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ABSTRACT 8 

Eight consecutive swath bathymetry data sets were obtained to monitor the submarine 9 

eruption that occurred from October 10, 2011 to March 5, 2012 south of El Hierro Island, in the 10 

Canaries. An increase in seismic activity since July 2011 preceded the onset of the eruption 11 

marked by seismic tremor and stained waters. The first bathymetry 15 days after the eruption 12 

started depicts a cone topping at 205 m depth, growing on a pre-existing valley. Recurrent 13 

mapping evidences changes in the morphology and depth of the cone, allowing identifying 14 

collapses and calculating eruptive volumes and rates, which peaked at 12.7·106 m3·day-1 of non-15 

dense rock equivalent (NDRE) in October 29–30. The final cone consists of at least four vents 16 

along a NNW-SSE lineation with the shallowest summit at 89 m depth. The total accumulated 17 

volume was 329·106 NDRE m3, of which one third formed the cone. Similar cones have been 18 

identified on the submerged flanks of the island, with volumes ranging from <50·106 to 19 

>1000·106 NDRE m3. As in many other volcanic islands, large-scale landslides play an important 20 

role in the evolution of El Hierro. A giant flank landslide (El Golfo, 13–134 ka, 150–180 km3) 21 

mobilized in a single event a volume equivalent to 450–550 eruptions of the size of the reported 22 
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one, evidencing striking differences in the construction and destruction rates of the island. This 23 

study is relevant for future monitoring programs and geohazard assessment of new submarine 24 

eruptions. 25 

INTRODUCTION 26 

Most of Earth’s volcanic activity occurs beneath the sea, at water depths exceeding 1000 27 

m (Carey and Sigurdsson, 2007). Water depth is one of the main controls of submarine eruptions, 28 

together with magma supply, its composition and volatile content (McBirney, 1963; Head and 29 

Wilson, 2003). Volcanic activity in shallow water may result in explosive eruptions (Kokelaar 30 

and Durant, 1983) and tsunami generation (Latter, 1981). Tracking the depth of an eruption and 31 

how it evolves is essential for risk analysis. The recent eruption south of El Hierro Island, Canary 32 

Islands, from October 10, 2011 to March 5, 2012, resulted in a remarkable opportunity to 33 

monitor the growth of a newborn submarine volcano. In this paper we present eight swath 34 

bathymetry data sets obtained along this eruption and discuss its role in the evolution of the 35 

entire volcanic edifice. Surveys of an active submarine eruption have previously been conducted 36 

in Monowai cone, Kermadec Islands, within a frequency from 6 years to 14 days (Wright et al., 37 

2008; Watts et al., 2012

The Canary Islands chain, off Northwest Africa, originated in the early Miocene as the 40 

African plate moved over a mantle hotspot (

). High-frequency, repetitive multibeam monitoring of a single eruptive 38 

episode is unprecedented before the El Hierro 2011–12 eruption. 39 

Carracedo et al., 1998; Schmincke and Sumita, 41 

2010). The islands show a general age progression from the eastern islands (>20 Ma) toward La 42 

Palma and El Hierro (<2 Ma) (Carracedo et al., 2002) (Fig. 1A). The oldest subaerial rocks in El 43 

Hierro and the only two known subaerial prehistoric eruptions (Tanganasoga and Montaña 44 
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Chamuscada) have been dated at 1.12 ± 0.02 Ma and ~4000 and 2500 years ago, respectively 45 

(Guillou et al., 1996

El Hierro Island covers 273 km

). 46 

2 and peaks at 1500 m above sea level. The whole 47 

volcanic edifice is 5500 km3 and rises from 4000 m water depth (Schmincke and Sumita, 2010) 48 

(Fig. 1B). The island displays three large embayments (El Golfo, Las Playas and El Julan, Fig. 49 

1B) resulting from large flank collapses during the last 200 ka that involved ~10% of its volume 50 

(Gee et al., 2001). These embayments are separated by three topographically elevated volcanic 51 

rift zones (Carracedo, 1994) defined by fissuring, faulting and aligned eruptive centers, which 52 

continue offshore. The submarine extension of the Southern Rift (Fig. 1B) consists of narrow 53 

volcanic lobes trending NE to SW that extend to a depth of 2500 m (Acosta et al., 2003

