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We investigate the nature of the three-mode interaction inside an optomechanically active microtoroid with a
sizable χ (2) coefficient. Experimental techniques are quickly advancing to the point where structures with the
necessary properties can be made, and we argue that these provide a natural setting in which to observe rich
dynamics leading, for instance, to genuine tripartite steady-state entanglement. We also show that this approach
lends itself to a full characterization of the three-mode state of the system.
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I. INTRODUCTION

Over the last several years, the field of optomechanics has
witnessed remarkable progress in experimental achievements
[1,2], the chief driving factor behind which was the quest
to achieve ground-state cooling of a mechanical oscillator.
This was achieved, first by means of cryogenics [3], then by
electromagnetic means in an electromechanical system [4],
and finally in an optomechanical setting [5]. Reaching the
ground state is a means to an end, for it is only when a
mechanical oscillator is close to, or at, the ground state that
its true quantum nature shows up unambiguously. This was
demonstrated clearly in a recent experiment [6] that showed
the imbalance between the red- and blue-mechanical sidebands
in the spectrum, a clear signature that the mechanical oscillator
is behaving in a nonclassical way.

Turning away from fundamental physics, one would like to
use quantized mechanical resonators as a resource; typical
oscillators have decay rates κm in the sub-kHz domain,
meaning that the decoherence time

τd = 1

κmnth
(1)

can be made large compared to the other time scales of
the system by using cryogenic methods to decrease nth =
kBTenv

/
(h̄ωm), the average number of phonons at an envi-

ronmental temperature Tenv, and at mechanical frequency ωm

(kB is Boltzmann’s constant), as much as possible. Clearly,
mechanical oscillators with a large mechanical frequency, say
ωm � 2π × 1 MHz, and large mechanical quality factor Qm =
ωm/(2κm) enjoy an advantage in this respect. At the same time,
one would like the mechanical oscillator to interact strongly
with an optical resonator that has a similarly large optical Q.
It is in this context that optomechanical toroidal structures [7]
appear as ideal optomechanical systems. From a technological
point of view, toroidal structures are also ideal in that they
minimize the number of moving parts—there are no moving
mirrors to align—and can be manufactured monolithically on
CMOS-compatible substrates [8], pointing the way towards
a possible integration with conventional (opto)electronics in
the future. These structures can also operate close to the
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telecoms-compatible wavelength of 1.55 μm, where losses in
optical fibers are minimized, and are therefore well suited
to acting as interfaces between optics and mechanics in a
long-distance quantum network.

The highest-quality optical modes in toroidal structures are
of the “whispering gallery mode” type, with the mechanics of
total internal reflection ensuring that losses are minimized.
A recent group of experiments [8,9] has recognized this
feature as enabling another technology: second-harmonic
generation (SHG). Indeed, it turns out that toroidal and
ring-resonator structures facilitate SHG because the phase
matching conditions that are necessary in any nonlinear optics
experiment can be met automatically by choosing the right
doublet of optical modes [9].

It is the purpose of this paper to combine these two
ideas. We shall look at the emergence of nonclassical steady
states, e.g., genuinely tripartite entangled states [10], in the
three-mode system formed by the two optical modes—the
fundamental and the second harmonic—and the mechanical
oscillator. Every pair of these three modes interacts directly,
and we shall see that this results in a competition between
the two purely optomechanical interactions and the second-
harmonic generation process. We find that the steady state
that emerges from the resulting dynamics, which can be
fully characterized in terms of the two interaction strengths,
leads to a rich structure of two- and three-mode entangled
states. The emergence of tripartite entanglement in the steady
state is well known in optomechanical systems with more
than one mechanical and/or optical mode [11–13], or both
a mechanical and an atomic degree of freedom [14], and
has important applications in the field of continuous-variable
quantum information [15–17].

This paper is structured as follows. In Sec. II we introduce
the full model Hamiltonian and then proceed to obtain the
equations of motion. The usual procedure is used to linearize
the dynamics, whereupon we can concentrate exclusively on
Gaussian states and present some numerical results. Section III
discusses state detection using homodyning techniques, after
which we conclude our investigation.

