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Abstract. Geomorphometry, the science that quantitatively describes terrains, has traditionally focused on the investigation 10 

of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing 

ease by which geomorphometry can be investigated using Geographic Information Systems (GIS) has prompted interest in 

employing geomorphometric techniques to investigate the marine environment. Over the last decade, a suite of 

geomorphometric techniques have been applied (e.g. terrain attributes, feature extraction, automated classification) to 

investigate the characterisation of seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, 15 

however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due 

to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is nevertheless 

much common ground between terrestrial and marine geomorphology applications and it is important that, in developing the 

science and application of marine geomorphometry, we build on the lessons learned from terrestrial studies. We note, 

however, that not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-20 

dimensional nature of the marine environment causes its own issues, boosting the need for a dedicated scientific effort in 

marine geomorphometry. 

This contribution offers the first comprehensive review of marine geomorphometry to date. It addresses all the five main 

steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these 

steps are relevant to marine geomorphometry and also highlight differences from terrestrial geomorphometry. We conclude 25 

with recommendations and reflections on the future of marine geomorphometry. 

Keywords: Geomorphometry, terrain analysis, marine habitat mapping, marine geomorphology, bathymetry, GIS.  
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1 Introduction 

Geomorphology has improved our understanding of many of the Earth’s systems and surface processes (Smith et al., 2011; 

Bishop et al., 2012). Morphology – and topography in its quantitative form – is considered the most important component of 

geomorphology because the interpretation of other components (e.g. genetics, chronology) often starts with the 

characterization of morphology (Speight, 1974; Minár and Evans, 2008; Bishop et al., 2012). The shape of the landscape 5 

impacts many Earth systems at all scales. For instance, broad-scale features such as mountains and valleys may dictate 

weather patterns (Dimri et al., 2013), vegetation and biodiversity patterns (Anderson and Ferree, 2010), and hydrological 

processes (Iordanishvili, 2000), while fine-scale features such as local slope may influence soil stability (Buscarnera and Di 

Prisco, 2013) or influence nest-site selection by certain bird species (Whittingham et al., 2002). Overall, topography is 

known to influence gradients in moisture, energy and nutrients across the landscape (Hengl and MacMillan, 2009).  10 

The oceans also play a fundamental role in the Earth system at multiple scales. An important part of ocean-related work 

addresses the physical, chemical and biological patterns and processes of the water surface and, to a lesser extent, the water 

column. . By contrast, seafloor research has been less spatially extensive, except for research on global, broad-scale 

geomorphology and processes (e.g. Ma et al., 1998). Knowledge of seafloor topography is crucial for many questions 

(Smith, 2004). For example, seafloor topography, or bathymetry, influences surface currents (Gille et al., 2004), near-bottom 15 

currents (White et al., 2007), and ocean mixing rates (Kunze and Llewellyn Smith, 2004). Lack of knowledge on factors 

influenced by bathymetry can impact modelling and forecasting of different elements, from marine species distributions 

(McArthur et al., 2010) to climate (Jayne et al., 2004) to paths of floating objects like marine debris (Smith and Marks, 

2014).  

It is commonly stated that the oceans are 90% unexplored (e.g. Gjerde, 2006) and that more is known about the surface of 20 

Earth’s Moon (e.g. Li et al., 2014), Mars (e.g. Carr et al., 1977; Stepinski and Vilalta, 2005), Mercury (e.g. Zuber et al., 

2012) or Venus (e.g. Ford and Pettengill, 1992) than about the ocean floor (Sandwell et al., 2002; Smith, 2004; Smith and 

Marks, 2014). However, such statements mean little without further specification or elaboration on their real meaning. The 

facts are that the entire ocean floor has been mapped to a resolution of a few kilometres using satellites, which generated an 

estimation of the underwater landscape and revealed features of the Earth’s crust beneath seafloor sediments (Smith and 25 

Sandwell, 1994; Smith, 1998). However, these coarse-resolution data are often inadequate for many scientific, economic, 

public safety and management purposes. Applications such as tsunami hazard assessment, submarine cable and pipeline 

route planning, resource exploration, habitat mapping, territorial claims, ocean circulation and climate studies, and 

navigation were all identified as requiring more reliable, fine-scale bathymetric data (Sandwell et al. 2002). It is therefore 

imperative to extract the most useful information that can be retrieved from the seafloor data available at resolutions finer 30 

than 5 km.  
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Fuelled by advancements in remote sensing and Geographic Information Systems (GIS) (e.g. Grohmann, 2004), the field of 

geomorphometry has entered a new era in recent decades (Evans and Minár, 2011; Florinsky, 2012). Geomorphometry is 

defined as the science that quantitatively measures terrain morphology using geosciences, mathematics, and computer 

sciences (Chorley et al., 1957; Mark, 1975; Pike et al., 2009). It can be divided into two sub-fields: general geomorphometry 

(e.g. Minár et al., 2013), and specific geomorphometry (e.g. Drăguţ and Blaschke, 2006). General geomorphometry deals 5 

with continuous surfaces in order to extract terrain attributes (e.g. slope, aspect, rugosity), while specific geomorphometry 

aims at characterizing or extracting discrete landforms (Evans, 1972). Methods in geomorphometry were mainly developed 

and tested on artificial (e.g. Jones, 1998), terrestrial (e.g. Grohmann, 2015) and extra-terrestrial settings (e.g. Bue and 

Stepinski, 2006). These methods are relevant for underwater applications and have been increasingly used in the last decade 

(Lecours et al., 2015a), but differences in the input data can sometimes produce different results than expected from land-10 

based studies, creating the additional need for a dedicated scientific effort in marine geomorphometry . Figure 1 compares 

the increase in publications in both marine and terrestrial (and potentially extra-terrestrial) geomorphometry over time. The 

numbers illustrate that marine applications of geomorphometry are more recent and less numerous than their terrestrial 

counterparts. However, we note that the low number of published marine applications indicated in Fig. 1 may be biased by 

the fact that the researched terms (i.e. geomorphometry and terrain analysis) are not always used in marine studies, even 15 

where geomorphometric techniques have been employed. For instance, in Harris and Baker (2012a), all of the 57 case 

studies used bathymetry, 33 of them generated slope, 23 of them measured rugosity, and 14 of them calculated a topographic 

position index, amongst other terrain attributes (Harris and Baker, 2012b). Despite this high use of general geomorphometry 

techniques, the term “geomorphometry” was not used once in the 900 pages of the volume, and “terrain analysis” was only 

mentioned twice.  20 

To our knowledge, no review on the state-of-the-art of marine geomorphometry has ever been written. The aims of this 

contribution are therefore to raise awareness of this relatively recent field and to lay the basis of marine geomorphometry 

practices by reviewing the relevant literature to date. As illustrated in Fig. 2, this manuscript addresses the five main steps of 

geomorphometry identified by Pike et al. (2009) with a focus on how these steps are relevant to marine geomorphometry and 

different from traditional, terrestrial geomorphometry. The five steps are: sample the surface (Sect. 2), generate a surface 25 

model from the sampled heights (Sect. 3), preprocessing, i.e. correct for errors and artefacts in the surface model (Sect. 4), 

surface analysis, i.e. derive terrain attributes and terrain features (or objects) (Sect. 5), and apply the terrain attributes and 

features to a specific problem (Sect. 6). We conclude with recommendations and reflections on the future of marine 

geomorphometry. 
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2 Sampling the depth of the seafloor 

For centuries, the lead line was the main instrument used to determine the depth to the seafloor, until remote sensing 

technologies revolutionized the way we could measure bathymetry. This section introduces the principles of four types of 

remote sensing technology that are currently used to collect depth information: acoustic remote sensing, satellite radar 

altimetry, optical remote sensing, and bathymetric LiDAR (light detection and ranging). Radar altimetry and optical remote 5 

sensing both collect depth information in an indirect way, while acoustic remote sensing and bathymetric LiDAR measure 

the seafloor directly. Radar altimetry and acoustic remote sensing are limited to deeper waters while optical remotely sensed 

and bathymetric LiDAR data are limited to shallower waters, although there is some degree of overlap between the depths in 

which the various methods can be applied. A global scale, systematic survey could be performed with satellite-based 

methods within a few years (Sandwell et al., 2002), compared to the estimated 600 years (Carron et al. 2001) that it would 10 

take using acoustic remote sensing technologies. The different techniques are discussed in the perspective of using the 

information they collect to generate Digital Terrain Models (DTM) and perform geomorphometric analyses. DTMs using 

bathymetric data are hereafter referred to as Digital Bathymetric Models (DBM) to distinguish them from Digital Elevation 

Models (DEM), a term usually reserved for terrestrial elevation data though sometimes including bathymetric data for global 

datasets. Other techniques can be used to measure depth but are less common in the literature. For instance, ground-15 

penetrating radar can be used to detect the thickness of the water by measuring the difference between the radar echoes from 

the air-water and water-seafloor interfaces (Feurer et al., 2008). 

2.1 Satellite radar altimetry 

In the 1970s, satellite-based radar altimeters were developed as a method to study the oceans on a global scale (Douglas et 

al., 1987), which was a significant improvement over the extent covered by very narrow ship tracks. Radar altimeters emit 20 

microwaves that bounce on the sea surface and return to the receiver, giving the altitude of the satellite over the sea surface. 

The topography of the surface can then be deduced and used to derive ocean circulation patterns (Fu, 1983) or define geoid 

models (e.g. Fernandes et al., 2000). The geoid represents the gravitational equipotential surface of the Earth relative to the 

mean sea level; gravity varies in space, and the anomalies in its distribution were found to be correlated with bathymetry 

(McKenzie and Bowin, 1976; Watts 1979). Despite initial reports stating that it was impossible to derive reliable bathymetry 25 

from satellite altimeter (Keating et al., 1984; Watts and Ribe, 1984), Dixon et al. (1983) were the first to demonstrate its 

feasibility using real data. Several algorithms and methods to estimate and predict bathymetry from the gravitational field 

have since been developed (reviewed in Calmant and Beaudry, 1996 and Sandwell and Smith, 2001). However, it remains a 

complex process (Calmant and Beaudry, 1996) that still requires acoustic data for calibration (Smith and Sandwell, 1997).  

The applications of altimetry-derived bathymetric data are limited to the study of broad-scale patterns, processes and features 30 

as they only provide low resolution estimates of the bathymetry (Goff et al., 2004); ocean waves create a lot of noise that 
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prevents the collection of fine-resolution data (Smith, 1998), and rough seafloor geology and thick sediments affect data 

accuracy (Smith and Sandwell, 1994). Technological constraints and satellite orbits also prevent data collection close to the 

poles and the coastline (Sandwell et al., 2002). Some authors identified weaknesses in the method and warned that predicted 

depths from altimetry may not be reliable and should not be used for geodynamics studies (Smith, 1993), navigation, or 

hazard identification (Smith and Sandwell, 1994). The main advantages of altimetry-derived bathymetry are speed of 5 

collection and uniformity of coverage (Mackenzie, 1997). 

