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Summary 

Microelectromechanical systems (MEMS) have established themselves in various science and 

engineering domains. MEMS-based microgrippers provide several advantages in terms of compact 

size and low cost, and they play vital roles in microassembly and micromanipulation fields within 

both micromanufacturing and biological sectors. Microactuators based on different actuation 

principles have been devised to drive MEMS microgrippers. 

This paper presents a finite element model of a MEMS-based electrothermally actuated microgripper 

performed using CoventorWare
®
. The microgripper design follows standard micromachining 

processes that make use of reactive ion etching where polysilicon acts as the main structural material 

while a chromium and gold layer is deposited on the structure for thermal actuation. The simulations 

are used to assess the performance of the microgripper and to optimise its operating parameters. 
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Introduction 

Microelectromechanical systems (MEMS) are microscopic devices that consist of a microelectronic 

part and a miniaturised mechanical part embedded on the same semiconductor package using 

microfabrication techniques. The compact size and low cost of MEMS have given them key 

applications in various science and engineering domains [1]. Microgrippers are typical MEMS 

devices and are widely used in microassembly and micromanipulation fields. They serve to handle 

and manipulate micro-objects, such as micromechanical parts and biological cells, without causing 

damage [2, 3]. 
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An essential component of all active MEMS is a microactuator that ensures the necessary motions to 

make the device operational. Different actuation methods include shape-memory alloys, electrostatic, 

electrothermal, piezoelectric, pneumatic, and electromagnetic approaches. Electrothermal actuators 

have several advantages in that they can generate a relatively large output force and displacements 

with a small applied voltage. Their operational principle relies on thermal expansion due to resistive 

heating [4]. 

This paper presents the design of a MEMS-based electrothermal microgripper whose analytical and 

numerical models are developed to study its behaviour and its principle of operation. The fabrication 

process implemented within the numerical model is described together with the finite element analysis 

performed with CoventorWare
®
. Different microgripper designs are explored with emphasis on 

optimal design and performance key factors including temperature and maximum deflection. 

Microgripper Design 

Structure of the Microgripper 

The microgripper presented in this paper is based on the well-established 'hot and cold arm' actuator 

design. The 'hot and cold arm' actuator is composed of two parallel arms of different widths that are 

joined at their free ends to form a U-shape electrical loop [5]. Two 'hot and cold arm' actuators are 

then placed anti-symmetrically next to each other to form the microgripper (Fig. 1).  

 

(A) 

 

(B) 

Figure 1: MEMS-based electrothermal microgripper. (A) An oblique view of the 3D 'hot and cold arm' 

microgripper in CoventorWare®. The heights of the silicon substrate and the silicon nitride layer are 20 µm and 

0.6 µm respectively. The height of the air gap between the suspended polysilicon microgripper and the silicon 

nitride layer is 2 µm. (B) A scanning electron micrograph of a fabricated overhanging microgripper [6]. 

 

The microgripper design (Fig. 2) consists of the following key elements [5]: 

1. Anchor Pads: Their function is to anchor the microgripper to the substrate. They also serve as 

junctions where the driving voltage is applied. 

2. Hot and Cold Arms: These are the main components of the microgripper. The narrower arm 

experiences greater heating and expansion than the wider arm, resulting in lateral bending of the 

actuator tip. 

3. Flexure: This connects the anchor pad to the cold arm, and aids the flexibility in the direction of 

motion. Together with the hot arm, the flexure has to be designed in such a way that its cross-

sectional area is as minimum as possible considering the capability of the fabrication process. 
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4. Gripping Arms: These two flexible arms are driven by the 'hot and cold arm' electrothermal 

microactuators to open and close as necessary. 

 

Figure 2: Top view of the microgripper design with markings of the key elements. The initial separation distance 

of the two gripper arms is 5 µm in this design. 

Principal of Operation 

Thermal expansion of the hot and cold arms is achieved through resistive heating of the suspended 

polysilicon structure. A thin metal layer attached selectively on top of the polysilicon beam serves to 

decrease the resistance. This leads to an increase in the current density which results in more heating 

and thus greater expansion. Under an electric current load, the narrow arm heats and expands more 

than the wide arm, thereby bending the structure. The actuator movement is influenced by the 

temperature difference between the narrower (and hotter) arm segment and the wider (and colder) arm 

segment. Increasing this temperature difference improves the efficiency of the actuator.  

Since the actuator beam length is much longer than its width or height, a one-dimensional (1-D) 

analysis is deemed sufficient to model the longitudinal heat flow along the polysilicon beam [7]. 

Fig. 3 illustrates a 1-D differential element with height h, width w and thickness dx showing the heat 

generation due to the applied potential, the conduction heat loss to the adjacent connected elements, 

and the conduction heat loss through the air gap and into the substrate. 

 

Figure 3: 1-D differential element for thermal analysis of the polysilicon beam. The internal heat generation is 

dissipated by means of conduction through the polysilicon beam, and through the air gap to the substrate. 

