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Cavity optomechanics with arrays of thick dielectric membranes
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Optomechanical arrays made of structured flexible dielectrics are a promising system for exploring quantum
and many-body optomechanical phenomena. We generalize investigations of the optomechanical properties of
periodic arrays of one-dimensional scatterers in optical resonators to the case of vibrating membranes whose
thickness is not necessarily small with respect to the optical wavelength of interest. The array optical transmission
spectrum and its optomechanical coupling with a linear Fabry-Perot cavity field are investigated both analytically
and numerically.
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I. INTRODUCTION

The level of control over the motion of mechanical
oscillators using electromagnetic fields has recently increased
tremendously, enabling, e.g., their operation in the quantum
regime [1]. Optomechanical arrays, in which multiple me-
chanical oscillators can be coupled to several electromagnetic
fields, expand the range of possibilities offered by these
systems for exploring fundamental quantum and many-body
phenomena [2–19] and for information processing or sensing
applications [20–28].

Thin, flexible membrane resonators represent an attractive
platform in this respect. Indeed, the use of a flexible membrane
oscillator in the field of an optical resonator allows for
benefitting from high-quality mechanical and optical quality
factors [13,21,25,26,29–36]. While experiments have so far
focused on the use of single resonators, the interaction between
multiple membrane oscillators and cavity fields has been
investigated theoretically, e.g., for entanglement generation
and nonlinear quantum optics [2,3,8,10,37], the enhancement
of radiation pressure forces [7,12,38,39], and the engineering
of long-range optomechanical interactions and many-body
phonon dynamics [4,11,14,40].

For periodic arrays of such membranes a well-suited
theoretical framework is provided by the transfer matrix
formalism [41]. In this one-dimensional formalism each
membrane is described by a transfer matrix relating the
forward- and backward-propagating waves on each side of
the membrane. The generic optomechanical properties of
the combined system consisting of the membrane array and
optical resonator can be extracted through the application
of standard methods for multilayered systems [7,38,42].
The case of two membranes presents a system for which
optomechanical coupling strengths may be obtained analyt-
ically in a straightforward manner [43], and it is in fact the
focus of this article. When performing such calculations, a
convenient approximation, which is not a priori necessarily
justified in practice, consists in modeling the membranes by a
beam splitter whose thickness is much smaller than the field
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wavelength and which is characterized by its reflectivity (or,
equivalently, polarizability). In doing so, one ignores phase
shifts due to the propagation inside the dielectric and, for
slabs which are thick enough compared to the wavelengths
of interest, possible internal resonance effects due to multiple
field oscillations within a slab. Evaluating these effects is thus
highly relevant for practical implementations with membranes
for which the thin-membrane approximation is typically not
well met.

We address here these issues by investigating the effect
of the membrane thickness on the transmission spectrum of
a periodic array of flexible membrane resonators, as well as
on the collective optomechanical coupling of the membranes
with the field of an optical resonator. Based on a full transfer
matrix approach we first show in Sec. II that arbitrarily thick
membranes can be modeled as effective thin membranes and
compute the transmission spectrum of a two-membrane array.
In Sec. III we investigate the optomechanical properties of such
an array positioned at the center of a large optical resonator.
We compute in particular the strength of the optomechanical
couplings at specific transmissive wavelengths, where the array
is effectively transparent and for which the field dispersively
couples linearly to a collective motion of the individual
membranes. We also make the connection with the results of
Refs. [7,38], obtained in the thin-membrane approximation,
and extend them to the case when multiple field oscillations
can occur inside the individual membranes. We conclude in
Sec. IV and point out possible applications of these results.

II. OPTICAL PROPERTIES

A. Transfer matrix model

As in previous studies [7,38] we restrict ourselves to
one-dimensional systems and make use of the transfer matrix
formalism, which is well suited to model a periodic N -element
array. In this formalism each element is described by a transfer
matrix M relating the forward- and backward-propagating
waves on each side of a given element [41,42]
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where A and C (B and D) are the amplitudes of the backward-
propagating (forward-propagating) waves. For example, the
free-space propagation of a monochromatic field of wave-
length λ = 2π/k over a distance d is described by the matrix

Mfs(d) =
[
eikd 0

0 e−ikd

]
. (2)