II. PROPOSED MODEL

The model Hamiltonian we use is a combination of the usual
optomechanical Hamiltonian and the Hamiltonian description
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FIG. 1. Schematic diagram of the system. (a) Side view of the
toroid. (b) Top view. We show the coupling of the cavity fields to the
field in the waveguide.

of the SHG process, and describes the system shown schemat-
ically in Fig. 1. We shall label the annihilation operators of
the two optical fields âF (fundamental “F,” of frequency ωc)
and âS (second harmonic “S,” frequency 2ωc). These two
modes are coupled to a continuum of modes, represented
by the operators âω, through decay rates κF,S, as well as to
each other through a second-harmonic interaction frequency
χ . The mechanical oscillator “M” is represented through its
dimensionless quadratures x̂ and p̂, and is characterized by
the mechanical frequency ωm and decay rate κm. We allow
x̂ to couple to the two optical modes through the coupling
constants gF,S; we shall make the simplifying assumption that,
since gF,S is proportional to the respective optical frequency,
gS = 2gF. Thus, we can write the Hamiltonian Ĥ as a sum of
four terms,

Ĥ = Ĥfree + Ĥdiss + ĤOM + ĤSHG, (2)

with the free Hamiltonian (we take units such that h̄ = 1
throughout the paper)

Ĥfree=
∫

dω ω â†
ωâω+

∑
j=F,S

μjωc â
†
j âj + ωm

2
(x̂2 + p̂2),

(3)

where μF = 1 and μS = 2, and the dissipation Hamiltonian

Ĥdiss = i
∑

j=F,S

√
κj

π

∫
�j

dω(â†
ωâj − âωâ

†
j ) + ĤM,diss, (4)

which includes the driving of the cavity field through an ex-
ternal driving field. In Ĥdiss we left the mechanical dissipation
Hamiltonian undefined. The optomechanical Hamiltonian is
given by ĤOM = −∑

j=F,S gj â
†
j âj x̂ and the SHG Hamiltonian

by [18]

ĤSHG = iχ [(â†
F)2âS − (âF)2â

†
S]. (5)

In the expression for Ĥdiss we defined two frequency ranges
�F,S, which define the bath modes through which the two
modes are damped and driven. Given the very large separation
in frequency between the two optical modes, we can justify
considering �F and �S as nonoverlapping without violating
the requirement that these two frequency ranges must be
very large compared to κF,S, which is necessary to ensure
Markovian dynamics. If the two frequency ranges were to
have a significant overlap, e.g., in the case of two optical

modes spaced by a mechanical frequency that exist in different
resonators but are coupled to the same bath, then one must be
careful to use correctly the modified input–output relations
and equations of motion, obtained following the standard
procedure in Ref. [19]. In our case, the standard input–output
relations will be held valid. In the following we will obtain
the linearized equations of motion for the system described by
this Hamiltonian.

A. Equations of motion and linearization

As a first step we derive the Heisenberg equations of motion
for âF,S, which read

˙̂aF = (i� − κF)âF + igFâFx̂ + 2χâ
†
FâS −

√
2κFâ

in
F ,

(6)
˙̂aS = (2i� − κS)âS + igSâSx̂ − χ (âF)2 −

√
2κS âin

S ,

where âin
F(S) is the input field coupled to the fundamental

mode (the second harmonic) and � = ωF − ωc is the detuning
of the driving field from cavity resonance. Equations (6)
are written in a frame rotating with the optical modes, i.e.,
in an interaction picture with respect to the Hamiltonian∑

j=F,S μj (
∫
�j

dω ωF â†
ωâω + ωF â

†
j âj ). Similarly, for the me-

chanical mode we have ˙̂x = ωmp̂ and

˙̂p = −ωmx̂ − 2κmp̂ −
√

2κmξ̂ + gFâ
†
FâF + gSâ

†
SâS, (7)

where we used a Brownian-motion–type damping model [20].
The self-adjoint Langevin force ξ̂ is taken to have zero mean
and be δ-correlated in time as 〈ξ̂ (t)ξ̂ (t ′)〉 = (2nth + 1)δ(t −
t ′). We now linearize the equations of motion by considering
a pumping field of large intensity. Under these conditions,
both the field modes of the toroid would be macroscopically
populated. We are then allowed to take âF,S = āF,S + δâF,S,
where āF,S = 〈âF,S〉 is the (large) mean amplitude of each
operator and δâF,S its fluctuation around this average. Products
of two or more of these fluctuation operators in the equations of
motion are then neglected, yielding a set of coupled linear first-
order differential equations for the operators. For the optical
modes, we thus obtain (j = F,S)