Two main altimetry-derived datasets are currently used in applications of marine geomorphometry: the General Bathymetric 

Chart of the Oceans (GEBCO, 2014) and the Shuttle Radar Topography Mapping 30-arc second database (SRTM30_PLUS, 

Becker et al., 2009). They are both free datasets that were created by filling the gaps between publicly available datasets 

from different sources with radar altimetry (Smith and Sandwell, 1994, 1997; Becker et al., 2009). These datasets have been 10 

used for instance in habitat mapping and predictive modelling (e.g. Davies et al., 2008; Knudby et al., 2013), conservation 

(e.g. Ross and Howell, 2013), search and rescue operations (Smith and Marks, 2014), and geomorphology (e.g. Harris et al., 

2014). Many works have found these datasets to be too coarse for their purposes (e.g. Davies et al., 2008; McNutt, 2014). 

For instance, Vierod et al. (2014) stated: “At present, the availability of bathymetric data at a resolution sufficient to inform 

reliable terrain attribute predictors is a major limitation to the ability of deep-sea species distribution models to make 15 

accurate predictions of the distributions of benthic organisms.” For many applications, quality can also be just as important 

as resolution (c.f. Sect. 4 and Sect. 6). 

2.2 Optical remote sensing 

Of the four remote sensing methods presented in this section, optical passive remote sensing is the least common in the 

marine geomorphometry literature. However, it presents a cheaper alternative to LiDAR data for collecting depth 20 

information in very shallow coastal areas (Su et al., 2014), as satellites can cover large areas in less time (Lafon et al., 2002; 

Wang and Philpot, 2007). Two main passive remote sensing techniques are presented: one based on the interactions of 

electromagnetic radiations with water and one based on principles from stereoscopy. 

The ability to derive depth estimates from imagery comes from the optical Beer-Lambert law of light absorbance, which 

describes light absorption as it goes through a transparent medium (Serway and Beichner, 1983). In water, light gets 25 

absorbed exponentially as depth increases (Lyzenga, 1978). The Beer-Lambert law allows the mathematical derivation of 

depth estimates from the brightness values of pixels in an image, when the absorption characteristics of an area are known 

(Mobley et al., 2005; Carbonneau et al., 2006). Since the absorption rate of an area is dependent on water turbidity and the 

characteristics of the incoming energy (e.g. the intensity, angle and wavelength of sunlight), calibration with ground-truth 

data verifying depth-colour relationships (i.e. local light absorption characteristics) is a key step in the application of this 30 

method. However, calibration is made difficult by temporal variations in the illumination characteristics of an area 
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(Carbonneau et al., 2006); the calibration data would ideally need to be collected at the same time as the remotely sensed 

data to ensure identical environmental conditions. Since reliable calibration data are particularly challenging to obtain in 

marine waters (Lafon et al., 2002; Dekker et al., 2011), some methods have been proposed to estimate bathymetry without 

ground-truth data (e.g. Fonstad and Marcus, 2005), however these are not yet widely adopted (Feurer et al., 2008). Rather 

than using the level of absorbed energy to derive bathymetry from imagery, some authors, e.g. Maritorena et al. (1994), have 5 

used bottom reflectance, which is the level of reflected energy.  

Photogrammetry applied to pairs of stereo images can also be used to build DBMs in a similar method to the technique 

applied on land. Although possible (e.g. Stojic et al., 1998), through-water photogrammetry is challenging due to the need to 

correct for the air-water interface (Feurer et al., 2008). Underwater photogrammetry (i.e. active remote sensing) has, 

however, been successfully applied at a fine scale to reconstruct the digital terrain (e.g. Johnson-Roberson et al., 2010; 10 

Kwasnitschka et al., 2013). The work by Friedman et al. (2012) is noteworthy as they derived multi-scale measures of 

rugosity, slope and aspect from underwater stereo image reconstructions.  

All types of imagery have been used to derive marine bathymetry: hyperspectral (e.g. Mobley et al., 2005; Ma et al., 2014), 

multispectral (e.g. Lyzenga et al., 2006; Pacheco et al., 2015), broadband colour (e.g. Westaway et al., 2003) and grayscale 

images (e.g. Winterbottom and Gilvear, 1997). Multispectral images enable refined depth estimates by extracting 15 

information on the bottom types from non-visible spectral bands and linking the bottom types with depth (Winterbottom and 

Gilvear, 1997). The red band of the electromagnetic spectrum is particularly successful in detecting depth variations 

(Legleiter et al., 2004; Carbonneau et al., 2006). 

All methods from optical passive remote sensing are limited to shallow waters and are sensitive to errors caused by waves, 

turbidity, sunglint from specular reflection, heterogeneous and complex seafloors, and the presence of shadow that 20 

artificially increases depth estimates (Lafon et al., 2002; Louchard et al., 2003; Holman and Haller, 2013; Eugenio et al., 

2015). Some of these elements can be corrected or accounted for. For instance, Knudby et al. (2010) applied ‘deglinting’ 

(Hedley et al., 2005; Kay et al., 2009) and water column corrections (Lyzenga, 1978), in addition to the common geometric 

and atmospheric corrections (Jensen, 2005), to IKONOS satellite images. From these images a 4 m resolution DBM was 

created and rugosity was derived. The authors indicated, however, that noise prevented the use of bathymetry at depths 25 

deeper than 15 m as rugosity values were artificially increased. That depth (15 m) is often reported as being the performance 

limit of optical remote sensing for bathymetry retrieval (e.g. Stumpf et al., 2003), although the practical limit will vary with 

local sea conditions. 

2.3 Acoustic remote sensing 

The development of acoustic technologies has fuelled marine exploration probably more than any other method, by 30 

providing reliable, continuous, and relatively high-density data at ever-decreasing price per line kilometre. Acoustic waves 
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are the most practical vector of information in the submarine environment; since water is denser than air, acoustic vibrations 

propagate through water four to five times quicker (Lurton, 2010). Sound also travels greater distances underwater as there is 

less attenuation in the water compared to air (Lurton, 2010). 

Three tools can be used to collect depth information using sound waves: sidescan sonars (SSS), single-beam echosounders 

(SBES), and multibeam echosounders (MBES). These tools are all active sonars (Sound Navigation and Ranging) that 5 

transmit a characteristic and controlled signal in direction of the seafloor. The two-way travel time, which is the time taken 

for acoustic waves to travel between the source and the seafloor and back to the source again, can be measured to estimate 

the range between the target and the sonar and thus deduce depth. The intensity of this return (i.e. backscatter) can also be 

measured to provide information on the properties of the seafloor (e.g. sediment composition). These three tools can be pole-

mounted on the side of vessels, or mounted on the hull of vessels, on remotely operated vehicles (ROV), on autonomous 10 

underwater vehicles (AUV), or on a towed platform. 

SSS were developed for military applications in the 1940s. They provide an image of the seafloor made from backscatter 

measurements. Despite their ability to provide information on the topographic roughness of the seafloor, SSS cannot 

measure seafloor relief directly. However, similarly to what is done with interferometric synthetic aperture radar, 

interferometry can be used to create estimates of bathymetry by combining two receiving antennas. SSS are easy to deploy 15 

and cheaper than other technologies (Harris and Baker, 2012c), but not often used to collect bathymetry as they are usually 

mounted on a towed platform that is difficult to accurately locate in space. Collier and Humber (2012) provide an example of 

the use of sidescan-derived bathymetry to identify geomorphic features on the seafloor. Some techniques from specific 

geomorphometry are used on backscatter data to identify specific bedforms or depositional units on the seafloor based on 

their unique acoustic signature (Greene et al., 1999; Huvenne et al., 2005; Martorelli et al., 2012) and to detect differences in 20 

reflectivity and texture patterns on the seafloor (van Lancker et al., 2012). We also recognize the potential to generate 

centimetre resolution bathymetric data using modern synthetic aperture sonar systems such as the HISAS 1030 (Kongsberg 

Maritime, 2015) from a stable AUV platform (e.g. Thorsnes et al., in press). Synthetic aperture sonars differ from traditional 

SSS by utilising data from several consecutive pings to synthesize a longer sonar array capable of measuring at higher 

resolution. There are many potential benefits to this approach although, at present, the processing of bathymetric data is very 25 

computationally demanding and therefore best suited to mapping of small areas.  

SBES, or fathometers, collect both depth and backscatter data by transmitting a narrow sound beam at nadir. The mapped 

extent is thus limited to a single track directly below the supporting platform. Some modifications to SBES were suggested 

to increase their performance. For instance, the split-beam echosounder uses interferometry to improve the accuracy of the 

data and was used to determine slope directly (Fosså et al., 2005). The dual-beam echosounder uses two beams of different 30 

aperture oriented in the same direction to locate targets more accurately. Finally, the sweep sounder is a combination of 

several SBES mounted on a horizontal support to increase the number of soundings. Although they remain standard for ships 
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navigation, SBES are less and less used for mapping purposes since MBES became more affordable, but recent applications 

can still be found, particularly where compiled SBES data are available; a SBES bathymetric dataset of the English Channel 

was used by Coggan and Diesing (2012) for the broad-scale analysis of an exposed rock ridge system, by Elvenes et al. 

(2014) for surficial sediment and habitat mapping, and by James et al. (2012) to identify geomorphic features in a paleo-

valley.  5 

MBES provide a relatively fast, high-resolution and wide coverage measurement of the seafloor, both in terms of depth and 

backscatter. They sweep a large swath of the seafloor by emitting a fan of narrow sound beams, and are currently the most 

efficient and accurate tool available to collect bathymetric and backscatter data (Costa et al., 2009; Schimel et al., 2010a, 

2010b). In recent years, advancement in MBES technology has further enhanced a valuable source of seafloor data. These 

advances have come out of traditional user groups extending the application of the data to meet new requirements and from 10 

the motivation of new user groups wanting to employ the technology. This wide ranging and ever growing community of 

MBES users are adapting and extending the potential of MBES data to address unique applications. MBES users have 

traditionally included hydrographers, navigators, engineers, marine geologists and military planners, but now we see the 

extension of the technology to meet the needs of maritime explorers, archaeologists, fisheries biologists, geomorphologists 

and ecosystem modellers, to name a few. MBES is currently the main source of bathymetric data for applications of marine 15 

geomorphometry. 

2.4 Bathymetric LiDAR 

Bathymetric LiDAR is an adaptation of the more traditional airborne topographic LiDAR (Irish and Lillycrop, 1999; 

Guenther et al., 2002) and has become increasingly common in the literature in the last two decades (Brock and Purkis, 

2009). The main difference between the two types of systems is the wavelengths used; the laser from bathymetric LiDAR 20 

uses a wavelength in the green spectrum, compared to the red/infrared wavelength of the topographic LiDAR. Recent 

systems, sometimes called topo-bathy LiDAR, are multispectral LiDAR and combine both types of laser, which enables the 

surveying of both land and water in one flight; when flying over the water, the green laser penetrates the sea surface and 

collects information on the water column and the seafloor while the red/infrared laser collects information on the sea surface. 

LiDAR can also collect intensity values that, like acoustic backscatter, provide information on the characteristics of the 25 

seafloor (Costa et al., 2009). 