 

Due to the very small gap between the substrate and the polysilicon beam (tv = 2 µm), conduction 

from the beam's bottom surface through the air to the substrate dominates, and heat transfer by free 

convection and radiation can be reasonably ignored [5, 8]. Moreover, conduction from the sides of the 

beam through the surrounding air to the substrate is not negligible and must be accounted for by the 

shape conduction factor S [7]. 
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Assuming purely conductive heat transfer from the surface of the thermal actuator to the air, and 

approximating the heat transfer coefficient U as a constant (~15000 W/m
2
K for air and an air gap of 

2 µm), the maximum change in temperature of the hot arm, ΔTmax, can be approximated by Eq. (1) [8]: 
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where V is the voltage across the hot arm, R is the resistance of the hot arm, w and L are the width and 

length of the hot arm respectively, and S is the shape conduction factor given by Eq. (2) [5, 7]: 

                                                                  11
2











h

t

w

h
S v                                                  ... Eq. (2) 

The expansion of the hot arm causes the cold arm and flexure components to also expand slightly, 

thus reducing the net expansion difference between the hot arm and the cold arm/flexure components. 

The net temperature difference, ΔTnet, is defined as the temperature difference which would cause the 

same net expansion if applied to the hot arm alone and is given by Eq. (3) [8]: 

                                           




    

1 2 3

0 0 0
1

1 L L L

flexcoldhotnet dxTdxTdxT
L

T                            ... Eq. (3) 

where L1, L2 and L3 are the lengths, and Thot, Tcold and Tflex are the average temperatures, of the hot 

arm, cold arm, and flexure components respectively. 

Assuming that the hot arm and flexure components have the same cross-sectional area A and the same 

moment of inertia I, the elastic deflection at the tip of the actuator, δy, is given by Eq. (4) [8]: 
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where a is the ratio of the flexure length to the hot arm length, r is the centre spacing between the hot 

arm and the flexure, L is the length of the hot arm, and α is the coefficient of thermal expansion. 

Fabrication Process 

The fabrication process implemented within the microgripper model is the PolyMUMPs process. This 

is a 3-layer polysilicon surface micromachining process in which the layers are deposited using low 

pressure chemical vapour deposition (Fig. 4). Polysilicon acts as the main structural material, 

deposited oxide is used as the sacrificial layer while a metal layer is deposited on top of the structure 

for thermal actuation. The silicon nitride layer serves as electrical isolation between the polysilicon 

and the substrate.  

 

Figure 4: Schematic cross-sectional view of all layers of the PolyMUMPs process (not-to-scale). The thickness 

of the Poly1, Poly2 and Metal Layers are 2 µm, 1.5 µm and 0.5 µm respectively [9]. 
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The polysilicon layers are patterned by lithography which includes the coating of the wafers with 

photoresist, exposure of the photoresist with the appropriate mask, and development of the exposed 

photoresist to create the desired etch mask. Subsequent pattern transfer into the underlying layer is 

achieved through reactive ion etching. The oxide layers are removed at the end of the process by 

immersing the chips in a hydrofluoric solution to free the mechanical polysilicon layers.  

Finite Element Analysis 

A numerical model that considers and solves for the combined electrical, thermal, and mechanical 

behaviour of the designed microgripper has been developed. The model can be divided into two 

sections: electrothermal analysis and thermomechanical analysis. The solver uses the material 

properties specified in the model’s database to compute the electro-thermo-mechanical solution. 

The electrothermal analysis consists of converting the potential distribution values calculated by the 

solver to data points that reflect the Joule heating effects resulting from the current. The solver 

determines the temperature distribution and applies the computed temperature values along the 

actuator beams. The thermomechanical analysis then uses the increase in beam temperatures to 

compute the thermal strain and employs the method of virtual work to predict deflection. 

A preliminary assessment of the microgripper performance under an applied potential is done by 

evaluating the maximum temperature reached within the polysilicon hot arm. The applied thermal 

boundary conditions include the temperature boundary conditions and the conduction heat transfer  

coefficient applied on the bottom and side surfaces of the hot arm (Fig. 5A). Numerical results of the 

maximum temperature reached on the hot arm are found to closely agree with analytical results 

calculated using Eq. (1), with the difference in values being less than 5% (Fig. 5B). 

 

 

(A) 

 

(B) 

Figure 5: Simulated steady-state temperature profile under an applied potential of 3V across the polysilicon 
(Poly1) hot arm. (A) Temperature plot at 3V. (B) Analytical and numerical results for maximum temperature on 

the hot arm as a function of applied potential. 

