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Abstract— This paper presents a procedure to design a Proportional Resonant (PR) current 

controller with additional PR selective harmonic compensators for Grid Connected 

Photovoltaic (PV) Inverters. The design of the PR current control and the harmonic 

compensators will be carried out using Matlab. Testing was carried out on a 3kW Grid-

Connected PV Inverter which was designed and constructed for this research. Both simulation 

and experimental results will be presented. 
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I. INTRODUCTION 

Harmonics generated by Distributed Power Generation Systems is a major power quality issue, 

especially due to the fact that the number of these systems connected to the grid is always increasing. 

This means that it is very important to control the harmonics generated by these inverters to limit their 

adverse effects on the grid power quality. IEEE and European IEC standards (IEEE 929, IEEE 1547 

and IEC 61727) suggest harmonic limits generated by Photovoltaic (PV) Systems and Distributed 

Power Resources for the current total harmonic distortion (THD) factor and also for the magnitude of 

each harmonic.  

The current controller can have a significant effect on the quality of the current supplied to the grid 
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by the PV inverter, and therefore it is important that the controller provides a high quality sinusoidal 

output with minimal distortion to avoid creating harmonics. A commonly used current controller for 

grid-connected PV inverters is the PR current controller. This controller is highly suited to operate 

with sinusoidal references like the reference used in grid-connected PV inverters, thus making it an 

optimal solution for this application. The PR controller provides gain at a certain frequency (resonant 

frequency) and almost no gain exists at the other frequencies. 

The PR current controller is presented and discussed in [1]-[3]. Although this controller has a high 

ability to track a sinusoidal reference such as a current waveform, the output current of the grid-

connected inverter is not immune from harmonic content [4]. Harmonics in the output current can 

result due to the converter non-linearities as well as from harmonics which are already present in the 

grid. Selective harmonics in the current can be compensated by using additional PR controllers which 

act at particular harmonic frequencies to be reduced or eliminated such as the 3 rd, 5th, 7th and so on. 

This compensation can be used to reduce the current THD and make the inverter compliant to the 

IEEE and IEC standards [1] [5] [6]. 

This paper presents the design procedure of a PR current controller and selective harmonic 

compensation applied for the 3rd, 5th and 7th harmonics. The design of the current control and 

harmonic compensation was carried out using Matlab's SISO Design Tool and the Bode diagram of 

the system. Results from testing of the PR current control on its own and with additional harmonic 

compensators as used in grid-connected PV inverters is presented, both by simulations and by 

experimental tests. Experimental testing was carried out on a single phase 3kW grid-connected PV 

inverter, which was designed and built for this research. 

Fig. 1 below shows the block diagram of the Grid-Connected PV Inverter system connected to the 

grid through an LCL filter used for this research. 

This paper is divided into six sections. Section two covers the theory for the LCL filter and the current 

control, while section three covers the design of the LCL filter, the PR current control and the 

harmonic compensators. Sections four and five present the simulations and inverter testing, 

respectively. These are followed by section six which covers the comparison of results of the PR 
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current control alone with the PR current control including the additional harmonic compensators. 

This paper concludes with final comments in section seven.  

II. LCL FILTER AND CURRENT CONTROL 

A. LCL Filter 

The transfer function of the LCL filter of Fig. 1 in terms of the inverter current Ii and the inverter 

voltage Ui, neglecting Rd, is: 
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where,  Li is the inverter side inductor, Lg is the grid side inductor, and Cf is the filter capacitor. 

The resonant frequency of the filter is given by: 
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The transfer function in (1) does not include the damping resistor Rd. The introduction of Rd in 

series with the capacitor Cf increases stability and reduces resonance [7]. This method of damping is a 

type of passive damping. Whilst there exist other methods of passive damping and also more 

advanced active damping methods, this particular damping method used was considered enough for 

the aim and purpose of this research due to its simplicity. The transfer function of the filter taking in 

consideration the damping resistor Rd is: 
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B. PR Control 

Fig. 2 below shows the PR current control strategy. Ii is the inverter output current, Ii
* is the inverter 

current reference and Ui
* is the inverter voltage reference. 

The PR current controller GPR(s) is represented by: 
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where, KP is the Proportional Gain term, KI is the Integral Gain term and ω0 is the resonant frequency.  

