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Abstract. The paper addresses bio-retexturing within the Lower Globigerina 
Limestone, the limestone used in the construction of the island’s built cultural heritage 
which dates back to the Neolithic Period. Samples from the host sedimentary layer 
and burrow infills were analysed to establish the varying petrological, geochemical 
and mineralogical charcateristics. Petrological examination in thin section indicates 
that burrowing introduces unlithified sediment in the primary depositional fabric. 
XRF and XRD indicate that the mineralogy of the infill is qualitatively and 
quantitatively different from the host rock, often richer in goethite which accounts for 
its dark yellow ochre colour. Bio-retexturing introduces predominantly non-carbonate 
rich infill and modifies the original sediment; due to the intra-particle cement, it 
transforms its permeability and porosity. 
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1. INTRODUCTION 

Limestones are the most common industrial mineral utilised in the erection 
of architectural monuments since the Neolithic Period. Variations exist with 
location of deposition, and techniques are available to determine the provenance of 
the limestone utilised in such architecture [1]. Principal limestone characteristics 
and pathologies associated with its weathering in heritage buildings are imperative 
for effective damage diagnostics [2–3].  

Burrows are an important characteristic of limestone. They are trace fossils 
formed within soft unconsolidated sediments and demonstrate the patterns, shapes 
and well-defined ichnofabrics [4]. Their diameter may vary from less than 1 mm to 
several centimetres [5]. The compaction of a given burrow can be computed in 
terms of [6]. 

In both shallow and deep marine environments, biota introduces 
displacement within the sediment and thus influences its composition [7]. 
Bioturbation involves the remixing of sediments by organisms, thus resulting in the 
obliteration of the original orientation of the sedimentary structures. It impacts on 
the porosity and permeability of the sediments [8]. Bioturbated and non-

mailto:lino.bianco@um.edu.mt


Article no. 802 Lino Bianco 2 

bioturbated areas do have an impact on the weathering of the fabric. Limestone 
with bioturbation may exhibit greater weathering due to different porosity and 
related water capillary uptake. 

Sediment bio-retexturing is the process by which biota burrowing in the 
substrate modifies and/or transforms the original sedimentary texture through the 
introduction of unlithified material of variable permeability and porosity from the 
host sediment of the lithostratigraphic layers [9]. It has a significant role within the 
lithostratigraphic layers [10]. “Bio-retexturing destroys [the] primary depositional 
fabrics and masks inorganic process-related structures” [9]. 

This paper studies the petrological, geochemical and mineralogical 
characteristics of samples extracted from Tal-Warda quarry on the outskirts of the 
geocultural village of Qrendi (UTM ED50 coordinates: 451481E, 3966547N), 
Malta, an open-pit industrial mineral extracting site sunk in the Lower Globigerina 
Limestone Member (LGLM) [11]. Burrowing and weathering activity is present 
(Fig. 1). The aim is not to quantify bioturbation but to investigate the qualitative 
and quantitative variations of the retextured infill to burrows from the respective 
lithostratigraphic layers. 

The quarry is adjacent to the Chapel of St. Catherine (UTM ED 50 
coordinates: 451486, 3966402N) (Fig. 2a,b) constructed in this limestone. This 
chapel (Fig. 2c,d), erected in 1626 and with its exterior restored in 2001, is a 
typical case study which illustrates burrowing in historic (Fig. 2e,g,h) and restored 
fabric (Fig. 2f). This chapel is listed in the National Inventory of the Cultural 
Property of the Maltese Islands for its ‘very high’ cultural heritage value due to its 
architectural, artistic and historical importance [12]. The Neolithic temples of 
Ħaġar Qim and Mnajdra, UNESCO World Heritage Sites dating to circa 3600 BC 
[13], are two of the many cultural heritage sites within the limits of this village. 

  
a b 

Fig. 1 
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Fig. 1 (continued) – Lower Globigerina Limestone (a) with burrowing (b)  

iron stained burrow infill (c) and weathering of burrow infill (d). For scale purposes,  

the head of the geological hammer is 160 mm long. 

2. MATERIALS AND METHODS 

The Lower Globigerina Limestone is the main building dimension stone in 

the Maltese islands. Even over a few kilometres the quality of this limestone varies, 

an important consideration when selecting limestone for stone replacement in any 

restoration work [14].  