For an incoming field propagating to the right the transmissiv-
ity and reflectivity of the optical system modelled by M are
defined by

t = 1

m2,2
and r = m1,2

m2,2
. (3)

1. Single membrane transfer matrix

Each membrane is modelled as a dielectric slab with
thickness l and refractive index n. To simplify the discussion
we assume the refractive index to be wavelength independent
and neglect absorption in the wavelength range considered,
but these effects could easily be incorporated into our model.
The Fresnel coefficients at normal incidence at the left and
right vacuum-dielectric interfaces yield amplitude reflection
and transmission coefficients

ρl = −ρr = 1 − n

1 + n
≡ ρ (4)

and

τl = 2

1 + n
and τr = 2n

1 + n
, (5)

respectively. The transfer matrix of the slab with length l can
thus be written as

Mm = MlMfs(nl)Mr, (6)

where

Mi = 1

τi

[
1 ρi

ρi 1

]
(i = l,r). (7)

The reflection and transmission coefficients of the membrane
are then given by [7,44]

rm = ρ(1 − e2iknl)

1 − ρ2e2iknl
and tm = τ1τ2e

iknl

1 − ρ2e2iknl
. (8)

The equivalent membrane polarizability ζ ≡ −irm/tm is then

ζ = n2 − 1

2n
sin(knl). (9)

Equations (6)–(9) hold for any membrane thickness. However,
in the spirit of Refs. [7,41], it can be convenient to model
the membrane as an infinitely thin scatterer with an effective

FIG. 1. Equivalence between a thick membrane (top) and an effective thin membrane with padding (bottom). From top to bottom in each
of the subfigures, the curves illustrate the real (blue), imaginary (orange), and squared modulus (green) of the electric field, in arbitrary units,
as a function of position. The shaded rectangle in the top subfigure shows the dielectric slab, while the dashed rectangle in the bottom subfigure
show the extent of the padded areas around the infinitely thin membrane. Note that the fields outside the shaded (top) and dashed (bottom)
rectangles are identical in both amplitude and phase.
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FIG. 2. Padding φ/k, normalized to the wavelength λ, that is
added to each side of the membrane in the thin-membrane model as
a function of the thickness l of the plate that the model is to match,
shown for various values of the refractive index n. From bottom to
top, the curves represent n = 1 (blue), n = 2 (orange), n = 3 (green),
and n = 4 (red).

transfer matrix

M̃m =
[

1 + iζ iζ

−iζ 1 − iζ

]
, (10)

where ζ is given by Eq. (9), which gives reflection and
transmission coefficients having the same amplitude as that of
the equivalent membrane having arbitrary thickness. However,
the thin-membrane model ignores the phase shift acquired
by the field propagating through the membrane, which may
be relevant, e.g., for propagation in a multimembrane array
and for taking into account field resonances inside individual
membranes.

To take this phase shift into account one can introduce an
extra padding of length φ/k to each side of the membrane so
that its transfer matrix becomes

M ′
m = Mfs(φ/k)M̃mMfs(φ/k), (11)

with a padding phase

φ =
{
φ0 + π�nl/λ� if sin(knl) > 0 and
2π − φ0 + π�nl/λ� if sin(knl) < 0,

(12)

where �·� represents the floor function and

φ0 = 1

2
arccos

[
(n2 − 1) + (n2 + 1) sin(knl)

(n2 + 1) + (n2 − 1) sin(knl)

]
. (13)

As can be seen from the example shown in Fig. 1, the resulting
effective thin membrane conveniently models the propagation
of the field outside the membrane. Figure 2 illustrates φ as
a function of the two parameters that describe the membrane.
An interesting question to consider, which, however, is beyond
the scope of the present work, is whether membranes where φ

depends strongly on the thickness l exhibit stronger coupling
of the cavity field to dilational modes of the membrane [45].