δ̇âj = [i(μj� + gj x̄) − κj ]δâj + igjaj δx̂

+ Ôj − √
2κj δâ

in
j (8)

with ÔF = 2χ (a∗
FδâS + aSδâ

†
F) and ÔS = −2χaFδâF. The

optical input fluctuation operators δâin
j have zero mean

and two-time correlation function 〈âin†
j (t)âin

j (t ′)〉 = δ(t − t ′).
Despite the relation linking gF and gS, in what follows we shall
continue to use both symbols for clarity.

In a manner similar to the optical modes, we may also
displace the quadratures of the mechanical mode. In steady
state, the mean amplitude of the momentum quadrature is
taken to have decayed to zero, p = 0. The position quadrature
has a nonzero mean amplitude that is proportional to the power
circulating inside the cavity. However, for gS = 2gF we may
absorb this amplitude into a redefinition of the detuning and
effectively set x = 0. Finally, the equations of motion for δx̂
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and δp̂ become δ̇x̂ = ωmδp̂ and

˙δp̂ = −ωmδx̂ − 2κmδp̂ −
√

2κmξ̂ +
∑

j=F,S

gj (a∗
j δâj + aj δâ

†
j ).

(9)

The state described by the mean values aF,S, x, and p, which
obey

ȧF,S = ẋ = ṗ = 0, (10)

corresponds to the steady state of the analogous classical
system. Assuming, for now, the existence of this steady state
we can use the mean-field component of the linearized versions
of Eqs. (6) to find the following equation relating the amplitude
of the fundamental mode and that of the input noise:

2χ2

(2i� − κS)
|aF|3 + (i� − κF)|aF| =

√
2κFe

−iφain, (11)

where we have taken φ to be the phase of aF. The input field is
assumed to be in a monochromatic coherent state characterized
by the (real) amplitude ain ≡ ain

F , which is related to the input
power Pin by

Pin = h̄ωF |ain|2. (12)

For the parameters used throughout this paper, the first term
on the left-hand side of Eq. (11) can be safely neglected,
whereupon the equation can easily be solved to obtain aF.
For the second harmonic, we get

aS = χe2iφ

2i� − κS
|aF|2. (13)

The linearization of the equations of motion makes the
dynamics Gaussian so that any initial Gaussian state will
remain such at any instant of time [21]. We now introduce
the quadrature vector

R̂ = (δx̂F,δp̂F,δx̂S,δp̂S,δx̂,δp̂)T, (14)

where we have defined the optical quadrature operators δx̂j =
1√
2
(δâi + δâ

†
i ) and δp̂j = i√

2
(δâ†

j − δâj ) of mode j = F,S.
Similar definitions hold for the input-field operators. It is worth
bearing in mind that all our operators are functions of time t ,
and we have simply dropped the label t for conciseness of
notation. With these definitions, the first moment of R̂ is zero
and any Gaussian state of the system is thus fully characterized
by the covariance matrix V = (〈R̂ ⊗ R̂〉 + 〈R̂ ⊗ R̂〉T)/2. The
equations of motion derived above can be concisely written as
˙̂R = A · R̂ + R̂in, with the input noise vector

R̂in = (√
2κFδx̂

in
F ,

√
2κFδp̂

in
F ,

√
2κSδx̂

in
S ,

√
2κSδp̂

in
S ,0,

√
2κmξ̂

)T
.