The geology of the Maltese archipelago consists of five main Oligo-Miocene 

formations of marine sedimentary origin [15]. These are, starting from the oldest, 

Lower Coralline Limestone Formation, Globigerina Limestone Formation, Blue 

Clay Formation, Greensand Formation and the Upper Coralline Limestone 

Formation. The Globigerina Limestone Formation, which outcrops over circa 70% 

of the superficial area of the islands, consists of pale cream to yellow planktonic 

globigerinid foraminifera. Lithostratigraphically it is divided into three members: 

Lower, Middle and Upper. The interruption in the process of sedimentation 

between these members is marked by two distinct, principal conglomerate beds. 

The LGLM is Aquitanian [16–17]; its thickness varies between 5 and 40 m [11] 

and this member has occasional blue patches [18]. Its bio-chronostratigraphy is 

characterized by calcareous plankton [19]. The alveolar weathering which 

characterises this member is due to selective intra-burrow cementation and 

preferential erosion of the surrounding poorly cemented sediment [15]. The 

resulting profile of preferential weathering in areas with burrows has been 
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traditionally referred to by quarrymen as ‘finger marks’ (Salvatore Bondin, 

personal communication), in Maltese ‘marki tas-swaba’. The top of Tal-Warda 

quarry is close to the upper limit of the LGLM and thus close to the lower side of 

the phosphorite conglomerate horizon. The top of this horizon marks the lower 

limit of the Middle Globigerina Limestone Member.  

A comprehensive study of the LGLM was undertaken at the University of 

Leicester [20]. This limestone is either of the first or of the second, and inferior, 

quality type. The dominant mineralogy common to both is calcite with minor 

inclusions, which are more pronounced in the latter quality type, of quartz,  

K-feldspar, muscovite, kaolinite, illite, smectite and glauconite. This paper is based 

on the following 6 samples, analysed in [20] but not yet published: 3 host rock (R1 

to R3) and their respective burrow infills (Rbf1 to Rbf3). R1 is second quality 

whilst R2 and R3 are first quality. The quarry face and hand specimen rock 

descriptions are given in Table 1. The petrological composition of the samples was 

established through textural, chemical and mineralogical analyses.  
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Fig. 2 
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Fig. 2 (continued) – Location of the Neolithic village of Qrendi (a); orthophoto of the site plan [21]: 

Chapel of St. Catherine and the Tal-Warda Quarry are outlined in red and blue respectively (b);  

the Chapel of St. Catherine (c); detail of south-facing elevation of the chapel (d); burrowing in the 

original historic fabric indicated in red in Fig. 2d (e);  

burrowing in the restored fabric indicated in blue in Fig. 2d (f);  

burrowing in the original historic fabric along the east facing elevation (g, h).  

A 2Є coin was placed against the photographed fabric to illustrate the scale of the burrows. 

A petrographical microscope and a Hitachi S-520 scanning electron 

microscope equipped with an energy-dispersive analyzer for high-resolution 

imaging were used. The objective of thin section analysis was to investigate the 

texture, porosity and permeability, important properties of a given limestone which 

have a bearing on its durability and weathering characteristics. These are essential 

aspects which need to be addressed in scientific restoration of historical built 

fabric. 

Scanning electron microscopy (SEM) was also used to study the texture, the 

cementing fabric, the microphotograph pores [22] and the non-carbonate fraction 

remaining on the filter paper after the determination of the acid insoluble residue 

(IR). To avoid contamination, fragments were freshly cut and handled by 

disposable gloves and tongs. Furthermore, to guarantee electrical contact between 

the sample and the specimen pin mount, a gold coating was applied to secure a 

clear image. 
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Table 1 

Visual descriptions 

Code 

Position from 

quarry top 

(m)* 

Bed 

thickness 

(m)* 

Description 

Quarry face Hand specimen 

R1 13.1 3.0 
Darker burrow infill decreasing 

towards the top 

White in colour with some shell 

fragments;  

Burrows: brown and dark 

green/grey in colour with 

occasional ‘iron stained’ infill 

R2 20.7 3.2 

Dark burrow infill starts at 

boundary with the lower bed; it 

increases up the bed; poor first 

quality is deteriorating upwards  

Pale yellow coloured; 

Host rock is first quality but 

burrows reduce quality 

R3 28.1 6.0 

Host rock is first quality but with 

darker soft yellow infill to 

burrows; progression increases up 

in the bed 

Pale yellow coloured with shell 

fragments; 

Burrows: cream yellow infill; 

seems more compact than the host 

rock 

* Approximate depth in metres.  