 

Fig. 6 shows the temperature profile along the hot arm, cold arm and flexure components of the 

polysilicon actuator where the average temperature of each arm can be obtained from the area under 

the respective arm curve. From the areas under the curve in Fig. 6B and using Eq. (3), ΔTnet was found 

to be equal to 0.37ΔTmax. This is in agreement with literature where it is stated that ΔTnet is typically 

1/2 to 1/3 of ΔTmax [8]. 
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(A) 

 

(B) 

Figure 6: Simulated steady-state temperature profile of the polysilicon (Poly1) thermal actuator subjected to an 

applied potential of 3V. (A) Temperature plot at 3V. The maximum temperature is 546oC and is located near the 

middle of the hot arm. (B) Temperature profile along the hot arm, cold arm and flexure components at 3V. For 

illustration purposes, the diagram above the graph shows the actuator as if it were unfolded. 

 

The different thermal expansions of the hot and cold arms upon applying a potential across the 

actuator cause the tip of the actuator to move laterally in an arching motion towards the 'cold' arm side 

(Fig. 7A). Numerical results of the lateral (y-direction) displacement of one polysilicon ‘hot and cold 

arm’ actuator are found to closely agree with analytical results determined using Eq. (4), with a 

difference in values of less than 10% (Fig. 7B). 

 

 

(A) 

 

(B) 

Figure 7: Simulated steady-state lateral displacement profile of the polysilicon (Poly1) thermal actuator 
subjected to an applied potential of 3V. (A) Lateral displacement plot at 3V. The dotted line indicates the 

original actuator position at no applied potential. (B) Analytical and numerical results for lateral displacement 

as a function of voltage. 

 

Eq. (4) depicts that one of the design parameters that influences the maximum deflection of the 

actuator is the ratio of the flexure length to the hot arm length, a. Fig. 8A shows the variation of δy 

with a for ΔTmax = 100K and L1 = 200 µm. A maximum temperature difference of 100K is chosen as 

this is the maximum allowed operating temperature of the microgripper for the manipulation of living 

cells and tissues. A full microgripper with two 'hot and cold arm' actuators was then modelled in 

CoventorWare
®
 using an optimised a value of 0.23. An optimised a parameter ascertains that the 

flexure is designed long enough to ensure proper elastic deflection of the actuator. The full 

microgripper design is composed of two layers of polysilicon with a metal layer deposited on top (Fig. 

8B). The metal layer consists of a thin adhesion layer of chromium (Cr) and 0.5 µm of gold (Au).  
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(A) 

 

(B) 

Figure 8: Microgripper design with optimised physical geometry. (A) Variation of lateral displacement with a 

for the 'hot and cold arm' actuator with Poly1, Poly2 and Metal for ΔTmax = 100K and L1 = 200 µm. (B) An 

oblique view of the 3D microgripper with two layers of polysilicon with a metal layer deposited on top. 

 

An applied voltage of 0.22V is required to obtain a ΔTmax of 100K for the microgripper with 2 layers 

of polysilicon and a metal layer on top. The performance of the microgripper with Poly1 only is 

compared with that of the microgripper with Poly1, Poly2 and Metal (Fig. 9). Much larger 

displacements are achieved for the same applied voltage in the latter case since the thin metal (Cr/Au) 

layer results in better thermal actuation. Moreover, by optimising the metal deposition and depositing 

the metal layer on top of the hot arm only, the temperature difference between the hot and cold arms 

is increased as the cold arm is not subject to any heating (Fig. 9). In such a design with optimised 

metal deposition, the maximum stresses are developed within the metal layer. A maximum Von Mises 

stress value of 133 MPa is developed at the same location where the maximum temperature is reached 

on the hot arm. 

 

(A) 

 

(C) 

 

(B) 

Figure 9: Comparison of the performance of the microgripper with polysilicon only, polysilicon and metal, and 

polysilicon and optimised metal (deposited on hot arm only) at an applied potential of 0.22V. The gap opening in 

the closed position is 5 µm. (A) Variation of maximum temperature with voltage. (B) Variation of lateral 

displacement with voltage. (C) Closed and open microgripper positions for the different scenarios (not-to-scale). 
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Conclusions 

This paper has presented a finite element model of an electrothermal microgripper developed with 

CoventorWare
®
. With relatively low voltage requirements and high force output, electrothermal 

actuation has several advantages over other actuation mechanisms. The operating principle of an 

electrothermal microgripper with lateral motion (parallel to the substrate) is the asymmetrical thermal 

expansion of a microstructure with variable cross-sections. This differential thermal expansion causes 

the actuator to move laterally, with the flexure part aiding the flexibility in the direction of motion. 

The fabrication process implemented within the model was the PolyMUMPs process that uses 

different polysilicon layers with a metal layer deposited on top for optimised thermal actuation. Finite 

element analysis was applied to simulate and evaluate the performance of the designed microgripper. 

Numerical results for maximum temperature and elastic lateral deflection were found to closely agree 

with analytical values. The electrothermal principle relates the deflection of the actuator to various 

process parameters, the physical geometry of the actuator as well as the driving current. Optimal 

geometrical dimensions and different metal depositions were implemented to optimise the actuator 

structure and its operating parameters. The temperature distribution and the deflection of the 

microgripper were the key factors compared in the range of microactuator functionality. 
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