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Abstract

Classical thermodynamics is unrivalled in its range of applications and relevance to everyday life. It
enables a description of complex systems, made up of microscopic particles, in terms of a small
number of macroscopic quantities, such as work and entropy. As systems get ever smaller, fluctuations
of these quantities become increasingly relevant, prompting the development of stochastic
thermodynamics. Recently we have seen a surge of interest in exploring the quantum regime, where
the origin of fluctuations is quantum rather than thermal. Many questions, such as the role of
entanglement and the emergence of thermalisation, lie wide open. Answering these questions may
lead to the development of quantum heat engines and refrigerators, as well as to vitally needed simple
descriptions of quantum many-body systems.

1. Introduction

Thermodynamics presents us with an effective picture of processes occurring in complex systems, describing the
bulk properties of the system without being concerned with its microscopic details. Quantities such as the
temperature of a system, the amount of work that can be extracted from it, or the heat it dissipates, reduce the
description of systems consisting of untold numbers of particles to a handful of parameters. As a consequence of
this ‘bird’s eye view,” thermodynamics is widely applicable, and its laws seem to be obeyed by every process
occurring in the macroscopic world.

The downside of this macroscopic description is that thermodynamics necessarily deals with average
quantities. While being a valid approach when the system at hand is composed of a macroscopic number of
particles, it starts losing accuracy as the system size decreases and fluctuations around these average quantities,
due to thermal motion, become relevant. Stochastic thermodynamics picks up where the macroscopic
description starts to fail, and gives a deeper insight into the fluctuations of thermodynamic quantities. It also
moves beyond the equilibrium situations associated with thermodynamics, and can describe the behaviour of
systems that are held out of equilibrium [1]. These considerations are vital if considering nanoscale or biological
machines.

However, when dealing with even smaller systems, quantum effects come into play; fluctuations are no
longer just thermal in their origin but quantum. In this regime several questions emerge; it is not clear why the
time-reversible, unitary dynamics that describes quantum processes should lead to a system ever reaching
equilibrium, let alone why such a system will thermalise (reach a state that can be described by a few quantities
such as temperature) [2]. Furthermore, the link between classical thermodynamic and information-theoretic
quantities like entropy suggests that quantum phenomena such as entanglement could play an important role in
quantum thermodynamics, a role which is not yet fully understood. Indeed, it is a challenge to even define and
measure thermodynamic quantities for microscopic, quantum systems [3—6].

Upon moving from the macroscopic, classical, world to the microscopic, quantum, realm, it is natural to ask
whether the laws of thermodynamics retain their place. The zeroth law of classical thermodynamics states that if
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two systems are thermalised with a third, then all three are thermalised with each other, which in the quantum
regime is translated to the statement that, given a closed system governed by a particular Hamiltonian, there
exists a family of states parametrised by temperature (thermal states) from which it is not possible to extract work
[7]. The first law is a statement of conservation of energy, i.e., the change in internal energy of a system duringa
process is equal to the heat supplied minus the amount of work done by the system. In the theory of quantum
thermodynamics this can be used to define the allowed thermodynamic operations on closed quantum systems
as energy-conserving unitary operations [7]. The second law can be cast in several ways, e.g., that entropy
increases when undergoing an irreversible process, that heat cannot flow from a cold bath to a hot bath, or that
free energy can only decrease. This last formulation was adapted to the quantum setting, multiplying into a
whole family of second laws [7] restricting which thermodynamic processes can take place. The third law can be
also stated in several ways [8], e.g., it is impossible to reduce the temperature of a system to zero in a finite time,
and sheds light on the rate at which thermodynamic processes happen [9]. There is active debate as to whether it
is possible to violate the third law in quantum systems [10—13]. This discussion considers only closed quantum
systems. Studies of the thermodynamics of open quantum systems are much more recent; see, e.g., [14—19].

In this perspective we aim to highlight some of the recent key results and open problems in the rapidly-
evolving field of quantum thermodynamics, with particular reference to the recent focus issue on quantum
thermodynamics in New Journal of Physics. Complementary points of view can be found in more technical
articles reviewing the whole field [20], the role of quantum information in quantum thermodynamics [21],
thermalisation in closed quantum systems [22], and symmetry breaking in finite quantum systems [23].

2. Fluctuation theorems

Stochastic thermodynamics [1] describes the fluctuation of thermodynamical quantities by considering
individual trajectories of an evolving system. It is applicable when the fluctuations are appreciable, i.e. in small
systems such as colloids or microscopic biological settings. Stochastic thermodynamics has led to the discovery
of fluctuation relations [24], that bound processes where systems are driven out of equilibrium. The celebrated
Jarzynski [25, 26] and Crooks [27, 28] relations link the free energy difference between states with the work done
in transforming between them, and have been experimentally verified in several systems [29-36]. These relations
also hold unmodified in closed quantum systems [37-39], with slight modifications when the system is open
[40-42].