   

Chemical analysis was determined through loss-on-ignition (LOI), the 

traditional analytical chemical method used to establish the organic and carbonate 

content of a given sediment [23], and X-ray fluorescence analysis (XRF). An ARL 

8420+ X-ray fluorescence spectrometer was used to determine the bulk chemistry 

[24]. Pressed powder pellets were analysed for SiO2, TiO2, Al2O3, Fe2O3, MnO, 

MgO, CaO, Na2O3, K2O, and P2O5. 

The non-carbonate fraction present was quantitatively determined through 

IR. X-ray diffraction (XRD) making use of a Philips PW1729 X-ray generator was 

used to determine the mineralogical composition of the residue. XRD was also 

used to qualitatively establish the bulk mineralogy of the whole rock samples and 

the mineralogy of the clay fractions. The respective relative intensities are 

indicative of the semi-quantitative data of each mineral. An oriented mount 

technique was used to prepare the clay minerals in order to enhance the d001 peaks 

[25].  

3. RESULTS AND DISCUSSION 

The host rock and burrow infill samples consist of fine grained, well-sorted, 
porous intrabiosparitic wackestone. SEM images show the pore structure, and fine 
grained cement with occasional well-formed minerals (Fig. 3).  

Burrows, when present, have compact, low porosity wackestone infill. In R1, 
burrows cut across the section; the fabric of the infill is similar to that of the host. 
Compact, low porosity 700 µm diameter areas, likely sections through the infill to 
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burrows, are present. The maximum size of fossil fragments is 0.68 mm. Quartz, 
maximum size of 75 µm, occurs in clusters and maximum 150 µm diameter 
glauconite grains are also present. 350 µm maximum diameter clusters of iron 
oxide-like minerals, dark red-brown in colour and exhibiting signs of breakdown, 
often occur in concave-up position shells. Glauconite grains in the oxide stained 
areas are breaking down. Burrows in R2, diameter varying from 0.75 to 2 mm, do 
not cut across the fabric. Infill is low in unbroken allochem content, less compact 
and low in porosity. Iron oxide minerals in proximity to areas of high permeability 
are breaking down. Quartz size ranges from 20 to 120 µm. Glauconite grains are 
not breaking down. 

  

a b 

Fig. 3 – Scanning electron images showing the pore structure of sample Rbf2 (a);  

a well defined feldspar is present (b).  indicates points analysed. 

Undamaged, unfilled globigerina comprises 30% of R3. Maximum diameter 

of undamaged allochems is 675 µm. Other minerals present include glauconite, 

quartz and some oxides. Well defined glauconite grains, maximum 20 µm 

diameter, are present in intra particle pores. They also occur in clusters over an area 

of 250 × 125 µm. Quartz grains, maximum 90 µm, are scattered throughout the 

fabric. 7.5 µm diameter red-brown iron oxide mineral grains are uniformly 

distributed throughout the fabric. Some are starting to break down and staining the 

surroundings. Some of the globigerina chambers are filled with this mineral. 

Green-grey stains may be due to weathering of glauconite. High permeability areas 
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are severely stained; breakdown of glauconite is more advanced in these areas. 

Inter particle pores are maximum 400 µm in diameter. Elongated quartz, maximum 

100 µm, occurs occasionally in groups. 5 to 10 µm iron oxide mineral grains occur 

in clusters; sometimes they are contained in allochem chambers. The maximum 

inter particle oxide cluster is 85 µm. Oxide filled allochem chambers have sparry 

calcite on the inside of the chamber. 

The bf sample viewed in thin section is Rbf3. Allochems are cemented by 

fine-grained sparry calcite. Secondary 1.5 mm diameter burrows cut across the 

primary burrow fabric. Infill to a secondary burrow is more permeable. A number 

of iron oxide mineral(s) is/are present at the boundaries of the secondary burrow. 

Size is difficult to establish due to intense staining around the mineral core which 

blurs the perimeter of the grain. 

Nearly a third of the host rock is made up of undamaged, unfilled allochems 

(maximum 150 µm diameter). The remaining area includes laminar shell fragments 

(maximum size 1 mm), glauconite grains (10% of fabric and 200 µm maximum 

diameter), quartz and iron oxide/s. Well-defined glauconite grains, occurring in 

groups, fill intra particle voids. Shell fragments in concave-up position support 

glauconite grains. Monocrystalline quartz grains are elongated and angular. Their 

size varies from 20 to 120 µm. Irregular distributed breaking down 30 µm iron 

oxide mineral is also present; staining is due to red-brown iron oxide and 

glauconite break down. The secondary burrow infill is less stained than the host 

burrow infill. 