2. Periodic membrane array transfer matrix

We consider a periodic array of N identical, arbitrarily
thick membranes, each modeled by a transfer matrix Mm and

FIG. 3. The optical transmission spectrum of a two-membrane
array with n = 2 and d = 90l. The full blue curve shows the
transmittance (T ) resulting from the full transfer matrix calculations;
superimposed on this curve is a dashed blue one that shows the
transmittance (T ′) from the effective thin-membrane model. The red
curve shows the single-membrane transmittance (|tm|2) as a reference,
with a dashed red curve superimposed on it calculated from the
effective model. We note that the two models agree perfectly.

separated by a distance d. The transfer matrix of the array is
then computed as

MN = MmMfs(d)Mm . . . Mm, (14)

where Mm appears N times. The transmittance of the array
T = 1/|(mN )2,2|2 can be compared to that of the correspond-
ing array of effective thin membranes T ′ = 1/|(M ′

N )2,2|2,
where M ′

N is defined by substituting M ′
m for Mm in Eq. (14).

B. Two- and four-membrane arrays

In this section we focus on the case of a two- and
four-membrane arrays and use as an example silicon nitride
membranes as employed in various membrane-in-the-middle
experiments [21,25,26,29–33].

Figure 3 shows the transmission spectrum of a two-
membrane array with refractive index n = 2, thickness l =
100 nm, and spacing d = 9 μm, as experimentally investigated
in Ref. [46]. The single-membrane transmittance spectrum is
also displayed as reference. Unity transmission is achieved, as
expected, when the reflectivity of the individual membrane,
rm, vanishes; this occurs when its effective thickness nl is
an integer multiple of λ/2. Unity transmission can also be
achieved in a two-membrane array when there is perfect
constructive two-mirror interference, which occurs at the
transmissive wavelengths discussed in Refs. [7,38]. As the
figure illustrates, spectra resulting from the effective thin-
membrane model (dashed curves) perfectly overlap with the
results from the full model, showing the equivalence between
the two models regarding free-space optical transmission.

Figure 4 shows the transmission spectrum of an array of
four membranes with the same characteristics in the range
[3l,6l] around the first internal resonance wavelength. The
overall interference pattern is similar to the two-membrane
case, albeit with fully constructive interferences now occurring
for triplets of close-by wavelengths [38].
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BHAGYA NAIR, ANDRÉ XUEREB, AND AURÉLIEN DANTAN PHYSICAL REVIEW A 94, 053812 (2016)

FIG. 4. Same as Fig. 3, but for a four-membrane array.

III. CAVITY OPTOMECHANICS

We now turn to the case of vibrating membranes positioned
inside a (large) optical resonator and wish to investigate the role
of the membrane thickness on the optomechanical coupling
with the cavity field. Of particular interest, in connection with
the results of Refs. [7,38], is the strength of the optomechanical
coupling at the aforementioned transmissive wavelengths,
where the field couples dispersively and linearly to a collective
motion of the individual membranes.

A. Optomechanical coupling

The N -membrane array, where N = 2 or 4 in the present
paper, but our discussion applies generally, is assumed to be at
the center of a symmetric linear Fabry-Pérot cavity of length
L. The length of the array is supposed to be much smaller
than that of the cavity and the cavity field Rayleigh range. The
cavity mirrors are modeled by a transfer matrix Mc of the form
(10) and their polarizability is denoted by ζc. The total transfer
matrix of the system can thus be written as the product

Mtot(L) = McMfs(L−)MNMfs(L+)Mc, (15)

where L∓ are the lengths of the subcavities to the left and the
right of the array, respectively. Assuming the field wavelength
to be equal to one of the transmissive wavelengths defined
previously, it is easy to compute the cavity transmission
spectrum as a function of L in order to find the cavity
resonances. In order to calculate the optomechanical coupling
strength we follow the same method as in Refs. [7,38]: (i) The
cavity resonance frequencies ω are calculated for all mem-
branes at their equilibrium positions, (ii) the j th membrane is
then displaced by δxj , (iii) the corresponding transfer matrix
calculated and the shift in the cavity resonances is computed,
finally (iv) yielding the individual optomechanical coupling
gj of the j th membrane through the relation ω → ω + gj δxj .
These coupling strengths define the collective motional mode
of the membranes which is coupled to the field with a collective
coupling constant

gcoll =
√√√√ N∑

j=1

g2
j . (16)

As a figure of merit, gcoll can be compared to the maximal
coupling for a single perfectly reflective membrane, g =
2(ω/L)xzpm, where xzpm is the extent of the wave packet of
the equivalent quantum harmonic oscillator in its ground state.