(15)

The drift matrix A can be explicitly determined and depends on
the set of parameters characterizing the dynamics of the three-
mode system addressed here. Its expression is too lengthy to
be reported here and is thus deferred to the Appendix. A close
inspection of the form of A reveals that, by assuming ain ∈ R
and introducing the rescaled parameters α = gF/(

√
2 χ ) and

β = χaF, the drift matrix is a universal expression of gF /χ .
Thus, for a fixed value of β the nature of the dynamics is
determined solely by the ratio of the coupling constants. For

small α, the interaction is dominated by the SHG process.
Conversely, for α 
 1, the dynamics resembles closely that of
a standard optomechanics model with two fields [12].

B. Dynamical stability of system

The dynamical equations should be stable in order for a
steady state to exist. This is assured if the real part of the
spectrum of A is negative, in which case the system will tend
to a stationary state characterized by the covariance matrix
that solves the Lyapunov equation A · V + V · AT + D = 0
with the input-noise matrix

D δ(t−t ′) = 1
2 [〈R̂in(t)⊗R̂in(t ′)〉+〈R̂in(t)⊗R̂in(t ′)〉T]. (16)

The stability condition for A can be rephrased more formally
in terms of the Routh-Hurwitz criterion [22], which we have
used in our quantitative characterization of the dynamics. We
note in passing that the Lyapunov equation above has a concise
analytic solution for V, as reported in Ref. [22]. The covariance
matrix encompasses the full information on the system at hand.

C. Quantification of entanglement

Here, we shall be interested in the entanglement-sharing
properties of the three modes. In order to demonstrate the
occurrence of genuine multipartite entanglement, we rely
on the criterion based on negativity of partial transpose
(NPT) [23–25] and we will make use of the logarithmic
negativity as an entanglement quantifier [26]. For a bipar-
tition consisting of subsystems A and B (A,B = F,S,M),
this is defined as E

A|B
N = max

[
0, −ln(2

∑
k ν̃−,k)

]
, where

{ν̃−,k} is the set of symplectic eigenvalues of the covariance
matrix associated with the partially transposed states of
the system such that |ν̃−,k| < 1/2 [27]. If either A or B
are single-mode subsystems, k = 1 regardless of the number
of modes comprised in B or A. Moreover, although this is
not the case in general, the NPT criterion is a necessary
and sufficient condition for inseparability of pure and mixed
Gaussian states alike. In what follows, we characterize the
entanglement structure in both reduced two-mode states and
bipartite one-versus-two-mode ones. In order to do that, we
use numerical values for the various constants entering the
model that reflect the state-of-the-art of recent experiments.
The fundamental wavelength is chosen to be 1554 nm [8],
at which an input power Pin = 1 μW corresponds to ain ≈
3 × 106 s−1. Moreover, we set ωm = 2π × 70 MHz, κm =
2π × 5.9 kHz (Qm = 5970), κF = κS = 2π × 7 MHz, gF =
gS/2 = 2π × 1.2 kHz, Tenv = 0.8 K [28], and χ = 700 Hz,
which is within a factor of 2 of what has been observed in
Ref. [8].

For these choices, Fig. 2 summarizes both the entanglement
in one-versus-one-mode reduced states and one-versus-two-
mode situations; the solid curve in each figure bounds
the region where the system becomes dynamically unstable
according to the Routh–Hurwitz criterion. Entanglement is
analyzed in the �–Pin parameter space. While all-optical
entanglement (i.e., the entanglement within the reduction
involving only the S and F subsystems) exists in a narrow strip
around � � 0 and is maximum on resonance, the mechanical
mode is entangled more strongly with F near � = ±ωm,
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(a) Reductions, Qm = 5970 (b) Bipartitions, Qm = 5970 (c) Reductions, Qm = 597000 (d) Bipartitions, Qm = 597000

FIG. 2. (Color online) Regions of (a) 1-1-mode (“reduction”) entanglement, or (b) of 1-2-mode (“bipartition”) entanglement. In (a) the
dashed curve encompasses the (red) region where the two-mode reduction consisting of the second-harmonic optical mode (system S) and the
mechanical mode M is not separable, the dotted curve encompasses the (green) region where the fundamental optical mode (system F) and the
mechanical mode are not separable, and the dashed-dotted curve delineates the (blue) region where the two optical modes are entangled. A
similar explanation holds for subfigure (b), but with the dashed curve corresponding to entanglement between the fundamental optical mode
and the two-mode system formed by the second-harmonic mode and the mechanical mode. The dotted curve delineates inseparability of the
second-harmonic from the two-mode system formed by the other two modes, and likewise the dashed-dotted curve bounds the region where
the mechanical mode is entangled with the two-mode system consisting of the optical modes. The solid curve encloses the region of instability.
(c) and (d) are similar to (a) and (b), respectively, but with a larger mechanical Q factor. Because of the smaller mechanical decay rate, the
region of instability starts at significantly lower powers, especially on the blue-detuned side of the figure.