GF(s) represents the LCL filter. GD(s) represents the processing delay of the microcontroller, which 

is typically equal to the time of one sample Ts and is represented by: 
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The ideal resonant term on its own in the PR controller provides an infinite gain at the ac frequency 

ω0 and no phase shift and gain at the other frequencies [8]. The KP term determines the dynamics of 

the system; bandwidth, phase and gain margins [8].  

Equation (4) represents an ideal PR controller which can give stability problems because of the 

infinite gain. To avoid these problems, the PR controller can be made non-ideal by introducing 

damping as shown in (6) below. 
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where, ωc is the bandwidth around the ac frequency of ω0. 

 With (6) the gain of the PR controller at the ac frequency ω0 is now finite but it is still large 

enough to provide only a very small steady state error. This equation also makes the controller more 

easily realizable in digital systems due to their finite precision [9]. 

C. PR Control with Harmonic Compensators 

Fig. 3 below shows the PR current control with an additional harmonic compensation block GH(s). 

The harmonic compensator GH(s) is represented by: 
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where, KIh is the Resonant term at the particular harmonic and hω0 is the resonant frequency of the 

particular harmonic.  

The harmonic compensator for each harmonic frequency is added to the fundamental frequency PR 

controller to form the complete current controller, as shown in Figure 3. 
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Equation (7) represents an ideal harmonic compensator which as stated for the fundamental PR 

controller, can give stability problems due to the infinite gain. To avoid these problems, the harmonic 

compensator equation can be made non-ideal by representing it using (8). 
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where, ωc is the bandwidth around the particular harmonic frequency of hω0. 

 As for the case of the fundamental PR controller, with (8) the gain of the harmonic 

compensator at the harmonic frequency hω0 is now finite but it is still large enough to provide 

compensation. 

III. LCL FILTER, PR CONTROLLER AND HARMONIC COMPENSATORS DESIGN 

A. Inverter and LCL Filter Design Parameters 

To carry out the tests using the PR control and the harmonic compensation, a 3kW Grid-Connected 

Inverter was designed and constructed. The LCL filter was designed following the procedure in [8] 

and [10]. Designing for a dc-link voltage of 358V, maximum ripple current of 20% of the grid peak 

current, a switching frequency of 10kHz, filter cut-off frequency of 2kHz and the capacitive reactive 

power not exceeding 5% of rated power, the following values of the LCL filter were obtained: Li = 

1.2mH, Lg = 0.7mH, Cf = 9μF and Rd = 8Ω.  

B. PR Controller Design 

The block diagram of the complete system used to design the control is shown in Fig. 2. In the 

inverter current feedback path an Anti-aliasing filter was used to prevent the aliasing effect when 

sampling the inverter current. The Anti-Aliasing filter used was a second order non-inverting active 

low pass filter using the Sallen-Key filter implementation and a Butterworth design with cut-off 

frequency of 2.5kHz. 

The optimal fundamental PR current controller design was carried out using SISO Tool in Matlab. 

To design the optimal controller, the integral gain KI  at the ac frequency ω0 must be set large enough 

to enforce only a very small steady state error, and also set the proportional gain KP value to obtain  
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sufficient bandwidth accommodating the other harmonic compensators which would otherwise cause 

system instability. The PR controller was designed for a resonant frequency ω0 of 314.16rad/s (50Hz) 

and ωc was set to be 0.5rad/s, obtaining a KP of 6.8 and KI of 1498.72, shown in (9). 

  GPR(s) = 
  22 502ss

s
72.14988.6


       (9) 

Fig. 4 shows the root locus plot in Matlab of the system including the LCL filter, the processing 

delay, anti-aliasing filter in the output current feedback path and the PR controller. The root locus plot 

shows that the designed system is stable. 

 

Fig. 5 and Fig. 6 show the open loop bode diagram and the closed loop bode diagram of the system, 

respectively. From the open loop bode diagram, the Gain Margin obtained is 13.9dB at a frequency of 

9970rad/s and the Phase Margin obtained is 51deg at a frequency of 3300rad/s. 

A. Harmonic Compensators Design 

The block diagram of the complete system used to design the selective harmonic compensators is 

shown in Fig. 3. In the inverter current feedback path an Anti-aliasing filter was used to prevent the 

aliasing effect when sampling the inverter current. 