B. Two-membrane array

We consider the case N = 2 and assume that the field wave-
length corresponds to one of the transmissive wavelengths, as
in, e.g., Fig. 3. The shifts in the cavity resonance frequencies
when one of the membranes is displaced by a small amount
can then be calculated analytically in the same fashion as in
Ref. [38]. One finds that the displacements of the membranes
give rise to two different frequency shifts, which depend on
the parity of the cavity mode number. Figure 5 shows as an
example the real part of the electric field amplitude inside the
cavity with the membranes are their equilibrium positions, for
the case of two odd and two even cavity modes, and in the case
λ > 2nl (no internal resonance). Cavity modes come in pairs;
for each odd (even) cavity mode where the field amplitude
between the membranes is increased as compared to its
amplitude in the left and right subcavities, there exists an even
(odd) cavity mode where the field amplitude is suppressed. The
magnitude of the optomechanical coupling strength mimics the
amplitude of the field between the membranes; i.e., it is larger
in the case of the former set of modes and smaller in the latter
case. In both cases, however, the resonance shifts are opposite
for each membrane, which means that g1 = −g2 and that the
field couples to a breathing mode of the two membranes.

1. Thin-membrane model: Optomechanical coupling strength

To derive analytical expressions for the optomechanical
couplings at the transmissive wavelengths of a two-membrane
array, we make use of the thin-membrane model, for which
we are able to carry out analytical calculations. In the next
section, we will compare the results obtained by replacing the
polarizability that appears in the analytical coupling strengths
obtained by using the thin-membrane approximation in this
section by its general expression, which is valid for arbitrary
membrane thickness.

The derivation of the transmissive optomechanical cou-
plings in the thin-membrane approximation proceeds along
the same steps as in Sec. IIC of Ref. [38] and we only give the
main steps here. Within the thin-membrane model the effective
polarizability of the array can be shown to be

χ = 2ζ (cos ν − ζ sin ν), (17)

with ν = kd. The array is transmissive when χ = 0, i.e., when

cos ν± = ∓ζ√
1 + ζ 2

. (18)

The cavity resonance frequency shift for displacements δx1

and δx2 of membranes 1 and 2, respectively, is

δω = c

(
∂k

∂δx1
δx1 + ∂k

∂δx2
δx2

)
, (19)
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FIG. 5. Real part of the electric field (in arbitrary units) as a function of position for odd [blue; (a) and (d)] and even [red; (b) and (c)]
cavity modes, for transmissive wavelengths larger than nl. From left to right, the five plots are centered around x = 0, L−, L/2, L − L+,
and L, respectively. The inner membranes have the same characteristics as those considered in Fig. 3, and the optical resonator has length
L � 5 × 104l and finesse 3 000. The four parts of this plot correspond to the four labeled data points in Fig. 6.

where c is the speed of light in vacuum and the partial
derivatives are given by Eqs. (27)–(29) of Ref. [38], i.e.,

∂k

∂δx1
= − ∂k

∂δx2
= − Im{β − eiνα}

L + 2d
∂χ

∂ν

, (20)

with α = 2ikζ 2e−iν and β = −2kζ (1 − iζ )e−iν . Using
Eqs. (17) and (18), one gets that

∂k

∂δx1
= −2k

ζ (±
√

1 + ζ 2 + ζ )

L[1 ± 4(d/L)ζ
√

1 + ζ 2]
. (21)

Making further use of the fact that the resonance frequency
shift is related to the normalized collective displacement by

δω = g±
δx1 − δx2√

2
, (22)

one obtains the collective optomechanical couplings

g± = g
√

2
ζ (±

√
1 + ζ 2 + ζ )

1 ± 4(d/L)ζ
√

1 + ζ 2
. (23)

The coupling g+ is thus found to be identical to the one
given by Eq. (38) of Ref. [38], albeit with a different sign
convention for ζ . We find g+ to be larger than g− when the
wavelength is large enough, λ > 2nl, so that there is no internal
resonance for the field inside a single membrane. However, in
the region containing the first internal resonance (i.e., nl <

λ < 2nl), g− becomes larger than g+. This can be understood
by looking at the evolution of the intracavity field amplitude, as

shown in Fig. 5 in the case λ > 2nl. For λ > 2nl cavity modes
corresponding to g+ show a greater field buildup between the
membranes than the ones corresponding to g−. The resulting
radiation pressure forces and, therefore, the optomechanical
coupling strength, are stronger for modes corresponding to g+.
In contrast, for wavelengths such that nl < λ < 2nl, because
of the change in the sign of ζ , the solution corresponding to
cavity modes with a larger field buildup is found to be g−. As
λ/l becomes smaller still, g+ and g− alternate in a manner
similar to the one just described.