The El Hierro 2011–12 Eruption 56 

), with 54 

many non-eroded cones at the top. 55 

A sudden increase of seismic activity began in July 2011 (IGN, 2012), which obliged the 57 

authorities to issue a first alert. The seismic crisis peaked on August 21 (454 events), but 58 

magnitudes continued to increase and a yellow alert was declared on September 23, 2011. The 59 

number of earthquakes exceeded 12,500 for the whole event (Fig. 1C). Very shallow earthquakes 60 

on October 9, seismic tremor and the presence of dead fish and a water stain south of La 61 

Restinga on October 10 indicated the onset of a submarine eruption in the Southern Rift of El 62 

Hierro (Fig. 1B and C) (Carracedo et al., 2012). Red alert was declared on October 11. The 63 

eruption, of basaltic character (Carracedo et al., 2012

METHODS 66 

), continued based on seismic tremor and 64 

stained waters, and decreased gradually until March 6, 2012, when the alert was removed. 65 
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From October 22, 2011 to February 24, 2012, six surveys on board R/V Ramón Margalef 67 

focused on changes in seabed elevation and water column using acoustic techniques. Bathymetry 68 

data were acquired with an EM710 echo sounder. Real-time surface sound-velocity corrections 69 

were conducted using a Micro SV probe, whereas water column corrections were based on 70 

SVPlus V2 sound-velocity profiles obtained on a sub-daily basis. Processed bathymetric grid cell 71 

size is 10 m. The first survey mapped the new volcanic edifice and its surroundings on October 72 

25, 2011 (Figs. 2A and S1C), October 29 (Fig. S1D) and October 31 (Fig. S1E); successive 73 

surveys were conducted on November 13 (Figs. 2B and S1F), December 2 (Figs. 2C and S1G), 74 

January 11, 2012 (Fig. S1H), February 8 (Fig. S1I) and February 24 (Figs. 2D

Instituto Hidrográfico de la Marina (IHM) made available pre-eruption, multibeam-76 

derived bathymetry for the flanks of El Hierro (

 and S1J). 75 

Figs. 1B

The water column was acoustically surveyed using an EK60 echo sounder, which 81 

operates at six different frequencies yielding volume backscattering coefficient in decibels (or 82 

reflectivity) and imaging emission spots and plumes (Fig. S2). Vessel positioning was ensured 83 

by a DGPS system with EUSAT differential correction by OmniSTAR, yielding a horizontal 84 

accuracy within ± 15 cm. 85 

 and S1B). Out of the eruption area, all 77 

data sets are coincident, except this IHM bathymetry, which displays a mean depth diminution of 78 

26.4 m (standard deviation is 15.8 m) with respect to the other data sets. Such differences have 79 

been treated as a static error in volumetric calculations and corrected accordingly. 80 

Non-dense rock equivalent (NDRE) volumes (e.g., the volumes of volcanic material 86 

accumulated without porosity corrections needed to calculate the volume of erupted magma), 87 

and rates during the eruption were calculated computing depth changes for each 10x10 m cell 88 

between two consecutive data sets. If a cell was not surveyed during a given survey, depth 89 
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change was calculated with respect to the temporally closest data set and proportionally 90 

attributed, taking into account the lapsed time between the two data sets used. Extreme values in 91 

depth changes caused by acquisition artifacts were corrected. Volumes of 221 older submarine 92 

volcanic cones were calculated by simplifying each edifice to an ideal cone with a basal area 93 

equal to the area occupied by the cone and a height equal to the difference between the summit 94 

depth and the mean depth of the area perimeter. 95 

THE SEAFLOOR EXPRESSION 96 

The first bathymetric survey (Fig. 2A), 15 days after the eruption started, depicts a 97 

volcanic cone located at 27º37.12’N and 17º59.48’W, whose summit was masked by an eruptive 98 

plume (Figs. S1 and S2). The shallowest surveyed point on the cone was at 205 m water depth; 99 

the same point was at 363 m (corrected) depth before the eruption. In this first survey, the cone, 100 

33·106 NDRE m3 in volume, was developing within a pre-existing valley (Figs. 1B and 3A) in 101 

the western flank of the Southern Rift of El Hierro. The valley directed the lava flow toward an 102 

apron at depths exceeding 1000 m, which by then had accumulated 57·106 NDRE m3 of lava 103 