Bathymetric LiDAR is the only technique that can collect high-resolution data in very shallow waters, which makes it 

especially relevant for coastal applications requiring fine-scale data (<1 m resolution) (Brock and Purkis, 2009). The 

efficiency of bathymetric LiDAR systems is greatly limited by turbidity, wave action, depth (up to 50-70 m in very good 

conditions), steep slopes, and rocky substrate (Costa et al., 2009; Chust et al., 2010; Jalali et al., 2015). Current 30 

geomorphometric applications on bathymetric LiDAR data are mainly related to the exploration of coastal ecosystems (e.g. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-73, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 1 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



9 

 

Wedding et al., 2008; Zavalas et al., 2014) and geomorphology (e.g. Arifin and Kennedy, 2011; Kennedy et al., 2014), but 

are likely to extend to other applications such as marine archaeology and natural hazards assessment (e.g. Solsten and 

Aitken, 2006). In 2015, LiDAR data represented 4.5% of the coastal data collected for the Continually Updated Shoreline 

Product (CUSP) compiled by the National Oceanic and Atmospheric Administration (NOAA) and the National Geodetic 

Survey (NGS) of the United States (Graham et al., 2015).  5 

3 Generating a surface model from sampled depths 

By nature, geomorphometric analyses necessitate spatially continuous data, but not all remote sensing techniques used to 

collect depth samples create continuous surfaces. For instance, bathymetric LiDAR and MBES collect point data that need to 

be cleaned and then interpolated in order to create a full coverage, and SBES collect data in narrow lines that sometimes 

need to be interpolated to fill in between the survey lines. This section describes the different interpolators that are available 10 

for DBM generation and the question of spatial scale of DBMs. A detailed account of the various approaches to processing 

(i.e. georeferencing and applying system and environment related corrections) and cleaning of data (i.e. removal of spurious 

depth soundings) are beyond the scope of this paper and are specific to the sensors used for data acquisition as well as 

industry and application-related standard practices. We do, however, touch briefly on data cleaning in Sect. 3.2 where we 

present a method where uncertainty algorithms are used to aid data cleaning, and where the interpolation of data is 15 

intrinsically linked to the calculation of uncertainty of the bathymetric surface. 

3.1 Interpolation 

Hengl and Evans (2009) identified several techniques used to generate gridded DTMs from height samples for 

geomorphometric purposes, including inverse distance, minimum curvature, spline, kriging, polynomial regression, moving 

average, and many others. The same methods can all be used to generate DBMs from depth samples. For instance, Ezhova et 20 

al. (2012) created a DBM from SBES data using the natural neighbour interpolation method, and Ramillien and Cazenave 

(1997) combined altimetry and ship-based data into a single DBM using bilinear interpolation. More rarely, triangulated 

irregular networks (TIN) are created from depth samples; for example, Heyman and Kobara (2012) generated a TIN from 

SBES data, and Foster et al. (2009) computed TINs from SBES and bathymetric LiDAR from which volumetric attributes 

were computed. 25 

The choice of interpolator varies depending on the type of data and the spatial arrangement of the depth samples. For 

instance, MBES or LiDAR data can collect very dense point clouds that require little interpolation between points, resulting 

in limited interpolator influence in the final DBM. On the other hand, creating a DBM for a big area from SBES data 

requires more interpolation as SBES only sample very narrow tracks and have a high density of points along the survey line 
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but no data between the survey lines. This has implications for geomorphometry as the interpolated DBM may miss 

important geomorphological features (depending on the distance between the survey lines), similarly to what happens with 

the interpolation of contour lines (Wise, 1998).  

There are no optimal interpolation methods (Li et al., 2005), and it is well known that each technique has different sensitivity 

to errors and sample distribution and that the quality of DTMs can be improved when making the appropriate choice of 5 

interpolator (Carrara et al., 1997; Hengl and Evans, 2009). By being different in nature, sampled depths may not require the 

same characteristics from an interpolator than sampled elevations; for instance, DBMs do not need to be hydrologically 

corrected as drainage analyses are futile underwater. This is why techniques were developed in recent years to address the 

particular characteristics of depth sampling. Here we examine on such technique, the CUBE (Combined Uncertainty and 

Bathymetric Estimator) algorithm (Calder, 2003), which accounts for different errors specific to acoustic remote sensing 10 

(e.g. geometric and acoustic) and is incorporated in several of the most widely used bathymetric processing software used by 

the hydrographic survey industry and scientific community. Although not yet universally accepted as data cleaning method 

by the hydrographic survey industry and hydrographic agencies, who have a particular need to preserve shoal soundings and 

comply with strict quality control procedures to ensure safety of navigation, CUBE is widely used and of special interest to 

more applied bathymetric data users and the related scientific community. According to Schimel et al. (2010b), CUBE could 15 

be more appropriate than traditional gridding methods to compute precise bathymetry and associated terrain attributes. 

CUBE is based on the spatially explicit quantification of the total propagated uncertainty (TPU) for each data point (Calder 

and Mayer, 2003), enabling the rejection of samples that are outside a certain uncertainty confidence level (e.g. 95% for 

Calvert et al., 2014). When creating the DBM, the algorithm provides vertical error estimates and statistically assigns, to 

each pixel, the most likely depth value based on the uncertainty of each sounding within the pixel (see Dolan and Lucieer, 20 

2014). In several bathymetric processing software offering CUBE, users can visualize not only the most probable depth for 

each pixel, but also the subsequent most probable depths (e.g. second or third most likely) and select the one they think is the 

most appropriate based on their knowledge of an area. For example, this can allow correction for occurrences when the sonar 

detects fish close to the seafloor instead of the seafloor itself and data cleaning did not appropriately remove these soundings. 

Figure 3 shows some of the information that can be extracted and visualised from the application of the CUBE algorithm. 25 

When interpolating the soundings to create a DBM, the bathymetry and the horizontal and vertical components of 

uncertainty can be stored in a BASE (Bathymetry Associated with Statistical Errors) surface. The BASE format allows 

multi-attributes surface models. CUBE’s main inconvenience is that it requires a lot of ancillary data to be collected in order 

to compute TPU, but it is very reliable in defining the spatial pattern of errors, their importance, and helping to identify their 

sources (Passalacqua et al., 2015). In addition to the bathymetry, a map of uncertainty can be computed, which can become 30 

very important when making decisions using the bathymetry and for onward geomorphometric analysis. 
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3.2 Spatial scale 

Spatial scale is a term used to summarise data resolution and extent and is an important component of the interpolation of 

depth data to generate DBMs. Both resolution and extent of a given DBM are dictated by the survey methodology or 

methodologies. First, the fundamental technical limitations of the remote sensing technique that is used to collect the 

bathymetric data will define the scale (resolution) of the DBM (Kenny et al., 2003; Van Rein et al., 2009). For instance, 5 

principles of radar altimetry limits DBMs generated with these data to coarse, usually kilometre-scale resolution, while other 

methods can achieve up to centimetre-scale resolution data (c.f. Sect. 2). Second, the platform that supports the system may 

also influence the scale (extent) of the final DBM; a remotely sensed image collected from a satellite will usually have a 

coarser resolution and cover a larger area than an image collected from an aircraft or an unmanned aerial vehicle.  

Unlike systems used in optical remote sensing, radar altimetry and bathymetric LiDAR, acoustic systems do not sample the 10 

seafloor uniformly, which influences the spatial scale of the resulting DBM. The sampling density of these systems is 

directly dependent on depth, or more specifically on the sensor-to-seafloor distance (Lecours and Devillers, 2015). As this 

distance increases, the system’s footprint increases, leading to a lower sampling density for a greater area sampled at a 

coarser resolution. Since the seafloor is rarely perfectly flat and at a constant depth, the sampling density is almost never 

uniform across survey areas, which can make it challenging to determine the appropriate spatial resolution of DBMs for 15 

interpolation. 

Ultimately, the spatial scale of a DBM will be dictated by its intended use (see Sect. 6) which then influences the choice of 

the data collection method, typically following hydrographic standards (IHO, 2008) which ensure the appropriate data are 

acquired to ensure safety of navigation. Besides DBMs created directly from one source of survey data, we are increasingly 

seeing DBMs generated, or pooled together from several surveys and/or sensor technologies (e.g. EMODnet, 2015). These 20 

datasets can be a valuable resource but impose additional challenges for DBM creation and geomorphometric analysis. 

4 Correcting errors and artefacts in digital bathymetric models 

In terrestrial applications, it is well known that all DEMs, regardless of the techniques used to collect and generate data, are 

influenced by uncertainty and errors (Fisher and Tate, 2006; Gessler et al., 2009). This is also true for marine applications, 

but the properties and dynamic nature of the ocean makes DBMs more prone to errors and artefacts than DEMs (Hughes 25 

Clarke et al., 1996). As illustrated in Fig. 4, this has significant implications for marine geomorphometry, which shows as 

widely recognized in the terrestrial literature (Florinsky, 1998; Zhou and Liu, 2004; Oksanen and Sarjakoski, 2005) that 

errors and artefacts in a DTM propagate to terrain attributes and may be amplified in subsequent analyses.  
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As with DEMs (Harrison et al., 2009; Sofia et al., 2013), errors and artefacts in DBMs can be caused by the interpolation 

method (Erikstad et al., 2013), movement and positioning of the supporting platform (Hughes Clarke et al., 1996), and a 

temporal (Lecours and Devillers, 2015) or spatial (Hughes Clarke, 2003a, 2003b) misalignment between the different 

elements of the surveying system. Data from radar altimetry are the least sensitive to platform motion (Smith and Sandwell, 

1994). However, large artefacts resulting from fine-scale noise in the gravity field (Goff et al., 2004) and the algorithms used 5 

to convert gravity data into bathymetric estimates (Dixon et al. 1983; Calmant and Beaudry, 1996) are often characteristic of 

these data. Similar large linear artefacts can sometimes be found in satellite images (e.g. Klemas, 2011). The level of error in 

bathymetric data from optical remote sensing is known to directly depend on water depth as a result of light attenuation in 

the water column (e.g. Liceaga-Correa and Euan-Avila, 2002). Recent studies (Leon et al., 2013; Hamylton et al., 2015) have 

demonstrated that the integration of the spatial structure of errors improves bathymetric estimates derived from satellite 10 

images. Data collected with acoustic methods are the most susceptible to artefacts for several reasons. First, they are 

collected from surface vessels/platforms or underwater vehicles that can be strongly affected by environmental conditions 

such as waves and wind. Furthermore acoustic waves need to be corrected for sound velocity. Without this correction the 

data will exhibit artefacts broadly similar to those caused by an inappropriate correction of the atmospheric conditions in 

optical remote sensing (Li & Goldstein, 1990). Sound velocity varies with temperature, salinity and pressure and the failure 15 

to correct for these variations can induce refraction artefacts in the DBM (Yang et al., 2007). This is particularly challenging 

as water column properties vary both spatially and temporally, especially in the coastal zone where there is the additional 

complication of freshwater input from rivers, and are less predictable than atmospheric conditions (Cushman-Roisin and 

Beckers, 2011). Tidal corrections are generally applied using data from locally installed tide gauges, or modelled tides, 

depending on the accuracy required. Finally, since the surveying system is underwater, direct positioning using the Global 20 

Positioning System (GPS) is not possible (Roman and Singh, 2006). The level of error in the data is thus strongly influenced 

by the accuracy of the different instruments that provide ancillary data to estimate the position of the system’s underwater 

components; the positioning error is known to directly increase with depth (Rattray et al., 2014; Lecours and Devillers, 

2015). 