In the quantum setting, work is not an observable [39, 43], and must instead be inferred by performing
projective [44] or interferometric [45, 46] measurements, or by measuring optical spectra [47]. Nonetheless,
quantum work fluctuations have been measured in molecular [48] and trapped-ion [49] systems, with proposals
utilising superconducting circuits [50], and exchange fluctuations have been measured in electronic systems
[51, 52]. Interferometric techniques have also been extended to measuring the heat exchange occuringina
quantum process [53]. Open questions include non-linear quantum fluctuations [39, 44], exploiting quantum
information to produce work [54], the use of feedback in quantum systems [55—-57], and the potential
application of fluctuation relations to quantum computing [58, 59].

3. The role of quantum information

The second law of classical thermodynamics distinguishes between reversible processes, which do not change
the entropy of a system, and irreversible ones, where work done is dissipated as heat, increasing the entropy of
the system. It has been pointed out [60—62] that the role played by entropy in classical processes is analogous to
that of entanglement in quantum processes: the relative entropy of entanglement, a measure of distinguishability
between two states, must increase during a thermodynamic process. There are some subtleties in the issue of
whether the free energy is a useful quantity to consider in the presence of coherences [63, 64]. However, the
maximum extractable averaged work is equal to the change in free energy for quantum systems [65], an identical
result to its classical analogue. Entanglement is a necessary by-product of generating work from an ensemble of
thermal states [67—69]. However, in direct analogy with the classical Carnot engine, it is possible to extract
maximal work without generating entanglement at the expense of power [70].

Information plays a vital role in both classical [71] and quantum [21] thermodynamics; the famous
Maxwell’s Demon and the Szilard Engine [54] seem to show that knowledge about a system allows one to extract
work from the system, seemingly endlessly and without an increase in entropy, apparently violating the second
law. These systems have been realised experimentally with colloidal particles [35, 72] and single electrons
[36, 73], demonstrating work extraction and an apparent decrease in entropy. The resolution to this apparent
paradox, as realised by Landauer, is that ‘Information is Physical’ [74] and must be stored somewhere. It is in
erasing such information that dissipation [54, 71, 75] and irreversibility creep in, restoring the second law; this is
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known as Landauer’s Principle. This creation of heat through information erasure has been experimentally
verified [76-78], and it has also been shown that if the information storage is entirely reversible then a vanishing
amount of heat is dissipated [77, 79].

The Maxwell’s Demon and Szilard Engine thought experiments acquire a fundamentally different flavour in
quantum mechanics, since measurement disturbs a quantum state. A further issue is which components of the
system are to be considered quantum. A quantum demon can extract more work from a quantum system than a
classical demon [80, 81]; its efficiency over a classical demon increases with the amount of quantum correlations
present, as measured by the discord [54, 81], and is degraded by decoherence. Further issues involve the problem
of inserting a partition (as in the Szilard engine) without altering the energy spectrum of the system [82], and the
indistinguishability of quantum particles, which affects the work one can extract [82]. It has also been shown that
ifa quantum memory is used in the operation of a Szilard engine then work can be extracted [83]. Despite several
suggestions for implementing these quantum thought experiments [84, 85], there is as yet no realisation.

There was some early suggestion that Landauer’s Principle may not hold for strongly-interacting quantum
systems [86, 87] due to system—bath entanglement [88, 89]; this would have serious consequences such as the
potential for perpetual motion [90], and a host of issues in quantum information processing [91]. However, it
has been shown that this principle holds in both weakly- [92] and strongly-interacting [91] quantum systems,
even in out-of-equilibrium scenarios [93]. The conversion of information to work has been measured in a
quantum system, and Landauer’s Principle verified at the level of individual quantum logic gates [94]. A version
of Landauer’s Principle exploiting the properties of a quantum memory allows the work cost of erasure to
become negative [95].

4. Equilibration and thermalisation

Macroscopic systems driven out of equilibrium, either through a sudden ‘quench’ of one or more parameters, or
through some other means of driving, whether periodic [96, 97] or not, tend to reach an equilibrium state that
depends only on the energy of the initial state; the origin of this process lies in the non-linear dynamics of
systems with large numbers of particles. Quantum systems, however, are constrained by the first law to unitary,
linear, and time-reversible operations [2]. They always have constants of motion, as opposed to the classical case
where constants of motion are only present in integrable systems. Equilibration does tend to occur in terms of
expectation values of observables or the outcomes of (generalised) measurements made on either the entire
system or a subsystem, but predicting the timescale on which this happens is fraught with difficulty [2, 22, 98].