It is interesting to consider the limiting cases for highly
reflective membranes. For large |ζ | and λ > 2nl,

g+ ∼ g
2
√

2ζ 2

1 + 4(d/L)ζ 2
. (24)

As noted in Ref. [7] the denominator represents the relative
increase in the effective length of the large cavity with length
L due to the field buildup in the small cavity, bounded
by the membranes, with length d. As long as 4dζ 2/L �
1, the effective length of the large cavity is unchanged
and the optomechanical coupling strength scales as the finesse
of the small cavity, which is proportional to ζ 2. When the
membranes are reflective enough to effectively narrow the
large cavity linewidth, the optomechanical coupling saturates
and tends to a value proportional to ω/d, determined by the
small cavity bounded by the membranes.
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FIG. 6. Normalized optomechanical couplings g±/g, at transmis-
sive wavelengths for the same two-membrane array as used in Fig. 3.
The array is positioned at the center of an optical resonator with length
5 × 104 l and finesse 3 000. The data points show the results of the full
transfer matrix calculations (solid blue circles for odd cavity modes,
open red circles for even ones), while the curves show the results of
the predictions based on the thin-membrane model [Eq. (23)]. Four
resonances, labeled (a) through to (d), correspond to the respective
field patterns shown in Fig. 5.

In contrast, under the same conditions, we find

g− ∼ − g√
2

1

1 − 4(d/L)ζ 2
. (25)

When 4dζ 2/L � 1, the radiation pressure force on each
membrane is provided by the field in the adjacent subcavity.
Although the field amplitude in the shorter subcavities is the
same as it would be in the large cavity without membrane array,
interference between the two coupled subcavities reduces the
optomechanical coupling strength. When the membranes are
reflective enough, the reduced field amplitude between the
membranes leads to a reduction in the effective cavity length,
which in turn results in an effective broadening of the cavity
linewidth; this is the opposite situation to the one described in
detail in Ref. [38].

2. Full transfer matrix model: Numerical results

To investigate if the predictions of the thin-membrane
model hold for realistic membranes with arbitrary thick-
ness we numerically computed these cavity optomechanical

coupling strengths at the transmissive wavelengths for the
two-membrane array of Fig. 3 using the method described
above. The length of the cavity is taken to be L = 5 × 104 l and
its finesse 3 000 as an example. Figure 6 shows both optome-
chanical coupling strengths g±, normalized by g, numerically
computed at each transmissive wavelength between 2l and 10l.
In both cases, the effective thin-membrane model predictions
are well corroborated by the full transfer matrix calculations,
which justifies the role of the polarizability as the relevant
parameter for characterizing the optomechanical properties
of the system. It is interesting that similar optomechanical
coupling strengths can be obtained, regardless of whether
the membranes are thin or, on the contrary, thick enough
for the field to oscillate several times within the dielectric
medium, assuming equal effective masses. From Fig. 6 it is
also clear that, for wavelengths close to an internal resonance,
the optomechanical coupling strength vanishes, as there is no
field imbalance across the membranes.

We also checked numerically for a four-membrane array,
such as used in Fig. 4, that the optomechanical coupling
strengths agree with those predicted in Refs. [7,38] for arrays
of infinitely thin movable scatterers.

IV. CONCLUSION

The transmission spectra and linear collective cavity
optomechanical couplings of a periodic array of flexible
membranes have been derived on the basis of full transfer
matrix calculations taking into account the thickness of the
membranes. The results support the use of the thin-scatterer
approximation, provided a suitable phase-shift padding is
introduced, and stress the role of the polarizability as the
relevant parameter to investigate the optomechanical prop-
erties of these arrays. In a similar fashion it could also
be interesting to investigate the role of defects [39] and of
patterning [32,34,35], the dynamics of such arrays in the
context of doped optomechanics [47], and the role of optical
resonances of the membranes themselves in the context of
dilational optomechanics [45].
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