Harmonic compensators were designed for the 3rd, 5th and 7th harmonics. The PR harmonic 

compensators were designed using SISO Tool in Matlab with the resonant frequency set to the 

particular frequency to be compensated, i.e. 150Hz for the 3rd harmonic, 250Hz for the 5th harmonic 

and 350Hz for the 7th harmonic. Similarly to the fundamental PR current control design, the Root 

Locus, Open Loop and Closed Loop Bode diagrams plotted by SISO Tool were used to achieve the 

optimal design for each harmonic compensator. Each harmonic compensator was designed on its own 

and then combined together with the fundamental PR controller at the end in SISO Tool. Ultimately 

fine tuning of the compensators was performed to obtain the optimum operation of the compensators 

by varying ωc and KI of the corresponding compensator. Care was taken that the system remains 

stable, by using the gain margin and phase margin stability criteria. 

The 3rd harmonic compensator at a resonant frequency 3ω0 of 942.48rad/s (150Hz) was designed 

with a ωc of 2.5rad/s and a KI of 211.208. The 5th harmonic compensator at a resonant frequency 5ω0 
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of 1570.8rad/s (250Hz) was designed with a ωc of 4.5rad/s and a KI of 83.867. The 7th harmonic 

compensator at a resonant frequency 7ω0 of 2199.11rad/s (350Hz) was designed with a ωc of 10rad/s 

and a KI of 40.834. The transfer function of the complete controller GC(s) is shown in (10). 

GC(s) = GPR(s) + G3H(s) + G5H(s) + G7H(s) =   
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Fig. 7 shows the root locus plot in Matlab of the system with the additional harmonic compensators. 

The root locus plot shows that the designed system is stable. 

 

Fig. 8 and Fig. 9 show the open loop bode diagram and the closed loop bode diagram of the system, 

respectively. From the open loop bode diagram, the Gain Margin obtained is 13.2dB at a frequency of 

9520rad/s and the Phase Margin obtained is 41.8deg at a frequency of 3310rad/s. 

IV. SIMULATIONS 

The 3kW Grid-Connected PV Inverter was modeled and simulated in Simulink with PLECS 

blocksets. The grid voltage was set to 325V peak (230V rms), the dc-link voltage was set to 360V and 

the reference current was set to 18.446A peak to simulate a 3kW inverter. 3rd, 5th and 7th harmonics 

were added to the grid voltage corresponding to a Total Harmonic Distortion (THD) of 3.37%, to 

distort the grid voltage sinusoidal waveform. Simulations were carried out to observe the effect of the 

harmonics with and without harmonic compensation on the inverter voltage and grid current. 

Fig. 10 and Fig. 11 show the inverter voltage (Vpwm), the grid voltage (Vgrid), the capacitor voltage 

(Vcap), the inverter current (Iinv), the grid current (Igrid) and the reference current (Iref) from the 

simulation using the PR controller without and with harmonic compensation, respectively. Fig. 12 and 

Fig. 13 show the harmonic spectrum of the grid current from the simulation using the PR controller 

without and with harmonic compensation, respectively. 

 

From the simulation results without harmonic compensation shown in Fig. 10 and Fig. 12 it can be 
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seen that the grid current Igrid was highly affected by the harmonics present in the grid voltage. When 

considering the harmonics of the grid current as a percentage of the reference current, the 3rd, 5th and 

7th harmonics were about 8.528%, 3.44% and 1.649%, respectively. When the harmonic compensators 

were applied, the 3rd, 5th and 7th harmonics in the grid current Igrid were reduced to 0.613%, 0.474% 

and 0.388%, respectively, as can be seen from the simulation results shown in Fig. 11 and Fig. 13. 

V. GRID-CONNECTED PV INVERTER TESTING 

The constructed 3kW Grid-Connected PV Inverter test rig is shown in Fig. 14. The inverter was 

operated at a switching frequency of 10kHz and was connected to a 50Hz grid supply. The inverter 

was controlled by the Microchip dsPIC30F4011 microcontroller. Testing was carried out using the PR 

controller without and with the selective harmonic compensators to analyze the performance of the 

compensators. The inverter was connected to the grid using a variac to allow variation of the grid 

voltage for testing purposes. The dc link voltage was obtained from a dc power supply. 