The geochemical composition of the R samples varies from the Rbf samples 

(Table 2). The LOI content of all samples is less than the theoretical value for pure 

CaCO3. The samples with burrow infill have lower LOI content than that of the 

host rock. The noted mean variation is circa 4%. Bioturbation had introduced 

different amounts of oxides in the infill which are not present in the respective host 

lithostratigraphic layer. 

Table 2 

XRF analysis of samples 

 R1 R2 R3 Rbf1 Rbf2 Rbf3 

SiO2 06.506 04.272 05.094 03.103 08.573 09.310 

TiO2 00.117 00.070 00.084 00.042 00.122 00.134 

Al2O3 00.838 00.434 00.513 00.876 01.032 01.126 

Fe2O3 00.822 00.317 00.633 00.410 01.392 01.497 

MnO 00.035 00.036 00.036 LOD* 00.036 00.038 

MgO 01.173 00.719 01.172 00.730 01.010 01.359 

CaO 49.577 50.222 48.789 51.592 45.424 46.253 

Na2O3 00.055 00.071 00.141 00.423 00.495 00.298 

K2O 00.369 00.185 00.251 00.216 00.540 00.548 

P2O5 00.707 00.186 01.080 00.172 04.001 03.257 

* LOD: below limits of detection. 
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Burrow infill in the first quality bed has lower CaO and higher non-

carbonate oxides than the host rock, that is, bioturbation has introduced a new 

matrix of non-carbonate SiO2 and P2O5 rich sediment in the burrows. A marked 

increase in Fe2O3, Al2O3 and K2O is also noted. Whilst negligible variation is 

present in the MnO content, Na2O3 is significantly higher, nearly 600% more than 

in the host rock. With respect to the second quality limestone, this oxide in the 

corresponding burrow infill Rbf1 is circa 700%. This sample registered a higher 

CaO content and a decrease in all non-carbonate fraction with the exception of 

Al2O3 which registered a negligible increase. XRD recorded the presence of calcite 

and quartz in all samples (Table 3 and Fig. 4). The mineralogy of the insoluble 

residue is mainly quartz and K-feldspar. Muscovite, rutile and albite were detected. 

Kaolinite, illite and smectite were also recorded. Goethite was noted in both first 

and second quality burrow infills. It is a weathering product of iron bearing 

minerals. The mineralogy of the clay fraction in the R2 and Rbf2 samples is 

kaolinite, illite, smectite, quartz and K-feldspar.  

 
 

a b 

Fig. 4 – Percentage distribution of the geochemical composition of the non-carbonate fraction (a) 

together with CaO (b). 

Table 3 

Minerals identified through XRD 

  R1 R2 R3 Rbf1 Rbf2 Rbf3 

Whole rock calcite x x x x x x 

quartz x x x x x x 

Insoluble residue quartz x x x x x  

K-feldspar  x x x x x x 

muscovite x  x  x  

kaolinite x   x   

illite      x 

smectite      x 

goethite    x x  

rutile   x    
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Table 3 

(continued) 

Insoluble residue  R1 R2 R3 Rbf1 Rbf2 Rbf3 

albite  x     

zeolite    x   

Clay fraction kaolinite  x   x  

illite  x   x  

smectite  x   x  

quartz  x   x  

K-feldspar  x   x  

4. CONCLUSION 

Petrological examination indicates that burrowing activity introduces 

unlithified sediment of variable permeability in the host rock. Bioturbation 

introduces weaknesses and unstable material into the host lithostratigraphic fabric. 

XRF and XRD analyses of the LGLM indicate that the variations in the 

geochemistry and the mineralogy of the burrow infill from the lithostratigraphic 

bed are both qualitative and quantitative. Burrows are filled by mineralogically 

different sediments from the host lithostratigraphical layer, the primary 

depositional fabric. They may be rich in goethite which accounts for the dark 

yellow ochre like colour of the infill and the distinct brown ferruginous staining of 

the fabric. 

Findings are in line with [9]. Bio-retexturing introduces unlithified sediment, 

predominantly non-carbonate rich infill. It modifies the original sediment and, due 

to the intra-particle cement, transforms its permeability and porosity. This has a 

bearing on the capillary water intake which impinges on the weathering of the 

fabric. The texture of bioturbated and non-bioturbated areas varies significantly.  

The composition and the cement of the initially unlithified sediment 

introduced through bio-retexturing are of significant importance in the preservation 

and consolidation of deteriorated building stone.  
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