Furthermore, classical systems also thermalise at equilibrium, reaching a state of maximum entropy that can be
described by the number of particles and a temperature, as a consequence of the second law of thermodynamics.
Thermalisation of quantum systems is described as an approach to a thermal state characterised only by the number of
particles and the total energy [99]. Integrable systems, such as finite one-dimensional chains of hard-core non-
interacting bosons, are not predicted to thermalise in this sense, but rather to approach a Generalised Gibbs Ensemble
[100, 101]; similar conclusions can be drawn about non-Markovian open quantum systems [102]. Indeed, experiments
with ultracold atoms have shown equilibration to a state with distinct multiple momenta [103] and apparent multiple
temperatures [104]. Integrability itself can be a difficult concept to define in the quantum setting [105].

The Eigenstate Thermalization Hypothesis, which may only hold for non-integrable systems, proposes that
every eigenstate of the Hamiltonian of a quantum system contains properties associated with a thermal state,
which at short times after a quench are hidden by coherence, and at long times revealed through dephasing
[106, 107]. The universal applicability of this hypothesis is a topic of much debate [108, 109], and other
thermalization mechanisms are suggested [110]. The timescale of thermalisation in many-body systems is not
well-understood. Systems may pre-thermalise [111], i.e., appear to reach a metastable equilibrium state on short
timescales [112], with the true thermal state being reached on longer timescales [113]. In systems exhibiting
many-body localisation, transport is strongly suppressed and thermalisation breaks down [114].

5. Quantum thermodynamic machines

Understanding the classical laws of thermodynamics led to the development of the steam engine, i.e., a device for
converting one form of energy (for example, heat) into another (work), which drove the industrial revolution.
Classical heat engines exist across a wide variety of scales, from combustion engines to molecular motors

[115, 116]. Can an analogous development take place in the quantum regime?

The very smallest classical heat engines have been implemented using optically trapped microparticles in
liquid [117], and others are proposed using nanoparticles trapped in vacuum [ 118]. These systems highlight the
role of fluctuations; along individual trajectories, energy may flow from cold into hot heat baths—the direction
of work only follows the second law on average. The fluctuating interaction between such small systems and
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their surrounding bath can be captured by monitoring the particles’ Brownian motion. Non-equilibrium
situations have been studied where the particle is hotter than the bath that surrounds it [119, 120], leading to
several distinct bath temperatures in the underdamped regime [120]. The quantum theory of Brownian motion,
based on quantum fluctuations, is distinct from classical Brownian motion [8]. It predicts that the timescales of
fluctuations (noise) and dissipation (friction) are different, unlike the classical case [90]. The consequences of
this are not fully understood, and it could have a profound effect on quantum Brownian motors [121].
Thermoelectric heat engines formed from systems of quantum Hall conductors [122] or single-electron
quantum dots are ideal candidates for converting microscopic heat into useful work [123—127], as recently
demonstrated [128], but the effect has also been observed using ultracold atoms [129] and a semiconductor
microcavity [130]. Being able to understand the transport of heat [131] as well as to convert it into useful work in
microcircuits would be of great technological importance, as would be understanding the use and limitations
[132, 133] of coherent or quantum catalysts, i.e., auxiliary systems used to perform work with the minimal
possible disturbance to the catalyst itself.

Quantum analogues of various types of thermal machine have been studied [134—137]. There are proposals
for realizing quantum Otto heat engines with trapped ions [138], optical [ 139] and optomechanical systems
[85, 140], solid-state systems [141], and single molecules [142]; and Nernst engines using the quantum Hall
effect [143], with observation of the Seebeck effect in an ultracold paramagnetic material [144]. Correlations and
entanglement between the system and bath affect the work that a quantum engine can produce [145], and some
quantum engines are predicted to surpass their classical counterparts in terms of efficiency, and even the classical
Carnot limit [146, 147]. Quantum effects are also predicted to enhance the capabilities of quantum batteries
[148] and overcome the friction [149] that arises from non-adiabatic operation of realistic engines [150].
Quantum refrigerators have also been theoretically studied [137, 151], with the prediction that a single qutrit
could be used to cool a qubit [152]—a truly tiny refrigerator. At this size scale, finite-size effects can come into
play as well as quantum coherences; both these effects can conspire to fundamentally limit the amount of work
that can be extracted from quantum systems [63, 65, 66]. When operating away from Carnot efficiency,
however, the presence of quantum correlations has been shown to sometimes be beneficial [153] for
refrigeration and transport.

6. Conclusions and outlook

Classical thermodynamics is extremely successful at predicting the average behaviour of large, complex systems
of particles. It represents an enormous simplification over accounting for the microscopic behaviour of such
systems. Stochastic and quantum thermodynamics go beyond this, the former discussing thermal fluctuations
and non-equilibrium dynamics, and the latter accounting for quantum uncertainties [154] and correlations. We
are now increasingly using quantum physics to create quantum technologies. In parallel, the miniaturisation of
technology makes it vital for us to be able to understand the thermodynamics of microscopic, quantum systems.
Since simulating ever larger quantum many-body systems requires an exponential increase in computational
power (as compared to a linear increase for classical systems), the ongoing challenge [155] to find a simplified
thermodynamic description of complex quantum systems is more relevant than ever before.
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