(Figs. 1B and 3B

The cone growth in a sloping area contributed to instability. Cone deconstruction 106 

occurred between October 25 and 29 (

). The eruptive plume in the water column was advected southwestwards 104 

following the dominant path of the Canary Current. 105 

Figs. 3 and S1) and again between October 31 and 107 

November 13 (Figs. 2B and 3). During both episodes, the cone’s height and volume decreased 108 

while the apron accumulated new material. Contrastingly, during the first episode, cone height 109 

decreased uniformly, probably indicating deflation or collapse of a shallow magmatic chamber; 110 

during the second, height decreased only for the southwestern flank, suggesting cone instability 111 
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and sliding of a large block (Figs. 2B and 3A). Eruption rates peaked after the first collapse, with 112 

a value of 12.7·106 NDRE m3·day-1

The November 13 bathymetry (

 during October 29 and 30. 113 

Fig. 2B) revealed that the eruption, which continued 114 

generating a plume in the water column (Fig. S2), was occurring through two vents, the second 115 

growing to the northwest. 53 days after the start of the eruption (December 2) (Fig. 2C), the two 116 

vents developed into a double cone almost infilling the upper part of the valley. Between 117 

November 13 and December 2, failure at the lower part of the valley took place, with valley 118 

walls affected by small-scale landsliding (Fig. 2B and C

The February 24, 2012 bathymetry, 137 days after the eruption onset, shows that the 121 

double cone, which was eroded by small landslides (

). Subsequent bathymetries indicate that 119 

the cone continued growing and that its summit moved gradually to the northwest (Fig. S1). 120 

Fig. 2D), developed into a fissure eruption 122 

with at least four attached vents following a NNW-SSE lineation (Fig. 3A); the shallowest 123 

summit was at 89 m water depth. Eruption rates had decreased since January (Fig. 3B), as also 124 

shown by the fainter plume (Fig. S2), probably indicating that only degassing was occurring at 125 

that time. The accumulated volume throughout the eruption was 329·106 NDRE m3, one third of 126 

which represents the cone build-up and valley infill (Fig. 3B

DISCUSSION AND CONCLUSIONS 130 

). No data are available to account 127 

for volumes accumulated in the lower apron or for material transported away within the water 128 

column. 129 

In addition of the new cone, several other cones, both larger and smaller in volume, can 131 

be identified in the Southern Ridge (Figs. 2D and S3). Some are multi-vent too, probably fissure-132 

fed, aligned along a NNW-SSE direction, i.e., following the structural trend of the Ridge and of 133 

the 2011–12 event seismicity (Fig. 1). Some cones are located at valley headwalls similarly to 134 
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the 2011–12 eruption (Fig. 2A and D). Alike valleys, described as downslope-facing horseshoe-135 

shaped scarps, have been attributed to small-scale flank collapses in active volcanoes, such as 136 

Kick’em Jenny volcano, Grenada (Lindsay et al., 2005), or Monowai cone, Kermadec Islands, 137 

where repeated surveys have evidenced the growth of a cone within a  scarp (Wright et al., 138 

2008

The new cone adds to a large number of similar structures both on land and offshore in 140 

the flanks of El Hierro. A total of 221 submarine cones have been identified over an area of 6100 141 

km

). 139 

2, with volumes ranging from <50·106 to >1000·106 NDRE m3 (Fig. S3). In rough numbers, 142 

the 2011–12 eruption is an addition of 0.006% to the volume of the edifice (5500 km3) 143 

(Schmincke and Sumita, 2010). Assuming that half of the 1.12-Ma-old edifice is formed by 144 

extrusive rocks, and that 450 km3

The El Hierro 2011–12 eruption lasted 138 days, most likely representing a typical 147 

growth episode of the island. Volcanic islands undergo periods of destruction through large-scale 148 

flank collapses, such as those represented by El Golfo, El Julan and Las Playas; medium-scale 149 

collapses of ridge flanks, such as the eastern flank of the Southern Ridge, as evidenced by split 150 

cones in the new bathymetry (

 of rock have been removed by flank collapse in the past, some 145 

9,000 similar eruptions are needed to build it up with a recurrence interval of 125 years. 146 

Figs. 2D and S3); or small-scale collapses, such as the partial 151 

collapse of the new cone during the eruption or, likely, the valley in which it formed. Large-scale 152 

collapses mobilized ~450 km3 of El Hierro during the last 200–300 thousand years, with each 153 

landslide involving ~3% of the edifice volume (Gee et al., 2001). A giant flank landslide such as 154 