Figure 4 illustrates different types of errors and artefacts that can be found in bathymetric data of different types and at 25 

different scales, and their propagation to derived terrain attributes. Artefacts commonly found in bathymetric data and that 

often cannot be corrected using existing methods include gridding and interpolation artefacts (e.g. in the top panels), motion 

artefacts (e.g. middle and bottom panels), refraction artefacts, and artefacts caused by the temporal or spatial uncertainty 

associated with ancillary data (e.g. bottom panels). Common errors include spurious soundings (e.g. bottom panels.) 

Artefacts in DBMs are difficult to handle properly as they cannot generally be ground-truthed (Li and Wu, 2006). Most 30 

marine environments are not easy to access and the collection of ground-truth data is often limited by technological and 

logistical constraints (Solan et al., 2003; Robinson et al., 2011). Consequently, ground-truthing of DBMs is not standard 

practice. We note however that ground-truthing is often performed for backscatter data to attempt matching sediment types 
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with acoustic reflectivity characteristics. As illustrated in Fig. 4, artefacts in DBMs may be present at all scales and persist, 

or are sometimes amplified in derived terrain attributes. For instance, artefacts in the GEBCO are common (Lecours et al., 

2013; GEBCO, 2014; Fig. 4), arising mostly from the merging of datasets of different quality. When the artefacts are too big 

they cannot be removed with traditional filtering methods (e.g. Gaussian filtering) as this considerably affects the overall 

quality of the surface (Passalacqua et al., 2015), and the artefacts are also difficult to overcome when deriving terrain 5 

attributes even by using multi-scale methods (Sect. 5.1). At a finer scale, Yang et al. (2007) developed an algorithm to 

correct refraction artefacts, although this was only partially successful. When the artefacts are smaller, it can be difficult to 

distinguish them from real fine-scale features such as sandwaves or iceberg scourings (Hughes Clarke et al., 1996), 

especially when no underwater video data are available to confirm the geomorphology of an area. This is particularly 

challenging for marine geomorphometry as analyses are likely to capture both the real features and the artefacts (Wilson et 10 

al., 2007). Currently, the main ways to address artefacts in DBMs are to apply filtering techniques, resample the data to 

coarser resolutions, manually correct the data based on visual interpretation, and to use algorithms like CUBE that account 

for errors and uncertainty. Most marine geomorphometry applications simply disregard the presence of the remaining 

artefacts, excluding them for practical purposes by expert judgement.  

5 Deriving terrain attributes and terrain features 15 

Bathymetric data, particularly full coverage multibeam, or LiDAR data, are well suited for the generation of quantitative 

terrain attributes and terrain features. These attributes and feature classifications can be very useful in describing, 

interpreting and classifying geomorphology in the marine environment, just as their terrestrial equivalents are on land. These 

derived datasets can also be of further use in geological interpretation and habitat mapping and modelling. With bathymetric 

data now available in many areas at comparable resolutions to terrestrial DEMs, depending on the survey equipment used 20 

(c.f. Sect. 2), we can extract a similar level of information to that obtainable from terrestrial DEMs. Elsewhere, global (e.g. 

GEBCO, 2014) and regional (e.g. IBCAO (Jakobsson et al., 2012); EMODnet, 2015) bathymetric datasets combining 

information from many sources have become an impressive resource and are being used routinely for many marine science 

applications, not least those including high seas areas which, as yet, have little detailed coverage. This section reviews both 

the use of general (i.e. terrain attributes) and specific (i.e. terrain features) marine geomorphometry.  25 

5.1 General geomorphometry (terrain attributes) 

The calculation of terrain attributes (synonymous with terrain/topographic variables) first requires some method for 

mathematically representing the bathymetric surface. This surface representation is then used to calculate the required terrain 

attribute, and is typically achieved by either using neighbourhood analysis of raster pixels, or by fitting a polynomial 

expression to describe the surface. A review of terrain attributes was provided by Wilson et al. (2007) in the context of 30 
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marine benthic habitat mapping and updated by Dolan et al. (2012). In addition, Brown et al. (2011) offer a useful summary 

of the extent to which many of these various terrain attributes have been employed within published habitat mapping studies 

in the period 2000 to 2011.  The computations performed on DBMs, and the range of applications that these derived terrain 

attributes are used for, are common to many of those performed on DEMs for terrestrial applications. The key quantitative 

difference in the underlying data is that DBMs have negative values and this has led to modification of some terrain 5 

attributes to suit bathymetric data. Besides this, differences in analysis of bathymetric DBMs versus DEMs are often more 

related to the meaning or application of the information from the analysis. For instance, deriving a watershed network 

underwater may be useful e.g. for delineating potential sediment pathways on the continental slope, but is a deviation from 

the original intended purpose. 

Terrain variables can be grouped into four main types describing different properties of the terrain – slope, orientation, 10 

curvature/relative position, and terrain variability (Fig. 5). It is beyond the scope of this paper to provide details on all the 

various options for computation, however, we provide an overview of some of the most commonly used terrain attributes in 

marine-based studies, as well as an indication of some common calculation approaches (Tables  

Table 1). Here we note the geomorphological relevance and ecological relevance of the various types of terrain attributes in 

the context of seabed mapping. Whilst the effects on geomorphology are more direct, the popularity of terrain attributes in 15 

benthic habitat mapping is, to a large extent, due to their function as a surrogate (or proxy) in explaining the distribution of 

benthic fauna. In the absence of better, or alternate information (e.g. from high resolution oceanographic data), proxy 

information such as whether a given location is sheltered or exposed to dominant currents as indicate by its position relative 

to neighbouring terrain, can be useful in determining suitable habitat for a given species or community. An elevated position 

for example may be advantageous for suspension feeding organisms and act as a surrogate for the direct need for food 20 

supply. Other terrain attributes may capture a proxy for shelter or other ecological advantage. This topic is discussed further 

by Lecours et al. (2015b) including the all-important effect of scale which is linked both to data resolution and the scale at 

which geomorphometric analysis is conducted. 

For GIS based calculation of terrain attributes, extending the analysis window beyond the basic 3 x 3 neighbourhood is 

particularly useful in benthic habitat mapping as it facilitates the identification of spatial scales that are relevant to the 25 

benthic communities and may also help to overcome artefacts in the DBM (Wilson et al., 2007). The multi-scale analysis 

methods developed by Wood (1996), which built on the work of Evans (1972, 1980), have been fundamental in establishing 

an appreciation of scale in marine and terrestrial geomorphometry alike.  The associated software package Landserf (Wood, 

2009) puts multi-scale analysis within easy reach of marine scientists and the use of Landserf for DBM analysis took off 

following the early applications of the software to bathymetric data (e.g. Wilson et al., 2007).  Although Landserf 2.3 is still 30 

used by many scientists requiring a standalone programme for geomorphometric analysis, Wood’s algorithms are now 

perhaps more widely used among the marine community through the GRASS module r.param.scale. The newly released 
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ArcGeomorphometry toolbox (Rigol-Sanchez et al., 2015) offers a means to access the Wood-Evans (and other) algorithms 

for geomophometric analysis, this has the potential to provide a long awaited, convenient multi-scale analysis option for 

ArcGIS users. 

One terrain attribute that is specifically tailored to analysis of bathymetric data is the bathymetric position index (BPI) 

(Lundblad et al., 2006), which is an adaptation of Weiss’ (2001) topographic position index (TPI) and a useful measure of 5 

relative position that is simple to calculate over different neighbourhood sizes. Although a relatively simple algorithm to 

implement (Lunblad’s BPI indices can be performed through the raster calculator (e.g. Wilson et al., 2007) or scripting), 

many marine scientists make use of the Benthic Terrain Modeler (BTM) Toolbox, which was first developed following 

Lundblad’s (2006) study. The current version of BTM (Wright et al., 2012) for ArcGIS 10.1 and later has seen around 4000 

downloads in the period 2012-2015 and this figure gives a conservative estimate of how many scientists are actually using 10 

the tool (S. Walbridge, ESRI, pers. comm.). The BTM toolbox relies on ArcGIS Spatial Analyst and includes tools for 

calculating slope, aspect and terrain variability (rugosity, VRM) as well as methods for combining these into geomorphic 

zones. It was launched for the scientific community at a time when multibeam data was becoming widely available and 

modern marine geomorphometry was becoming established. The BTM toolbox quickly became popular as a one-stop shop 

for terrain analysis and classification of bathymetric data, offering a slightly more tailored solution, and the ability to handle 15 

larger datasets, than Landserf, with at least the BPI index being computable at different scales ever since the first release 

(now joined by VRM). The utility of the BTM tool has been augmented in recent years through updating of the terrain 

variability and aspect indices, and by providing the tools as both an AddIn and as a standalone ArcToolbox, providing 

greater flexibility to users who may wish to benefit from all, or just part of, the functionality.  

Several bathymetric data processing software (e.g. CARIS HIPS and SIPS, QPS-Fledermaus) also have built in tools for 20 

calculation of basic indices such as slope and rugosity, bringing the functions directly to the bathymetric data user and 

removing the need to search for and select from the vast array of available methods. This has advantages of convenience for 

some bathymetric data users, but in most applied projects the computation of terrain attributes and further analysis will be 

conducted in some generic GIS software. Although many of the commercial software are currently limited to single scale 

analysis (3 x 3 rectangular neighbourhood) it has become easier to find tools for multi-scale analysis, either directly in open 25 

source software (e.g. GRASS), through additional toolboxes (e.g. SEXTANTE for QGIS), or via scripting. Many of these 

also give alternative choices for computation algorithms, the effects of which are investigated by Dolan and Lucieer (2014) 

using slope as an example. 

Terrain variability has been a particularly popular terrain attribute in relation to benthic habitat mapping. This is largely due 

to the generally accepted link of terrain variability with biodiversity, which has, however, not yet been fully established with 30 

regard to spatial scale (Lecours et al., 2015b). Several measures of rugosity have been applied to DBMs with some proving 

suitable for multi-scale analysis and others becoming problematic at larger analysis scales (Wilson, 2006). A rugosity index 
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comparing surface to planar area (Jenness, 2004) remains perhaps the most widely applied method in marine studies and this 

was implemented in early releases of BTM. Both the vector ruggedness measure (VRM; Sappington et al., 2007) now 

incorporated in BTM, and the more recent Arc_Chord Rugosity measure (Du Preez et al., 2014) offers alternatives that are 

better decoupled from slope. Where slope and a terrain variability measures are to be used in further analysis e.g. as 

predictor variables for habitat modelling, it is particularly important that the user is aware of any autocorrelation or 5 

covariation between them, so they can be handled appropriately. Du Preez et al. (2014) lists several marine studies among 

those who have ignored the need for decoupling.  However, with methods like VRM and Arc-Chord rugosity or toolboxes 

like BTM and TASSE (Lecours, 2015) now readily available we trust that future studies will make a conscious choice of the 

best geomorphometric analysis for their particular application.  

5.2 Specific geomorphometry (terrain features/objects) 10 

Compared to general geomorphometry and the use of terrain attributes, applications of specific geomorphometry are still 

relatively rare in the marine environment. Calculation of terrain features generally relies on the combined properties of 

several terrain attributes. For instance, Lecours et al. (2013) used Troeh’s landform classification (Shary et al., 2005), which 

uses different types of curvatures to identify zones of relative deflection or accumulation and transit zones, on bathymetric 

data. The authors also adapted Weiss’ (2001) landform classification, which combines slope with TPI measures at different 15 

scales to identify up to 16 landform classes, for application within the marine environment using BPI measures.  

