Vessels delineation in retinal images using COSFIRE filters

George Azzopardi1, Nicola Strisciuglio1,2, Mario Vento2, Nicolai Petkov1
1Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen
2Dept. of Information and Electrical Eng. and Applied Mathematics, University of Salerno - Italy
\{g.azzopardi, n.strisciuglio, n.petkov\}@rug.nl, mvento@unisa.it

Abstract

Retinal image analysis is widely used in the medical community to diagnose several pathologies. The automatic analysis of such images is important to perform more efficient diagnosis. We propose an effective method for the delineation of blood vessels in retinal images using trainable bar-selective COSFIRE filters. The results that we achieve on three publicly available data sets (DRIVE: Se = 0.7655, Sp = 0.9704; STARE: Se = 0.7763, Sp = 0.9695; CHASE_DB1: Se = 0.7699, Sp = 0.9476) demonstrate the effectiveness of the proposed approach.

1. Introduction

The retinal fundus photography is a non-invasive technique that is widely used by medical doctors to diagnose several pathologies. The automatic analysis of retinal images is important to facilitate the work required by medical doctors to diagnose such pathologies.

The delineation of blood vessels is a basic step of the automatic analysis of retinal fundus images. The methods proposed so far can be divided into two categories: unsupervised \cite{15,17} and supervised \cite{4,6,10,11} approaches.

We propose a trainable bar-selective filter based on Combination of Receptive Fields (CORT) \cite{2} and its implementation called Combination of Shifted Filter Responses (COSFIRE) \cite{3}. We demonstrate that it is highly tolerant to rotation and noise.

2. Proposed method

The proposed COSFIRE filter takes as input the responses of a group of Difference-of-Gaussians (DoG) filters at certain positions with respect to the center of its area of support. The positions at which we take the responses are determined in an automatic configuration process that extracts information about a given synthetic bar pattern, Fig. 1a. We consider the DoG filter responses along a number (in general \(k\)) of concentric circles around the center point (labelled by ‘1’ in Fig. 1b). The result of the configuration is a set \(S = \{(\sigma_i, \rho_i, \phi_i) \mid i = 1, \ldots, n\}\) of 3-tuples, where \(\sigma_i\) represents the standard deviation of the DoG filters, while \(\rho_i\) and \(\phi_i\) are the polar coordinates with respect to the center of support of the filter. The response of a COSFIRE filter is computed as the weighted geometric mean of the responses of the concerned DoG filters at the positions determined in the configuration step:

\[
 r_S(x, y) = \left(\prod_{i=1}^{\|S\|} (s_{\sigma_i, \rho_i, \phi_i}(x, y))^\omega_i \right)^{1/\sum_{i=1}^{\|S\|} \omega_i} \tag{1}
\]

where \(s_{\sigma_i, \rho_i, \phi_i}(x, y)\) is the blurred response of the \(i\)-th DoG filter weighted with a Gaussian function whose standard deviation \(\sigma' = \sigma_0 + \alpha \rho_i\) is a linear function of the distance \(\rho_i\) from the support center of the filter.

We manipulate the parameter \(\phi_i\), to obtain a new set \(R_{\Psi}(S) = \{(\sigma_i, \rho_i, \phi_i + \psi) \mid i = 1, \ldots, n\}\) with orientation preference \(\psi\). Then, we consider the responses of COSFIRE filters with different orientation preferences by taking the maximum value at every location \((x, y)\):

\[
 \hat{r}_S(x, y) = \max_{\psi \in \Psi} \{r_{R_{\psi}(S)}(x, y)\} \tag{2}
\]

where \(\Psi = \{0, \pi/12, \pi/6, \ldots, 11\pi/12\}\).
3. Results

We evaluated the method on three benchmark data sets, called DRIVE [12], STARE [5] and CHASE_DB1 [9] that are composed of 40, 20 and 28 images, respectively. These data sets come with ground truth images that have been considered as gold standard for the performance measurement.

We binarized the output of the COSFIRE operator by using a threshold value as a fraction of the maximum response. In this way, every pixel is classified either as vessel or non-vessel. For each threshold value we matched the resulting binary image with the ground truth image and computed the number of true positives, false positives, true negatives and false negatives. Then, using these values we computed the Matthews Correlation Coefficient (MCC) as a performance measurements and chose the threshold that gave the maximum MCC average value over a given data set. For that threshold value we report the Accuracy (Acc), Sensitivity (Se) and Specificity (Sp). For comparison purpose, we computed the ROC curve and its underlying area (AUC). In Table 1 we report our results next to the ones published in the literature.

<table>
<thead>
<tr>
<th>Method</th>
<th>DRIVE</th>
<th>STARE</th>
<th>CHASE_DB1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se</td>
<td>Sp</td>
<td>AUC</td>
</tr>
<tr>
<td>COSFIRE</td>
<td>0.7655</td>
<td>0.9704</td>
<td>0.9614</td>
</tr>
<tr>
<td>Mendonca et al. [7]</td>
<td>0.7344</td>
<td>0.9764</td>
<td>0.9463</td>
</tr>
<tr>
<td>Al-Rawi et al. [8]</td>
<td>-</td>
<td>-</td>
<td>0.9435</td>
</tr>
<tr>
<td>Ricci and Perfetti [10]</td>
<td>0.7344</td>
<td>0.9764</td>
<td>0.9463</td>
</tr>
<tr>
<td>Staal et al. [12]</td>
<td>0.7332</td>
<td>0.9782</td>
<td>0.9614</td>
</tr>
<tr>
<td>Soares et al. [11]</td>
<td>0.7332</td>
<td>0.9782</td>
<td>0.9614</td>
</tr>
<tr>
<td>Marin et al. [6]</td>
<td>-</td>
<td>0.9558</td>
<td>0.9563</td>
</tr>
<tr>
<td>Fraz et al. [4]</td>
<td>0.7067</td>
<td>0.9801</td>
<td>0.9588</td>
</tr>
</tbody>
</table>

Table 1: Performance results of COSFIRE operator on DRIVE, STARE and CHASE_DB1 data sets compared to other methods.

4. Conclusions

The results that we achieve on DRIVE, STARE and CHASE_DB1 data sets demonstrate the effectiveness of the proposed method. The COSFIRE filter is versatile as it can be automatically configured to detect any given vessel-like patterns, including bifurcations and crossovers.

The processing of a COSFIRE filter is very efficient. In this way, every pixel is classified either as vessel or non-vessel. For each threshold value we matched the resulting binary image with the ground truth image and computed the number of true positives, false positives, true negatives and false negatives. Then, using these values we computed the Matthews Correlation Coefficient (MCC) as a performance measurements and chose the threshold that gave the maximum MCC average value over a given data set. For that threshold value we report the Accuracy (Acc), Sensitivity (Se) and Specificity (Sp). For comparison purpose, we computed the ROC curve and its underlying area (AUC). In Table 1 we report our results next to the ones published in the literature.

References