and with S close to � = ±ωm/2. At low (yet still quite
sizable) values of the mechanical quality factor, the region
corresponding to � < 0 is largely associated with separability
of any two-mode reduction, except the narrow strip at � � 0
mentioned above, which witnesses the fact that, in these
conditions, the direct nonlinear coupling between the optical
modes overcomes any entangling power of the optomechanical
mechanism. Larger values of Qm, on the other hand, give
rise to non-negligible areas of (even strong) optomechanical
entanglement involving both the M–S pair and the M–F one.
This is clearly shown in Fig. 2(c) where, remarkably, we find
that even the all-optical entanglement is affected, spreading
quite considerably in regions where, at lower Qm, we had
E

S|F
N = 0. This result might be interpreted as arising from

the indirect coupling between the two optical modes, whose
interaction is ruled not only by their direct nonlinear coupling
but also by a detuning-dependent effective one mediated
(quasicoherently) by the mechanical mode.

Also quite interesting is the behavior of the one-vs-two-
mode entanglement. An investigation on these configurations
is relevant in order to characterize the multipartite entangle-
ment being possibly shared by the three subsystems. Indeed,
based on the classification provided by Giedke et al. [15], the
simultaneous inseparability of the three possible one-versus-
two-mode bipartitions in a three-mode system implies the
existence of genuine tripartite entanglement. Likewise, the
state is k-mode biseparable if there are k one-vs-two-mode
bipartitions with respect to which the state of the system is
separable. Figures 2(b) and 2(d) show the rich structure of
entanglement sharing that is exhibited by our model.

One-vs-two-mode entanglement turns out to be, in general,
much more robust (and larger) with respect to noise affecting
the system than the entanglement in any two-mode reduction,
a feature that has already been shown in other optomechanics-
related investigations [14]. In Fig. 2(b), regions of full
three-mode inseparability are shown even for a relatively
low-quality mechanical oscillator. However, in this case, noise
affecting the system through the mechanics is too strong
to allow for much overlap between regions of three-mode

inseparability. Indeed, by increasing the mechanical quality
factor by a factor of 100, giving the results in Fig. 2(d), the
overlap between regions of one-vs-two-mode entanglement
increases significantly, covering virtually the whole stability
area shown in the figure. In passing, we mention that we have
applied a multipartite entanglement witness for continuous-
variable states, MultiWit, that was developed in Ref. [29]
using semidefinite optimization methods. The use of this
instrument has confirmed the genuinely tripartite nature of the
entanglement at hand in the regions of overlap among the three
regions of one-vs-two-mode inseparability, which excludes
the possibility of having generalized three-mode biseparable
states. As a quantitative illustration for the high-Qm case,
in Table I we give the entanglement in any reduction and
bipartition that can be singled out in our problem, taking the
values of the parameters listed above and choosing � = −ωm

with Pin = 0.27 W. In order to complete our assessment, we
have determined the degree of genuine tripartite entanglement
across interesting regions in the full-inseparability areas. As a
quantitative estimator, we have used the tripartite logarithmic
negativity Etri

N , which is a proper entanglement monotone [30].
The results of this study are shown in Fig. 3 for both the
low- and high-Qm cases and increasing optical input powers.
The qualitative differences in the behavior of the tripartite
entanglement is very marked at large input power: while
at low mechanical quality factors the high-power tripartite
entanglement is null, it extends for most of the region � ∈
[−ωm,0] at high mechanical quality factor, therefore leaving

TABLE I. Calculated logarithmic negativities for � = −ωm and
Pin = 0.27 W in Figs. 2(c) and 2(d). The rest of the parameters are
as in the body of the paper, with Qm = 597 000.