Terrain features such as crests, troughs etc. can be extracted through the use of pixel based analysis (e.g. Blaszczynski, 1997; 

Wood and Dragicevic, 2007), but recently object-oriented methods for landform classification have become increasingly 

popular and are beginning to make their mark on marine studies (e.g. Lawrence et al., 2015) driven by an opportunity to 

analyse the DBM in conjunction with acoustic backscatter data (an indicator of seabed sediment type) rather than analysing 20 

the DBM alone, which offers several advantages for seabed classification. Geographic object based image analysis (Geobia, 

Obia) has been gaining some traction in the seabed mapping community as the spatial resolution of acoustic backscatter data  

improves (Diesing et al., 2014).  The basic processing units in object based image analysis are objects which are represented 

by textural changes in the acoustic backscatter image and are constrained by derived topographic variables (Benz et al., 

2004). Geobia allows for the quantitative extraction of image textures and features to be identified in the backscatter data and 25 

the ability to relate these spatially to topographic variability (Costa and Battista, 2013). Multi-resolution segmentation is one 

of the most popular segmentation algorithms to delineate homogeneous seabed segments (Lucieer, 2008; Lucieer and 

Lamarche, 2011; Hasan, 2012; Eisank et al., 2014) and in the terrestrial literature stands out as the most successful method to 

delineate homogeneous terrain segments rather than landforms per se (e.g. Drăguţ and Blaschke, 2006; Drăguţ et al., 2011; 

Blaschke et al., 2014). This has been successfully demonstrated by Ismail et al. (2015) to identify and classify submarine 30 

canyons. By combining both the spatial derivatives of the DBM with Geobia variables, the authors were able to perform an 

automated multiple scale terrain analysis to discriminate local and broad scale geomorphic features in the marine landscape. 
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This information was used not only to delineate geomorphic seafloor features but also to identify properties that might 

influence biodiversity in a complex terrain. Specific geomorphometry is currently not used to its full potential in the marine 

environment. 

6 Applications of marine geomorphometry 

This section introduces some of the most common applications of geomorphometry in the marine environment: habitat 5 

mapping, marine geomorphology and geohazards, change detection, and hydrodynamics and modelling. Other applications 

of marine geomorphometry can also be found in the literature (e.g. underwater archaeology; Passaro et al., 2013) but are not 

discussed here. Figure 6 illustrates the proportion of the marine studies represented in the lower graph of Fig. 1 that could be 

classified in any of the types of applications that are presented in this section.  

6.1 Marine habitat mapping 10 

Benthic habitat mapping is one of the major applications areas where the use of marine geomorphometry has grown in recent 

years. Linked to the rise in the use of multibeam data for benthic habitat mapping (Brown et al., 2011) the vast majority of 

habitat mapping studies with access to good bathymetry data are now using, or at least testing, some form of terrain attribute 

or feature classification in their habitat mapping activities, even though we note that many of these are not yet reflected in 

the peer-reviewed literature. Among the habitat mapping community several approaches to habitat mapping are common, 15 

many of which directly incorporate biological data, such as modelling species (e.g. Davies et al., 2008) or biotope 

distributions (e.g. Elvenes et al., 2014) and others which are primarily based on physical attributes deemed relevant for the 

distribution of benthic fauna (e.g. Micallef et al., 2012; Ismail et al., 2015). Geomorphometry is equally useful for both these 

approaches and those that combine both aspects (e.g. Tempera et al., 2012) and this discussion is relevant to an all-

encompassing definition of habitat mapping (Lecours et al., 2015b). Figure 7 illustrates how terrain attributes are typically 20 

used in the production of predictive seabed habitat maps, providing an invaluable suite of full coverage predictor variables 

which are used together with point samples of observed habitat as the input data to modelling. 

Harris and Baker (2012b) provide a summary of surrogate variables used for habitat mapping studies in the volume ‘Seafloor 

Geomorphology as Benthic Habitat: GeoHAB Atlas of Seafloor Geomorphic Features and Benthic Habitats’ including many 

terrain attributes that have been applied across a multitude of approaches to habitat mapping worldwide. The issue of 25 

surrogacy is also discussed in this volume as well as by Lecours et al. (2015b) and McArthur et al. (2010). The case studies 

presented in the GeoHAB Atlas, and other published studies, vary in the degree to which they have established the 

ecological relevance of the terrain attributes and/or feature classifications used. For geomorphological variables to really be 

useful predictors of seafloor habitat, the relationship between habitat and specific variables first needs to be established. 
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Apart from depth, which all of the geomorphological variables are derived from, different shapes or attributes of the seafloor 

will be relevant to different species at different scales over different bathymetric and biogeographic zones. Bathymetry is 

known to be a first order influence on species distribution. There are a number of recent papers describing the potential of 

terrain attributes to act as surrogates of species distribution (Lucieer et al., 2013; Hill et al., 2014). The relationships are 

validated using several different statistical methods that either test terrain attributes against biological or ecological data, or 5 

combine terrain attributes with other environmental data and perform classifications to differentiate between the different 

habitats (Thiers et al., 2014).  

In an example by Rengstorf et al. (2013), habitat suitability models for the cold-water coral Lophelia pertusa were developed 

based on full coverage multibeam bathymetry on the Irish continental margin. Maximum entropy modelling was used to 

predict L. pertusa reef distribution at a spatial resolution of 0.002° (250 m). Coral occurrences were assembled from public 10 

databases, publications and video footage, and filtered for quality. Environmental predictor variables were produced by re-

sampling of global oceanographic data sets and a regional ocean circulation model. Multi-scale terrain parameters were 

computed from multibeam bathymetry at 50 m resolution. In a related study, Rengstorf et al. (2012) examined the effect of 

bathymetric data resolution on terrain attributes used to predict coral distribution, resampling the original 50 m resolution 

bathymetry from the Irish National Seabed Survey at successively coarser intervals up to 1 km. They concluded that terrain 15 

attributes derived from higher resolution bathymetry are required to adequately detect the topographic features relevant to 

corals. In a further related study Rengstorf et al. (2014) examined the relative importance of terrain attributes and 

hydrodynamic variables (e.g. current speed, vertical flow, temperature etc.) on models of cold-water coral distribution, 

concluding that combining the environmental information from these two sources leads to improved predictions over the 

spatial scales in question. 20 

At a much finer resolution (~1 m) species−habitat relationships were examined across a marine reserve on the south-eastern 

coast of Tasmania using boosted regression tree analyses (Cameron et al., 2014). The most important explanatory variables 

of community diversity were those describing the degree of reef aspect deviation from east and south (seemingly as a proxy 

for swell exposure), reef bathymetry (depth), low rugosity and slope. These models could account for up to 30% of the 

spatial variability in measures of species diversity. As biological data at scales relevant to acoustic or remote sensing data 25 

such as that from AUVs, ROVs and diver surveys become available on national or international databases such as the Census 

for Marine Life and the Ocean Biogeographic Information System (OBIS) the ability to extend species distribution models 

into the wider ocean at finer scales will enhance the utility and value of marine geomorphology variables for marine 

biodiversity assessment.   
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6.2 Marine geomorphology and geohazards 

Early geomorphometric studies of seafloor morphology in the 1960s were limited by the one-dimensionality and the low 

resolution of the bathymetric data that were available at the time (e.g. Krause and Menard, 1965; Neidell, 1966).  In the last 

three decades, improvements in seafloor surveying technologies have resulted in a renewed interest in employing 

geomorphometric techniques to study seafloor geomorphology.  A list of some works that have utilised geomorphometric 5 

techniques in their study of seafloor morphology is provided in Table 2.  Similar techniques have also been utilised in the 

interpretation of sidescan sonar data (e.g. Blondel et al., 1998; Carmichael et al., 1996; Huvenne et al., 2002; Mitchell and 

Somers, 1989). 

Geomorphometric techniques have generally performed well in submarine environments. The use of specific 

geomorphometric techniques, where features of interest are identified prior to analysis, has involved examining how 10 

different morphological parameters change spatially and with each other. They have been amongst the most successful 

techniques, particularly with regard to the study of submarine mass movements, canyons and volcanoes.  In the study of 

submarine mass movements, the general approach has been the prior identification of the boundaries of the landslides, the 

measurements of a series of morphometric parameters and their spatial and statistical analyses. This kind of approach has 

been applied to slope instability offshore Norway (Haflidason et al., 2005; Issler et al., 2005; Micallef et al., 2008), 15 

demonstrating scale invariance in terms of statistics and morphology, which has important implications for submarine 

landslide modelling and hazard assessment. It has also been employed on a finer scale (Casalbore et al., 2011; Rovere et al., 

2014) and a broader scale (Hühnerbach et al., 2004; McAdoo et al., 2000; Moernaut and De Batist, 2011) to identify 

tsunamigenic landslides and to provide interesting insights into failure frequency, preconditioning factors, triggers and 

controls of submarine mass movements in a wide range of environments, including lakes. In submarine canyons, specific 20 

geomorphometric analyses of submarine landslides has shown that landslides can be the most efficient process removing 

material from canyons and that their influence becomes more significant as the canyon matures (Green and Uken, 2008; 

Micallef et al., 2012). Geomorphometric investigations of submarine canyon form have generally focused on using 

morphological data to propose model of canyon erosion by turbidity currents (Mitchell, 2004, 2005; Vachtman et al., 2013). 

More recently, specific geomorphometric techniques have been used to demonstrate how canyons in passive, progradational 25 

margins develop into geometrically self-similar systems that approach steady state and higher drainage efficiency (Micallef 

et al., 2014b), and how canyons in active margins fail to reach steady-state because of continuous adjustment to 

perturbations associated with tectonic displacements and base-level change (Micallef et al., 2014a). The geomorphometric 

study of volcanoes has been useful in determining the key processes constructing and modifying volcano flanks and 

specifying the conditions that lead to slope instability (Mitchell, 2003; Mitchell et al., 2002; Stretch et al., 2006).  30 

Initially, the techniques of general geomorphometry used in the study of submarine landscapes were less numerous and 

varied than those used in the study of subaerial landscapes. The majority of studies where geomorphometry was applied to 
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the study of submarine landscapes have involved either spectral analyses of the bathymetric data or the statistical analysis of 

morphometric attributes. More recently, general geomorphometric studies have made wider use of morphometric attributes 

and their statistical analyses and feature-based quantitative representation, most of which were specifically developed for 

submarine landscapes. Micallef et al. (2007a), for example, developed a methodology for the quantitative analysis of 

seafloor data, which was shown to exploit the full potential of these data sets and significantly improve the mapping and 5 

characterisation of submarine landslides. This methodology was applied to the submarine mass movements offshore Norway 

to elucidate the evolution dynamics of a multi-phase submarine landslide (Fig. 8), while emphasising the potential role of gas 

hydrate dissociation and contourite deposition in controlling the location and extent of submarine slope failure (Micallef et 

al., 2009), and to improve understanding of the mechanics and triggers of spreading, also while using limit-equilibrium and 

mechanical modelling (Micallef et al., 2007b). The automated and objective mapping of submarine landscapes is indeed an 10 

important application of general geomorphometry, and specific techniques have been developed for the characterisation of 

pockmarks (Harrison et al., 2011; Gafeira et al., 2012), terraces (Passaro et al., 2011) and canyons (Ismail et al., 2015). 