Tests were performed to measure the harmonics present in the grid voltage. The 3rd, 5th and 7th 

harmonics present in the grid voltage were typically about 0.9%, 1.912% and 0.231%, respectively.  

Fig. 15 shows the inverter output voltage, the grid voltage and the grid current for a dc-link voltage of 

300V, a grid voltage of 154V and a preset reference value of 8A peak using the PR current controller 

a) without harmonic compensation, b) with 3rd harmonic compensation, c) with 3rd and 5th harmonic 

compensation and d) with 3rd, 5th and 7th harmonic compensation, respectively. Fig. 16 shows the grid 

current for the grid-connected inverter with the PR current controller a) without harmonic 

compensation, b) with 3rd harmonic compensation, c) with 3rd and 5th harmonic compensation and d) 

with 3rd, 5th and 7th harmonic compensation, respectively. Ig is the grid current, Igr is the reconstructed 

grid current up to its 13th harmonic (a reconstruction of the grid current by adding the first 13 lower 

harmonics) and Igfund is the fundamental component of the grid current. 

Fig. 17 shows the harmonic spectrum of the grid current with PR current control a) without 

harmonic compensation, b) with 3rd harmonic compensation, c) with 3rd and 5th harmonic 

compensation and d) with 3rd, 5th and 7th harmonic compensation, respectively. Without harmonic 

compensation the 3rd, 5th and 7th harmonics resulted about 5.574%, 4.231% and 2.435% of the 
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reference value of 8A peak, respectively. When the harmonic compensators were used the 3rd, 5th and 

7th harmonics resulted about 0.378%, 0.641% and 0.24% of the reference value of 8A peak, 

respectively. 

VI. COMPARISON OF EXPERIMENTAL RESULTS 

 

The 3rd, 5th and 7th harmonics in the grid voltage were typically about 0.9%, 1.912% and 0.231%, 

respectively.  Table 1 shows the percentage fundamental and harmonic content of the grid current for 

the PR current controlled grid-connected inverter without and with the selective harmonic 

compensators. The percentage calculations for the grid current are based on the reference current of 

8A peak. As can be observed from the experimental results, the harmonic compensators have 

drastically reduced the 3rd, 5th and 7th harmonics in the grid current. This agrees with the results 

obtained in the simulations. These harmonics could be reduced further by increasing the gain of the 

compensators at the harmonic frequency, but this could possibly cause system instability. This could 

happen because by increasing the gain, the phase peaks/dips at the harmonic frequencies would also 

increase, cutting the -180° line and thus providing a negative gain margin that drives the system 

unstable. As can be observed from the open loop bode diagram in Fig. 10 the phase dips are already at 

the maximum possible. A possible solution might be to increase the bandwidth of the system by 

increasing the proportional gain KP of the fundamental PR controller, making room for larger gains 

for the harmonic compensators. However by increasing the bandwidth of the system the chance of 

being affected by higher harmonics (9th, 11th, 13th and so on) is increased, leading to the need of 

additional harmonic compensators on those harmonics too. Therefore a compromise has to be found, 

obtain the lowest harmonics possible with also the narrowest bandwidth possible.  

The IEEE 929 and IEEE 1547 standards allow a limit of 4% for each harmonic from 3rd to 9th and 

2% for 11th to 15th [11], [12]. The IEC 61727 standard specifies similar limits [13]. As can be 

observed from the results obtained the 3rd and 5th harmonics were above the limit when no harmonic 

compensation was applied. These harmonics result from the inverter non-linearities and also from the 

harmonics already present in the grid supply. The harmonic compensators reduced the 3 rd and 5th 
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harmonics within the limits and reduced further the 7th harmonic, thus making the inverter compliant 

to the standard regulations. 