Reduction a|b E
a|b
N Bipartition a|bc E

a|bc

N

S|M 0.10 F|SM 0.44
F|M 0.42 S|FM 0.15
F|S 0.01 M|FS 0.45
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FIG. 3. (Color online) Tripartite logarithmic negativity, Etri
N , for five different input powers and both low- and high-Qm cases.

us with much room for maneuvering in the space of entangled
three-mode states.

Let us finally explore the competition between the SHG
process and the optomechanics in our model. As χ grows
in Figs. 4(a) and 4(c), the entanglement for the F|M and
S|M reductions decreases, whereas that for F|S covers an
ever-larger area of the parameter space. The behavior of the
entanglement in the bipartitions, Figs. 4(b) and 4(d), is similar
and also easily understood on an intuitive basis: a bigger χ

leads to larger regions of entanglement for the two bipartitions
that involve one of the optical modes on its own (i.e., F|SM
and S|FM), but a contraction in the parameter space where
entanglement in the M|FS bipartition is observed.

III. INFERRING THE STATE OF THE SYSTEM

The inference of the full state of an optomechanical system
is a major practical challenge [12], mainly due to the fact that
the mechanical quadratures are not directly accessible to an
experiment. Here we propose a technique, which requires the
use of the system drawn schematically in Fig. 5, that allows
us to infer the mechanical quadratures indirectly. Initially, we
assume that the homodyne detectors needed in the scheme have
infinite bandwidth; we shall account for the finite bandwidth
of any realistic apparatus later on. Given such a system, one
has access to the four input (two each for the fundamental and
the second harmonic) and four output quadratures. One can
then infer the intracavity optical modes using the input-output

relation

δx̂F = (
δx̂out

F − δx̂ in
F

)/√
2κF, (17)

and similarly for the rest of the quadratures. It is clear that very
good characterization of the system, including knowledge of
all the coupling constants and the effect of vacuum input noise
[12] is required to infer the intracavity quadratures accurately.
Once the four optical intracavity quadratures are known, it is
natural to ask how the mechanical quadratures can be inferred.
Indeed, the key to our proposal is noticing that the inferred
quadratures are obtained as a time trace. One can therefore
make direct use of the equations of motion to obtain a time trace
for the mechanical quadratures δx̂ and δp̂. The covariances
of these inferred quadratures can finally be used to build an
inferred covariance matrix, Ṽ. In the limit of infinite detector
bandwidth, Ṽ = V.

We use a simple model for including the effects of a finite
detector bandwidth. Let the bandwidth of the detector be τ .
Then the point-spread function of the detector is taken to be

f (t) = �(t) − �(t − τ )

τ
=

⎧⎪⎨
⎪⎩

0 for t < 0 or t > τ

1
τ

for t ∈ (0,τ )
1

2τ
for t = 0 or t = τ

,

(18)

where �(t) is the Heaviside step function. The label t is under-
stood as the time at which the measurement was performed.
Normalization requires that

∫ ∞
−∞ f (t) dt = 1. For each
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FIG. 4. (Color online) Similar to Fig. 2, but varying the second-harmonic generation rate on the vertical axis. (a) and (b) have Qm = 5970,
whereas (c) and (d) have Qm = 597 000. (χ0 = 2π × 700 Hz, Pin = 10−3 W.)
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ANDRÉ XUEREB, MARCO BARBIERI, AND MAURO PATERNOSTRO PHYSICAL REVIEW A 86, 013809 (2012)

FIG. 5. (Color online) Schematic of detection system. Part of
the input field is used as the local oscillator of two homodyne
detectors (this necessitates adding the second harmonic onto the local
oscillator), one recording the field quadratures before the toroid, and
one after.

operator Ô(t) we assign an inferred operator Õ(t) ≡
(f ∗Ô)(t) = ∫ ∞

−∞ f (t − s)Ô(s) ds as the convolution of f (t)
with Ô(t). It can easily be shown that d

dt
(f ∗ Ô)(t) = (f ∗

˙̂O)(t). This means that we can infer the value of any ˙̂O(t) by
calculating the time derivative of the inferred ã(t).