Others have used general geomorphometric techniques to classify submarine landscapes (e.g. fjords (Mosalik et al., 2014a; 

Mosalik et al., 2014b), continental shelf and slope (Elvenes, 2013), and global (Harris et al., 2014)), identify the various 

styles and scales of deformation across submarine landslides (Mountjoy et al., 2009), and infer the evolution of seamounts 15 

(Passaro et al., 2010), mid-ocean ridge scarps (Mitchell et al., 2000) and faults in active continental margins (Kukowski et 

al., 2008). 

6.3 Change detection 

A number of studies have described temporal morphological dynamics of the seafloor using acoustic bathymetry (e.g. Duffy 

& Hughes-Clarke, 2005; Smith et al., 2007). However, assessments of biological change beyond the range of optical sensors 20 

have been based primarily on ground sampling methods. Rattray et al. (2013) investigated approaches to quantify temporal 

change in benthic habitats from a spatially explicit perspective using acoustic techniques. Their methods quantified change 

in terms of gains and losses in the extent of habitat at a site on the temperate southeast Australian continental shelf; (2) they 

could distinguish between systematic and random patterns of habitat change; and (3) were able to assess the applicability of 

supervised acoustic remote sensing methods for broad-scale habitat change assessment. Change detection in temperate 25 

bedrock reefs were identified through morphological characterisation by Storlazzi et al. (2013). They delineated the classes 

using a multivariate classification routine (Dartnell and Gardner, 1999) based on acoustic backscatter and rugosity (surface-

planar area ratio).  

There have also been several examples in the literature of repeat multibeam surveys being used to detect change, many of 

which are summarised by Schimel et al. (2015). Analysis is generally focussed on differences in depth values detected and 30 

often aided by a visual assessment of the changes in morphology. There are fewer studies that have explicitly used terrain 

attributes or features in their assessments, but we recognise the potential for gemorphometric techniques to be more widely 
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applied in this type of study. For example, Bøe et al. 2015 used geomorphic feature detection (Wood, 1996) to identify crests 

and ridges in a sandwave field on the continental slope, and assess movement between surveys based on the change in 

position of these features. We note also that Schimel et al. (2015) incorporate measures of bathymetric uncertainty in their 

assessment of volume change and also recommend guidelines on thresholds which can help to improve the confidence of 

such assessments.   5 

6.4 Hydrodynamics 

The interaction of bottom currents with seafloor sediments results in a wide range of erosional and depositional 

morphologies – e.g. scours, furrows, ripples, dunes, lineations, contouritic drifts – the morphology and dimensions of which 

depend on flow velocity and sediment grain size (Stow et al., 2009). Detecting change in bedform morphology is of great 

interest to geologists, physical oceanographers and climatologists, and many other with the applied interest in such features. 10 

Bedforms determine basic flow patterns of ocean circulation at coarse and fine scales; even small perturbations in seafloor 

topography can influence major shallow and deep current flows, heat transport and ultimately climate (Gille et al., 2004; 

Kunze and Llewellyn Smith, 2004; Metzger and Hurlburt, 2001). In turn, bedforms are also excellent archives of current and 

past bottom flow patterns (Sandwell et al., 2002). Port managers are also interested in bedforms and their evolution, 

particularly where they constitute a hazard to navigation in coastal waters. Detecting change in bathymetry and its impact on 15 

oceanography is therefore important, and local geomorphometric attributes, such as aspect, curvature and rugosity, have 

been used to develop hydrodynamic models or as proxies for local and regional currents (Lecours et al., 2015a). Seafloor 

topographic proxies are also fundamental in the predictive mapping of suspension-feeders (Lucieer et al., 2013; Hill et al., 

2014), such as cold-water corals (Rengstorf et al., 2012; Tong et al., 2013), because their distribution is inextricably linked to 

current flow strengths and patterns (Mohn et al., 2014). More recently, understanding the link between seafloor 20 

morphometry and currents has been shown to be essential in forecasting the path of floating debris from tsunamis and air 

disasters and assist in search and rescue operations (Mofield et al., 2004; Normile, 2014; Smith and Marks, 2014).  

7 The Future of Marine Geomorphometry 

This manuscript has discussed the current practices in marine geomorphometry, from data collection to the applications. 

Through all aspects of this discussion it is apparent that the use of geomorphometric techniques in the marine realm is 25 

relatively nascent, having begun only over a decade ago. The dramatic increase in DBM availability, combined with the 

increasingly accessible and user-friendly GIS tools, is currently fuelling the amount and diversity of applications of marine 

geomorphometry. However, this availability can become a double-edge sword. As noted by Dolan and Lucieer (2014), 

“Although a [DBM] is a model of the seabed surface, it is often not treated as a model but rather is accepted as a true 

representation of the seabed”. Furthermore, as highlighted in Fig. 1, the end-users of geomorphometric techniques are not 30 
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always aware that they are actually “doing” geomorphometry, but rather think of the steps they are performing as simply 

using GIS tools for data analysis. As the amount of applications increases, some of the fundamental issues associated with 

marine geomorphometry are not being addressed quickly or broadly enough. This can increase the risk of unsuspecting end-

users misusing data or techniques, and to the misinterpretation of results. For instance, due to a lack of awareness of the 

impact of artefacts in DBMs and their propagation to terrain attributes, artefacts are often disregarded, or assumed to be 5 

obvious. In habitat mapping, the consequences of artefacts are often apparent to geomorphometry-aware users in the final 

maps (e.g. Zieger et al., 2009; Lucieer et al., 2012), but this can become problematic if the maps are being used in 

conservation and management decision making if the effect of the artefacts is not appreciated by the end user. We recognise 

a critical need for a dedicated scientific effort in marine geomorphometry that will address, and raise awareness of the 

fundamental issues related to marine geomorphometry. This effort does not necessarily have to come solely from the marine 10 

science community, indeed it may well benefit from the expertise of many of those scientists already engaged in terrestrial 

geomorphometry. The main objectives of this effort would be to learn from the lessons of terrestrial geomorphometry, 

ensure that studies of geomorphometry become more widespread in the marine literature, and respond to the challenges and 

opportunities for a wider adoption of marine geomorphometry as a key tool in marine sciences, whilst improving and 

upholding scientific standards. 15 

This section first examines the issues associated with two key growth areas where we recognize particular potential for 

marine geomorphometry to contribute to our understanding of the seafloor. Following this, we reflect on the current and 

future trends of the field as a whole, highlighting recommendations to improve practices and set standards for future work. 

7.1 The littoral gap: implications for coastal geomorphometry 

This paper has shown how geomorphometric techniques developed mostly in terrestrial settings can be applied to the marine 20 

environment or adapted to enable quantification of the seafloor terrain. The boundary between the land and the sea, however, 

is not easily mapped or delineated and has always represented a challenge for both marine and terrestrial scientists (Klemas, 

2011). Due to the inability of satellite remote sensing to collect data in deep waters and the limitations of acoustic systems to 

collect data in shallow waters, there is often a gap in terrain data where land meets sea. This littoral gap, sometimes referred 

to as ‘the white zone’ because the lack of data in this area between available DBM and DEM data appear white on maps, 25 

often complicates the study of nearshore environments and can have important implications for applications such as 

navigation and geohazard assessment. For instance, in their attempt to assess the effectiveness of a marine protected area in a 

Canadian sub-arctic fjord with habitat maps generated from a combination of terrain attributes and other data, Copeland et al. 

(2013) were only able to map 32 km
2
 of the total 82 km

2
 of the area. They highlighted the laborious nature of shallow water 

survey (i.e. time and cost-consuming MBES surveys), the need for a continuous coverage because of the large littoral gap, 30 

and indicated that interpolation and extrapolation of results in the littoral gap were inappropriate because of the 

heterogeneous nature of coastal fjord environments (Copeland et al., 2013). 
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Several examples of investigations of the coastal environment using geomorphometry can be found in the literature (e.g. 

Purkis et al., 2008; Pittman et al., 2009).  However, most coastal studies are limited to small areas either above the water 

(e.g. dunes or emergent features) or submerged (e.g. coral reefs) (Brock and Purkis, 2009). To our knowledge, there are no 

geomorphometric applications that span the terrestrial and underwater landscapes in a continuous way over large areas, 

despite many efforts to collect topo-bathymetric data that span the coastal environment (e.g. National Coastal Mapping 5 

Program of the Joint Airborne Lidar Bathymetry Technical Center of Expertise in the United States).  For instance, Dunkin 

et al. (2011) and Dunkin and McCormick (2011) used bathymetric LiDAR datasets to characterise changes in geomorphic 

and bathymetric features, respectively to assess consequences of storm events, and for monitoring and shore protection 

purposes. However, these studies did not explicitly use geomorphometric techniques. Several fields could benefit from 

seamless geomorphometric analysis. For instance, inter-tidal rocky shores are known to shelter a lot of biodiversity 10 

(Kostylev et al., 2005) and linking quantitative terrain attributes to measures of biodiversity could improve scientific 

understanding of ecological patterns and processes in these important areas of the land-sea boundary (e.g. Collin et al., 

2012). Observations of underwater and terrestrial landforms have shed light on how glaciers retreated in Atlantic Canada 

during the last deglaciation (Shaw et al., 2006); the investigation of landforms that overlap both realms could help refine this 

type of analysis.  15 

At a broader scale, a seamless analysis of terrestrial and marine environments requires the combination of terrestrial DTMs, 

bathymetric data from acoustic systems, and bathymetric LiDAR or optical remotely sensed data to fill the littoral gap and 

create a Coastal Terrain Model (CTM) (Hogrefe et al., 2008; Leon et al., 2013). The challenges encountered with merging 

datasets from different sources makes such an approach still nascent in the general literature (Macon et al., 2008; Quadros et 

al., 2008; Collin et al., 2012), and very rare, if not fully absent, in the marine geomorphometry literature. Data fusion is the 20 

process of acquiring, processing and synergistically combining multi-source datasets both geometrically (i.e. in space) and 

topologically (i.e. in terms of their attributes or information content) (Usery et al., 1995; Samadzadeghan, 2004; Mohammadi 

et al., 2011). Despite constant developments in data fusion (Pohl and van Genderen, 1998; Dong et al., 2009; Zhang, 2010), 

it presents particular challenges for geomorphometry. First, despite improvements in edge matching algorithms, artefacts 

from merging and surveying can appear when deriving terrain attributes from the fused dataset (Stoker et al., 2009). Data 25 

fusion often requires the different datasets to overlap slightly in order to be combined. In theory, the overlapping areas 

should yield very similar values, within their uncertainty and error ranges. However, important inconsistencies (up to 6.5m) 

have been reported between depth measurements of the same areas using bathymetric LiDAR and MBES (Quadros et al., 

2008; Costa et al., 2009; Chust et al., 2010; Shih et al., 2014). This has implications for geomorphometry since terrain 

attributes will capture and classify these mismatches as features, especially as the differences usually occur locally (Chust et 30 

al. 2010). Also, coastal environments can be very dynamic; artefacts could appear in the DTM if the multi-source data are 

not collected at the same time and changes occurred between the data collections. Another issue concerns vertical datums 

(Hogrefe et al., 2008; Erikstad et al., 2013); terrestrial surveys are usually referenced to a local geoid model based on the 
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GPS, while underwater surveys (acoustic and LiDAR) are usually referenced to the mean sea level at the time of survey, 

which is referenced to a local or regional tidal gauge that is itself referenced to a local datum. Calls for a consistent and 

unified vertical datum have been made but this issue is still unresolved (Hogrefe et al., 2008; Quadros et al., 2008). Finally, 

data quality and uncertainty may complicate the fusion of the different datasets. For instance, the inability of bathymetric 

LiDAR systems to collect reliable data in turbid or cloudy waters and in breaking wave conditions, in addition to their 5 

difficulties to distinguish the seafloor from the water surface in waters shallower than 30 cm (Quadros et al., 2008) may 

create a smaller littoral gap called the “dead zone” (Nayegandhi et al., 2009) and prevent proper fusion. Bernstein et al. 

