − Ml + 1, and we decided to
use approximately 21 days of training data; i.e. P = 2000. The training set
consists of the general trend of water level input vectors X̂ = {x̂i = x[i +Ml −
1], . . . , x[i] | i = 1, . . . , P}, water levels input vectors X = {xi = x[i + Ml −
1], . . . , x[i + Ml − Ms] | i = 1, . . . , P}, and pore pressure output y = {yi =
y[i+Ml − 1] | i = 1, . . . , P}.
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Table 1. The estimated parameters for the mixed-term sensors, as well as the goodness
of fit R2 for training and unseen data

Sensor b al λl pl as λs ps R2 R2
unseen

AS1 57.75 4.32e−11 0.0089 10.59 2.92e−6 0.83 7.47 0.9165 0.9144
AS2 283.31 6.18e−11 7.15e−4 9.41 2.2e−3 1.24 4.60 0.9196 0.8968

We estimate the set of parameters θ by MLE, which minimizes the sum
of squared residuals as defined in Eq. 3, but this time the residuals ri(θ) =
yi − f(θ;xi, x̂i) are defined with respect to the new model f(θ;x, x̂). Table 1
presents the estimated parameters for the AS1 and AS2 sensors, as well as the
goodness of fit for training and test data. The values determined by the proposed
models for training and test sets are shown in Fig. 5. The AS1 sensor model only
partly captures the long-term effect. In particular, there is a significant difference
around November 3-4. The short-term effect is also not modeled very accurately,
but this might be a consequence of the imperfect long-term effect model. Our
observation is confirmed by the goodness of fit R2 = 0.9165, which is slightly
worse than the goodness of fit for short-term effect sensors. For unseen data we
obtain R2 = 0.9144, which indicates that the model captures at least some of
the underlying dynamics of the AS1 sensor.

The AS2 sensor is dominated by the short-term effect, and only has a minor
contribution from the long-term one. Fig. 5b shows that the estimated model
captures the short-term effect, but fails to learn the long-term one. Nevertheless,
the goodness of fit for both training and test set is in the order of R2 = 0.91.

We have excluded the results of the AC2 and AC3 sensors, since they are
in line with the AS2 sensor; the proposed model is not robust enough to fully
capture the long-term effect. We believe that this is mainly due to other environ-
mental factors (e.g. outside temperature, humidity, and air pressure) that were
not considered (because they were not available) in the proposed model.

4 Anomaly Detection

In the previous section, we showed that we can reliably estimate a model for the
short-term effect sensors. As an example application, we show that such models
can be effectively used to detect changes in the response of the sensor — the
so-called anomalies.

We employ the following semi-supervised strategy to detect anomalies in the
AC4 sensor. We first estimate the parameter set θ of the model on data of
October 2011 (that is explicitly labeled as normal). We then use the estimated
model f(θ;x) to predict future pore pressure values ỹ[n] for the next months.
A pointwise anomaly score is calculated by measuring the Euclidean distance√
(y[n]− ỹ[n])2 between the predicted and observed pore pressure. We plot the

anomaly score of the AC4 sensor till August 2012 in Fig. 6a, and mark two
anomalies in this plot by colored rectangles. The red rectangle indicates a rather
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Fig. 6. (a) Anomaly score for the AC4 sensor that is computed as the pointwise Eu-
clidean distance between the predicted and observed pore pressure measurements. (b-c)
A zoomed-in visualization of the predicted (purple dashed) and observed (black solid)
pressure measurements for the respective red solid and green dashed marked regions
in (a).

small anomaly that corresponds to a small offset between the predicted and
observed pressure around December 12, Fig. 6b. On the other hand, the green
rectangle indicates a more serious anomaly since the anomaly score is high over a
long period of time. Indeed, Fig. 6c illustrates a significant discrepancy between
predicted and observed pore pressure from April 16 till April 25. Note that the
anomaly score returns to almost zero around half of May, and thus the detected
anomaly is not a structural change in the response of the sensor. April 2012 was
characterized by extreme rainfall5, and we speculate that the anomaly is caused
by outflow from the locks just upstream of the monitoring site.

5 Discussion and Conclusions

In this paper, we proposed parametric nonlinear regression models that describe
the relationship between a water height sensor and individual pore pressure
sensors. The models that we propose are highly effective (in the order of goodness
of fit R2 = 0.97) for pore pressure sensors (AC4 and AC5) that exhibit short-
term physical phenomenon. Moreover, we demonstrated that the proposed model
can be effectively used for the detection of anomalies.

5 See http://www.metoffice.gov.uk/climate/uk/summaries/2012/april

http://www.metoffice.gov.uk/climate/uk/summaries/2012/april
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While we also achieved reasonably high goodness of fit for what we refer to
as long-term effect sensors (AS1 and AS2), we believe that the proposed model
can be further enriched by incorporating information about other environmen-
tal factors, such as rainfall, humidity and outside temperature. Although the
presented models are tailored to sensors installed in a sea dike, we think that,
due to the general nature of the applied techniques, they are applicable to other
sensing and monitoring systems.
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