With this at hand, we can finally show that the inferred
covariance matrix, at the steady state, is given by

Ṽ = (Aτ )−1

{
(eAτ − 1)V(eAτ − 1)T

+
∫ τ

0
[eA(τ−s) − 1]D[eA(τ−s) − 1]T ds

}
(Aτ )−T. (19)

Modern homodyne detectors can operate with a bandwidth
of the order of 10 GHz, which is much larger than typical
values of ωm in the micromechanical domain. Therefore, it is
understood that τ is by far the shortest time scale of the system.
It then suffices to expand Ṽ to first order in τ , which gives

Ṽ = V − 1
6τD. (20)

These expressions hint at the tantalizing possibility that by
increasing τ electronically one could deduce the value of Ṽ
for vanishing τ , and therefore infer V itself. In our numerical
exploration, the fidelity [31] for the inference of the mechanical

mode using this method was above 99% when τ corresponded
to a bandwidth of 500 MHz.

IV. CONCLUSIONS AND OUTLOOK

We have presented a system that combines a nonlinear
optical process with optomechanics in a very natural manner.
Its monolithic design makes it very attractive for experimental,
or even technological, applications. Indeed, the system we
presented is based on technology that is inherently compatible
with integration on optoelectronic chips. Our investigation
concentrated on the dynamics of the system, but we also
addressed the problem of the actual detection of the intracavity
state by outlining a method involving homodyning all the
input and output quadratures to infer the covariance matrix
for the three intracavity modes. Last, a numerical example
using constants from recent experiments was used to illustrate
the feasibility of observing these effects in a realistic system.

Looking further ahead, one can envisage several of these
structures sharing a common photonic “bus” whose function is
to populate the optical mode of each toroid at the fundamental
frequency. The SHG process and optomechanics could then
be used to create an entangled state of the mechanics with the
second-harmonic field, thereby generating for each structure
an optical field, which can be routed out of the photonic
bus without losses due to the large separation in frequencies,
that is entangled to the mechanical mode of the toroid. We
remark that this system lends itself naturally to the distribution
and certification of optomechanical entanglement as per the
protocol recently proposed in Ref. [32].
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APPENDIX

Here we provide the explicit form of the drift matrix A for
our problem, which reads

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−κF + 2χar
S −� + 2χai

S 2χar
F 2χai

F −√
2 gFa

i
F 0

� + 2χai
S −κF − 2χar

S −2χai
F 2χar

F

√
2 gFa

r
F 0

−2χar
F 2χai

F −κS −2� −√
2 gSa

i
S 0

−2χai
F −2χar

F 2� −κS

√
2 gSa

r
S 0

0 0 0 0 0 ωm√
2 gFa

r
F

√
2 gFa

i
F

√
2 gSa

r
S

√
2 gSa

i
S −ωm −2κm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

with aj = ar
j + iai

j (j = F,S). As done in the main body of the paper, we assume that aF is real and gS = 2gF. This can always
be done by dropping the corresponding assumption on ain and choosing its phase appropriately. We then define the parameters
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α = gF
/

(
√

2 χ ) and β = χar
F and rewrite the drift matrix as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−κF − 2κS

4�2+κ2
S
β2 −� − 4�

4�2+κ2
S
β2 2β 0 0 0

� + 4�

4�2+κ2
S
β2 −κF + 2κS

4�2+κ2
S
β2 0 2β 2αβ 0

−2β 0 −κS −2� 8�

4�2+κ2
S
αβ2 0

0 −2β 2� −κS − 4κS

4�2+κ2
S
αβ2 0

0 0 0 0 0 ωm

2αβ 0 − 4κS

4�2+κ2
S
αβ2 − 8�

4�2+κ2
S
αβ2 −ωm −2κm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

showing that the steady state of the system is a universal function of α and β. In particular, at a fixed value for β the dynamics is
determined solely by the value of the ratio of the coupling constants α.
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[2] M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel,

J. Opt. Soc. Am. B 27, A189 (2010).
[3] A. D. O’Connell et al., Nature (London) 464, 697 (2010).
[4] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman,

K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Nature (London) 475, 359 (2011).

[5] J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill,
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