(2011) recommend a customized survey design to minimise the challenges associated with creating a seamless DTM.  

Regular problems of data fusion, for instance related to merging multi-resolution datasets or to software and format 

compatibility/interoperability, also apply to the development of DTMs for coastal geomorphometry. Terrestrial terrain 10 

models may have a Digital Elevation Model format (.dem), while bathymetric LiDAR data can be recorded with a Laser File 

format (.las) and finally, acoustic data can be save as a Bathymetric Attributed Grid format (.bag); all these file formats have 

different structure and characteristics. Impediments to the fusion of multisensor data to build seamless elevation and depth 

surfaces include, but are not limited to, inconsistent spatial and temporal scales, incompatible formats, and differences in 

levels of reliability, uncertainty and completeness. Despite these impediments, data fusion has been identified as a promising 15 

technique for geomorphometry (Bishop et al., 2012). Some authors (e.g. Quadros et al., 2008) argue that the different types 

of datasets cannot be readily integrated, but the main challenges will likely be addressed with improvements in data fusion 

techniques and ease of implementation of these techniques for non-expert users (Zhang, 2010) for geomorphometry. Current 

work includes detection and correction of differences in geoid models, consideration of uncertainties, and improvement in 

edge matching algorithms (Quadros et al., 2008; Dong et al., 2009; Stoker et al., 2009). Developments in data fusion will 20 

likely allow better integration of different data to create seamless coverage for complete geomorphometric analysis and 

identification of overlapping landforms between the different realms. This will be useful for a wide range of coastal 

applications, including the investigation of coastal morphodynamics and land-sea exchange modelling, dredging and the 

identification of hazards due to sea-level rise and severe storms, coastal archaeology, resource management and marine 

spatial planning, anthropogenic sensitivity and environmental status assessment, and other scientific research. 25 

7.2 Seismic geomorphometry 

Seismic geomorphology is a rapidly evolving discipline. It comprises the application of geomorphological principles and 

analytical techniques to study palaeo-landscapes as imaged by 3D seismic reflection data (Carter, 2003; Posamentier and 

Kolla, 2003; Posamentier, 2003). More recently, 3D seismic reflection data have also provided a good alternative source of 

bathymetric data when the latter are absent (e.g. broad scale geomorphic mapping in the MAREANO project – 30 

http://www.mareano.no/). The development of seismic geomorphometry is a natural consequence of the advent of high 

quality and increasingly more affordable 3D seismic reflection datasets, and of increasing computer power, which enables 
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the rapid manipulation, visualisation and interpretation of 3D seismic reflection data. The integration of seismic 

geomorphology with seismic stratigraphy currently represents the state-of-the-art approach to extracting geological 

information from 3D seismic reflection data to understand large-scale basin evolution. Seismic geomorphological studies 

have addressed a broad range of geological problems, ranging from sedimentary to igneous geology, from lithology 

distribution to large-scale tectonic analysis (e.g. Fachmi and Wood, 2003; Miall, 2003; Wood, 2003). 5 

Up to the present, most studies have focused on the qualitative recognition of broad scale features (e.g. Posamentier et al., 

1996; Posamentier et al., 2000; Peyton and Boettcher, 2000; Posamentier, 2003; Zeng and Hentz, 2004). Quantitative 

seismic geomorphology, or seismic geomorphometry, is the most recent development of seismic geomorphology (Carter, 

2003; Posamentier, 2003; Posamentier and Kolla, 2003). Seismic geomorphometry has been defined as the “quantitative 

analysis of the landforms, imaged in 3D seismic data, for the purposes of understanding the history, processes and fill 10 

architecture of a basin” (Wood, 2003). Seismic geomorphometry encompasses techniques that use 3D seismic data to 

investigate the nature and architecture of reservoirs through extraction and analysis of quantitative morphometric 

information. 

Great opportunities exist for applying a more quantitative approach in seismic geomorphology. Seismic geomorphometric 

techniques provide statistical and mathematical insight into the morphological and dimensional characteristics of geologic 15 

systems that are difficult to derive through qualitative investigations of outcrop exposures and 2D seismic reflection data. 

Seismic geomorphometric studies provide a deep and spatially extensive understanding of how morphology develops 

through time, providing insight into the historical evolution of a basin and the possibility of developing predictive models. 

Quantitative relationships derived from seismic geomorphological studies can decrease our uncertainty in predicting the 

nature and location of reservoirs in deep-water settings by testing cause-and-effect relationships in a variety of settings. 20 

Computer-assisted seismic geomorphometry, in particular planform pattern recognition, is a powerful addition to the seismic 

geomorphological approach. It allows the interpreter to identify geologically significant features in plan view automatically. 

The ability to exploit the full potential of large seismic data sets is currently hindered by the lack of tools in existing software 

packages, coupled with the limited knowledge of how morphometrics can be used in the analytical process. It is the 

development of such tools that should be a main focus for researchers of marine geomorphometry in the near future. 25 

7.3 Current and future trends in marine geomorphometry 

Current developments in the marine geomorphometry literature are primarily focussed on the data acquisition end of the 

workflow. Technology and equipment for surveying the seafloor are improving in quality, accuracy and cost-effectiveness, 

which will allow an increase in data availability and quality. In coastal environments, ongoing research is focused on 

improving the extraction of depth information in the littoral gap in order to create seamless DTMs from the seafloor to land. 30 

As the pressure on coastal environments increases, such information will become crucial for many applications. From an 
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ecosystem point of view, coastal environments are also very rich in biodiversity. Studies of the topographic structure that can 

be identified from CTMs using geomorphometric techniques are likely to facilitate a better scientific understanding of these 

ecosystems. In the deep-sea, extensive use of AUV and ROV-based MBES and other technologies means we are now able to 

collect high-resolution bathymetric data of environments never explored before at such level of detail. The knowledge that 

has been gained from using these data in combination with different techniques, including geomorphometry, has 5 

revolutionized scientific understanding of many marine environments. It was initially thought that the deep-sea was mostly 

flat, muddy and lifeless, but the last twenty years of research have proven otherwise. Nevertheless, exploration is far from 

complete; there are still wide gaps in the scientific knowledge of deep-sea patterns, processes and ecosystems. High quality 

bathymetric data is fundamental to the success of revealing this knowledge and its limited availability is currently a barrier to 

effective protection and management of vulnerable species (Vierod et al., 2014; Ross et al., 2015).     10 

As the marine geomorphometry community moves forward, it will rapidly need to start addressing issues other than those 

associated with data acquisition. The availability of tools that streamline the workflow from data collection to analysis will 

be key in making a more complete science of marine geomorphometry accessible to marine scientists with a wide range of 

background and experience. Repositories of comprehensive and freely available datasets and tools, such as Digital Coast that 

provide free coastal and marine bathymetric data and analytical tools (NOAA, 2016), are the way forward to improve 15 

accessibility to the wider scientific community, and this may well mean that bathymetric data gain the attention of those 

currently engaged in developing geomorphometric methods for terrestrial data. We also acknowledge that easily accessible 

GIS tools and readily available data can also bring hidden dangers from non-critical use by users with limited appreciation of 

data collection and processing methods which to the expert clearly reflect the limitations in the utility of particular 

bathymetric datasets. To prevent this danger of inappropriate use, tools and datasets need to be accompanied by complete 20 

metadata that include information on data provenance, survey, scale, error and uncertainty quantification, and any other 

information relevant to further use of the tools and datasets. Metadata are crucial to create a “quality-aware” community 

(Devillers et al., 2007; Lecours and Devillers, 2015; Lecours et al., 2015b). The use of the CUBE algorithm to create BASE 

surfaces is one way to carry over a measure of quantified uncertainty of the data, but such information is not readily 

available for the majority of publicly available datasets. This type of information needs to become more accessible to marine 25 

scientists with a broad range of scientific backgrounds. 

As indicated in Fig. 1, it is becoming critical to raise awareness of geomorphometry in the marine science community. 

Methods from specific geomorphometry demonstrate a lot of potential for marine geomorphometry and should be used more 

extensively. At the same time, it is opportune to improve practices by setting standards and protocols for the application of 

marine geomorphometry. Methods and interpretations need to be standardised, particularly in view of issues specific to the 30 

marine environment, or where data and analyses behave differently underwater than on land. Amongst these, the influence of 

scale and data resolution on the results, and the consideration of spatial uncertainty should be prioritised. Since 

geomorphometric analyses are more and more performed within GIS environments, devising a GIS-based standard 
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methodology and symbology for marine geomorphological mapping using geomorphometry would be a very useful goal for 

the marine geomorphometry community. Ultimately, the type of standards and protocols a marine geomorphometry 

community could develop should encourage wider applications of bathymetric data and allow marine scientists optimise the 

use of their expensive datasets.  

8 Conclusions 5 

Unlike terrestrial applications of geomorphometry, which can be traced back to the nineteenth century, the use of 

geomorphometry in the marine realm is still in its infancy. Ever since the first coarse-scale DBMs were generated, marine 

geomorphometry has helped improve scientific understanding of the oceans, from the relatively thin border where land 

meets sea to the deepest waters. This paper is timely because it reviews the state of the art in the field and discusses 

standards for the applications of marine geomorphometry. We have reviewed the different methods to sample the depth of 10 

the seafloor, the interpolation methods and issues of spatial scale associated with the generation of a DBM, the different 

errors and artefacts that are characteristics of DBMs and different from DEMs, and discussed how general and specific 

geomorphometry are applied underwater. We also introduced four common and two cutting edge applications of marine 

geomorphometry and discussed the future trends of the field. Based on this review, we provide the following 

recommendations that will lead to more efficient practices in marine geomorphometry: (1) errors and spatial uncertainty 15 

should be quantified so that they are able to be considered in the geomorphometric analyses and in the interpretation of 

results; (2) metadata should consistently be associated with datasets to explicitly indicate data provenance, quality (i.e. 

quantification of uncertainty), and the spatial scale at which the dataset was intended to be used; (3) data, metadata and tools 

should be made available for a wider applications of bathymetric data; (4) standardisation methods and interpretations for 

each field of application should be documented, particularly in view of the influence of scale and data resolution on the 20 

results; (5) a GIS-based standard symbology for marine geomorphological mapping based on geomorphometry should be 

devised.   