El Golfo debris avalanche (150–180 km3, 13–134 ka) (Masson, 1996) mobilized in a single event 155 

a volume equivalent to 450–550 eruptions similar in size to the recent one. 156 
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The above data suggest that while volcanic growth in El Hierro, and likely in other 157 

volcanic islands in equivalent geological settings worldwide, proceeds in terms of eruptive 158 

episodes producing modest volumes of rock spaced at least by a century, its destruction occurs, 159 

to a large extent, as a consequence of massive flank collapses. While evidence of massive debris 160 

avalanche deposits has been found in a number of locations, the El Hierro 2011–12 submarine 161 

eruption represents a rare occasion to observe how these islands are built. The morphological and 162 

volumetric evolution of the El Hierro submarine volcano reported here could be useful for 163 

guiding future monitoring programs and geohazard assessment. At the moment of writing (late 164 

June 2012) seismic activity and ground deformation had reactivated. 165 
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FIGURE CAPTIONS 229 

. 228 

Figure 1. A: Age of the Canary Islands (Carracedo et al., 2002). B: Topo-bathymetric map of El 230 

Hierro. Locations of main geographical references and Figure 2 are provided. The main 231 

components of the 2011–12 eruption and resulting deposits are depicted. Pre-eruption 232 

bathymetry is from IHM. C: Location of earthquakes from July 19, 2011 to March 6, 2012 (IGN, 233 

2012

Figure 2. Four of the eight successive multibeam bathymetries obtained during the eruption. A: 235 

October 25, 2011. B: November 13, 2011. C: December 2, 2011. D: February 24, 2012. 236 

Unsurveyed areas are shown in gray. Changes in depth values over or below 5% with respect to 237 

the previous survey are outlined in B, C and D in black (depth decrease: inflation or deposition) 238 

and red (depth increase: deflation or erosion). In A, depth change is with respect to IHM 239 

bathymetry (

). 234 

Fig. 1C) after correcting static error. In D, the volcanic cone and the canyon and 240 

apron areas used in the volumetric calculations (Fig. 3B

Figure 3. A: Bathymetric cross-sections of El Hierro 2011–12 cone during the eruption. The last 242 

bathymetry (February 24, 2012) displays four successive vents in a NNW-SSE direction. Note 243 

) are depicted. 241 
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the difference between IHM data and the other data sets outside the new cone, which has been 244 

corrected for the volumetric calculations. B: Non-dense rock equivalent (NDRE) accumulated 245 

volumes and rates during the eruptive episode within the cone and the upper apron areas. 246 

1GSA Data Repository item 2013xxx, consisting on Supplementary Figs. S1 (3D views of the 247 

eight bathymetries), S2 (EK60 echograms displaying backscatter in the water column) and S3 248 

(location and volumes of other cones identified in El Hierro edifice), is available online at 249 

www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents 250 

Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 251 









 1 

SUPPLEMENTARY FIGURE CAPTIONS 1 

Figure S1. 3D views of eight successive multibeam bathymetries obtained during the 2 

eruption. A: General view of the island and location of the views. B: Pre-eruption IHM 3 

bathymetry. C: October 25, 2011. D: October 29, 2011. E: October 31, 2011. F: November 13, 4 

2011. G: December 2, 2011. H: January 11, 2012. I: February 8, 2012. J: February 24, 2011. The 5 

eruptive center is indicated in C-J with a white arrow. 6 

Figure S2. EK60 echograms recorded at frequencies of 38 kHz (left) and 120 kHz (right) 7 

during three stages of the eruption: October 29, 2011 (top), November 12, 2011 (middle) and 8 

February 23, 2012 (bottom). Vertical scales are in meters; color depicts volume backscattering 9 

coefficient (Sv) in decibels (dB) from red (max) to blue (min). Seabed displays the highest 10 

backscatter value and is marked also with a thin black line; below seafloor only artifacts (noise 11 

and multiples) are recorded. Within the water column, plumes of volcanic material are 12 

indicated. Intermediate backscatter below 300 m water depth in the high frequency record is 13 

static noise. Note the high backscatter layer around 400 m water depth in the low frequency 14 

records, which probably relates to a density boundary in the water column acting as a trap for 15 

light pyroclastic material. 16 

Figure S3. General topo-bathymetric map of El Hierro Island, with the most recent 17 

bathymetric data in the eruption area. Locations of the new and older volcanic cones identified 18 

in El Hierro submarine and emerged edifice are shown. Histogram depicts the volumetric 19 

distribution of 221 submarine cones, with the 2011 eruption indicated as a reference. Number 20 

of submarine cones below 50·106 m3 is probably underestimated, since they are barely 21 



 2 

identifiable in the bathymetry. Debris avalanche scars and San Andrés fault system from Gee et 22 

al. (2001). 23 
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