VII. CONCLUSION 

This paper presented a procedure to design a Proportional Resonant (PR) current control with 

additional selective harmonic compensators for Grid Connected Photovoltaic (PV) Inverters. A 3kW 

grid connected PV inverter was designed and built for this research. This paper covered the design of 

the PR control and also the design of the selective harmonic compensators for the 3rd, 5th and 7th 

harmonics. Results from simulations and experimental analysis of the inverter with PR current control 

and harmonic compensation were presented. Both simulation and experimental results showed the 

effectiveness of the harmonic compensators to reduce the harmonics in the grid current. The 3rd, 5th 

and 7th harmonics in the grid current were reduced from about 5.574%, 4.231% and 2.435%, 

respectively, to about 0.378%, 0.641% and 0.24%, respectively. This reduction in harmonics made the 

grid connected inverter compliant to the standard regulations. 
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Fig. 1 Block diagram of the Grid-Connected PV Inverter with the LCL Filter 
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Fig. 3 The PR Current Control with Harmonic Compensators 

 

 

 

-14000 -12000 -10000 -8000 -6000 -4000 -2000 0
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

0.94

0.080.160.260.360.480.62

0.78

0.94

2e+003

4e+003

6e+003

8e+003

1e+004

1.2e+004

1.4e+004

2e+003

4e+003

6e+003

8e+003

1e+004

1.2e+004

1.4e+004

0.080.160.260.360.480.62

0.78

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

 
Fig. 4 Root Locus of the Inverter with the PR Controller 
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Fig. 5 Open Loop Bode Diagram of the System with PR Control 
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Fig. 6 Closed Loop Bode Diagram of the System with PR Control 
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Fig. 7 Root Locus of the Inverter with the Fundamental PR Controller and the Harmonic Compensators 
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Fig. 8 Open Loop Bode Diagram of the System with the Fundamental PR Controller and the Harmonic 

Compensators 
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Fig. 9 Closed Loop Bode Diagram of the System with the Fundamental PR Controller and the Harmonic 

Compensators 



16 
 

0.12 0.122 0.124 0.126 0.128 0.13 0.132 0.134 0.136 0.138 0.14
-400

-300

-200

-100

0

100

200

300

400

V
o

lt
ag

e 
(V

)

0.12 0.122 0.124 0.126 0.128 0.13 0.132 0.134 0.136 0.138 0.14
-30

-20

-10

0

10

20

30

Time (sec)

C
u

rr
en

t 
(A

)

 

 

I
inv

I
grid

I
ref

V
pwm

V
cap

V
grid

 
Fig. 10 Simulation Result from the Inverter with PR Current Control without Harmonic Compensation 
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Fig. 11 Simulation Result from the Inverter with PR Current Control with Harmonic Compensation 
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Fig. 12 Simulation Grid Current Harmonic Spectrum with PR Current Control without Harmonic Compensation 
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Fig. 13 Simulation Grid Current Harmonic Spectrum with PR Current Control with Harmonic Compensation 
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Fig. 14 3kW Grid-Connected PV Inverter Test Rig 



19 
 

 

  
(a) (b) 

  
(c) (d) 

Fig. 15 Inverter Output Voltage (1), Grid Voltage (2) and Grid Current (3) with a Preset Current of 8A Peak 

using a) the PR Controller without Harmonic Compensation, b) the PR Controller with 3rd Harmonic 

Compensation, c) the PR Controller with 3rd and 5th Harmonic Compensation, d) the PR Controller with 3rd, 5th 

and 7th Harmonic Compensation 
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(c) (d) 

Fig. 16 Grid Current with PR Current Control a) without Harmonic Compensation, b) with 3rd Harmonic 

Compensator, c) with 3rd and 5th Harmonic Compensators, d) with 3rd, 5th and 7th Harmonic Compensators 
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(c) (d) 

Fig. 17 Harmonic Spectrum of the Grid Current with PR Current Control a) without Harmonic Compensation, b) with the 3rd 

Harmonic Compensator, c) with the 3rd and 5th Harmonic Compensators, d) with the 3rd, 5th and 7th Harmonic Compensators 
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TABLE I 

FUNDAMENTAL AND HARMONICS FOR THE PR CURRENT CONTROLLED GRID-CONNECTED INVERTER WITH 

SELECTIVE HARMONIC COMPENSATION 

 

 
Fund 3th Harm 5th Harm 7th Harm 

Ig Ig Ig Ig 

Fundamental PR only 100 % 5.574 % 4.231 % 2.435 % 

Fund PR, 3rd H. Comp 100 % 0.352 % 3.893 % 2.257 % 

Fund PR, 3rd, 5th H. Comp 100 % 0.448 % 0.862 % 2.437 % 

Fund PR, 3rd, 5th, 7th H. Comp 100 % 0.378 % 0.641 % 0.24 % 

 