By raising awareness, we hope that both marine scientists and geomorphometry practitioners will work together in 

addressing the fundamental issues of marine geomorphometry, whilst upholding the standards of the discipline of marine 

spatial analysis. Building a dedicated effort in marine geomorphometry that can draw from lessons learned in terrestrial 25 

geomorphometry and encourage marine applications will ensure that geomorphometry as a science is able to fulfil its 

potential. 
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Tables  1 

Table 1: Summary of the most commonly used terrain attributes in marine-based studies, as well as an indication of some common calculation approaches. Modified after 2 

Dolan et al. (2012). The term ‘multiple scale’ refers to terrain attributes derived in turn using analysis windows of different sizes. ‘Multiscale’ refers to indices derived 3 

simultaneously over a range of window sizes. The more general term ‘multi-scale’ is used in this paper to refer to both types of analysis as well as geomorphometric 4 

analysis using data of different resolutions. 5 

 Slope Orientation Curvature Terrain Variability 

Ecological 

relevance 

Stability of sediments (ability to 

live in/on sediments) 

Local acceleration of currents 

(food supply, exposure, etc.). 

Degree of exposure to 

dominant and/or local 

currents from a particular 

direction (food supply, 

sedimentation, larval 

dispersion etc.) 

Index of exposure/shelter e.g. on a peak or 

in a hollow (food supply, sedimentation, 

predators etc.)  

Index of degree of habitat 

structure, shelter from 

exposure/predators (link to life 

stages).  

Structural diversity linked to 

biodiversity 

 

Geomorphological 

relevance 

Stability of sediments (grain size).  

Local acceleration of currents 

(erosion, movement of sediments, 

creation of bedforms). 

Relation to direction of 

dominant geomorphic 

processes. 

Flow, channelling of sediments/currents, 

hydrological and glacial processes. 

Useful in the classification of landforms 

Terrain variability and 

structures present reflect 

dominant geomorphic 

processes. 

 

Commonly 

computed terrain 

attribute and 

example marine-

based reference 

Slope (Lundblad et al., 2006; 

Lanier et al., 2007;  Micallef et 

al., 2012; Dolan and Lucieer, 

2014) 

Aspect (Galparsoro et al., 

2009), northness and  

eastness (Monk et al., 2011)  

 

Mean curvature (Dolan et al., 2008) 

Profile curvature (Guinan et al., 2009)) 

Plan curvature (Ross et al., 2015) 

Bathymetric Position Index (BPI) (Monk et 

al., 2010; Pirtle et al., 2015) 

Rugosity (Dunn and Halpin, 

2009) 

Vector Ruggedness Measure 

(VRM) (Tempera et al., 2012) 

Relative Relief  (Elvenes, 2013) 

Fractal Dimension (Wilson et 

al., 2007) 
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Commonly used 

terrain attribute 

and software 

(algorithm 

reference) 

Single scale:  

Slope: ArcGIS Spatial Analyst 

(Horn, 1981) 

 

Single scale:  

Aspect: ArcGIS Spatial 

Analyst (Horn, 1981) 

Statistical Aspect 

(northness/eastness) BTM 

toolbox (Wright et al., 2012) 

 

Single scale: 

Mean, Profile and Plan curvature ArcGIS 

Spatial Analyst (Zevenbergen and Thorne, 

1987) 

 

Single scale: 

Rugosity (surface area/planar 

area ratio) (Jenness, 2004) 

Multi-scale:  

Multiple scale slope: 

r.param.scale, Landserf (Wood, 

1996) 

Multiscale slope: Landserf 

(Wood, 1996) 

Multi-scale:  

Multiple scale aspect: 

r.param.scale, Landserf 

(Wood, 1996) 

Multiscale aspect: Landserf 

(Wood, 1996) 

Multi-scale: 

Several measures of multiple scale 

curvature: r.param.scale, Landserf (Wood, 

1996)  

Multiple scale BPI (Lundblad et al., 2006) 

Multiscale curvature  Landserf (Wood, 

1996)  

 

Multi-scale: 

Multiple scale VRM 

(Sappington et al, 2007) 

Multiple scale relative relief 

(Erikstad et al., 2013 and 

references therein) 

Multiple and multiscale fractal 

dimension - Landserf (Wood, 

1996) 
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Table 2: List of studies published in the last three decades that applied geomorphometric techniques to submarine landscapes. 

Technique Reference 

General geomorphometry  

Morphometric attributes/basic geometrical analysis (Adams and Schlager, 2000) 

(De Moustier and Matsumoto, 1993) 

(Teide Group, 1997) 

Morphometric attributes and their statistical analyses (Berkson and Matthews, 1983) 

(Booth and O'Leary, 1991) 

(Chakraborty et al., 2001) 

(Goff and Jordan, 1988) 

(Kukowski et al., 2008) 

(Micallef et al., 2007a) 

(Mitchell et al., 2000) 

(Mosalik et al., 2014a) 

(Passaro et al., 2010) 

(Passaro et al., 2011) 

(Smith and Shaw, 1989) 

Spectral analysis (Fox and Hayes, 1985) 

(Fox, 1996) 

(Gilbert and Malinverno, 1988) 

(Goff and Tucholke, 1997) 

(Mosalik et al., 2014b) 

Geostatistical methods (Herzfeld, 1989) 

(Herzfeld and Higginson, 1996) 

(Ismail et al., 2015) 

Feature-based quantitative representation (Harrison et al., 2011) 

(Micallef et al., 2007a) 

(Micallef et al., 2007b) 

(Mitchell and Clarke, 1994) 

(Pratson and Ryan, 1996) 

Neural networks (Jiang et al., 1993) 

Other techniques                                  (Mountjoy et al., 2009) 

(Preston et al., 2001) 

Specific geomorphometry (Casalbore et al., 2011) 

(Gee et al., 2001) 
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(Green and Uken, 2008) 

(Haflidason et al., 2005) 

(Hühnerbach et al., 2004) 

(Issler et al., 2005) 

(McAdoo et al., 2000) 

(Micallef et al., 2008) 

(Micallef and Mountjoy, 2011) 

(Micallef et al., 2012) 

(Micallef et al., 2014b) 

(Micallef et al., 2014a) 

(Mitchell and Searle, 1998) 

(Mitchell et al., 2002) 

(Mitchell et al., 2003) 

(Mitchell, 2003) 

(Mitchell, 2004) 

(Mitchell, 2005) 

(Moernaut and De Batist, 2011) 

  (Rovere et al., 2014) 

 (Roy et al., 2015) 

(Stretch et al., 2006) 

(Vachtman et al., 2013) 
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Figures 

Fig. 1: Cumulative number of publications (articles or reviews) listed in the Scopus database mentioning specific keywords 

(see legends) in their title, abstracts of keywords, by the end of 2015. For the applications, the keywords “topographic 

variable*”, “topographic attribute*”, “terrain attribute*” or “terrain variable*” were used, without “marine” (top) or with 

“marine” (bottom). 

Fig. 2: According to Pike et al. (2009), geomorphometry is commonly implemented in five steps, here adapted to the 

application of geomorphometry to the marine environment (left). The panels on the right describe the structure and elements 

addressed in Sect. 2 to Sect. 6 of this paper. 

Fig. 3: Example of elements that can be extracted and visualised when using the CUBE algorithm, using the ROV-based 

dataset from Fig. 4 (source: Lecours and Devillers, 2015). On top, the components contributing to the horizontal and vertical 

TPUs can be studied. Other marginal contribution to the vertical TPU include roll and pitch of the platform, timing of the 

inertial measurement unit, and uncertainty associated with the sonar system (range and angle). The combination of the GPS 

and delta draft provides the three-dimensional position of the soundings (x, y, z); in ROV-based research, the positional 

accuracy decreases with depth (Lecours and Devillers, 2015). On the bottom, it is possible to visualise how the uncertainty 

and the density of soundings vary spatially. Other spatial information that CUBE provides include the standard deviation on 

estimated depth values based on the hypotheses generated by CUBE, and information on the hypotheses count and strength.  

Fig. 4: Examples of errors and artefacts found in different datasets and their impact on derived terrain attributes. The top 

panels represent data from GEBCO (2014), which uses radar altimetry to fill in the gaps between higher-resolution, freely 

available bathymetric data. The main artefacts that can be observed are caused by the interpolation method that was used to 

combine the different datasets. For instance, a linear artefact following a Southwest to Northeast axis can be observed as a 

result of the combination of one SBES acoustic survey line with radar altimetry data. Similarly, some “spots” can be seen in 

the middle of the panels (South to North direction). These artefacts, especially apparent in the curvature, are caused by the 

merging of punctual lead line measurements with the radar altimetry data. Finally, a slight gridding artefact can be observed 

in the curvature (i.e. thin vertical and horizontal linear features). The middle panels show ship-based MBES data (Brown et 

al., 2012). The obvious artefacts follow the surveying pattern of the vessel, and are mainly caused by the roll motion of the 

vessel during the survey. Finally, the bottom row of panels corresponds to ROV-based MBES collected from 20 m above the 

seafloor in the deep sea (Lecours et al., 2013). In this case, the artefacts are caused by a combination of heave and other 

platform motions; the ancillary data collected to account for this motion are too uncertain at this depth to appropriately 

correct for the errors (Lecours and Devillers, 2015). The “spots” observed in the bottom and top of the derived terrain 

attributes are spurious soundings that can be removed in bathymetric software during post-processing. Note differences in 

spatial resolutions (left axis) and cartographic scales. Depth values of the top left panel range from 60 to 4,275 m deep, those 

of the middle left panel range from 20 to 105 m deep, and those of the bottom left panel range from 2,345 to 2,425 m deep. 

Lighter blue is shallower.  
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Fig. 5: Illustration of the main types of terrain attributes that can be derived from bathymetry data. Modified after Wilson et 

al. (2007). 

Fig. 6: Proportion of the marine geomorphometry articles or reviews compiled in Fig. 1 that corresponds to each of the types 

of applications presented in Sect. 6. 

Fig. 7: Indicative workflow showing the use of terrain attributes in predictive habitat mapping. Generally following some 

pre-selection of variables the observed habitat points (response variable) are combined with full coverage predictor variables 

selected from bathymetry, terrain attributes and other environmental variables as available to form the input to a habitat 

model which will be used to predict a full-coverage habitat map. The choice of habitat model will depend on the study in 

question but is typically either a statistical (e.g. GLM) or machine-learning based model (e.g. Random Forest). Observed 

habitat points are classified from visual or physical samples of the seabed. Terrain attributes are typically multi-scale and may 

include general and/or specific geomorphometry. Other environmental variables may include, for example, oceanographic 

data (temperature, salinity, current speed etc.), geological data (e.g. grain size). A similar workflow applies to modelling of 

single species or communities, where the output will be a continuous map indicating the probability of occurrence within the 

study area, rather than a categorical map as shown here.  

Fig. 8: Example of the use of marine geomorphometry to semi-automatically map the components of mega-scale submarine 

landslide offshore Norway (adapted from Micallef et al. (2009)).  Figures a-c show the trough depth, ridge length and ridge 

spacing extracted from a multibeam echosounder map of the north-eastern Storegga Slide using ridge characterisation 

techniques (Micallef et al., 2007b).  Figure d is a classification map generated by using these ridge characteristic maps as 

input layers in an unsupervised clustering algorithm (ISODATA). Figure e is an interpretative map of the range of spreading 

events based on figures a-d. Other mass movements and geological processes and structures have been interpreted using 

geomorphometric mapping (Micallef et al., 2007a). 
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Figure 2 
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