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Abstract

A computer game’s artificial intelligence is often
scripted using a domain-specific language designed
specifically for the game. An approach to language
design and prototyping, particularly appropriate to
domain-specific ones, is that of embedding a language
within a general purpose host language. In this pa-
per, we present an approach to artificial intelligence
scripting using embedded languages where the em-
bedded language scripts become data objects in the
host language enabling parametrized strategies and
their manipulation through host language programs.
We identify three classes of scripts: (i) fixed scripts
written directly in the embedded language; (ii) adap-
tive scripts, dynamically generated and modified by
the host language programs whilst reacting to the
state of the game; and (iii) adaptive scripts which, by
means of multi-tiered language frameworks, allow for
different levels of abstraction in the specification of
game artificial intelligence.
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1. Introduction

Ever since the first computers were created games
have often been used as a test-bed for creating case-
studies on how computers can emulate human thought
and intelligence. To achieve this most games feature an
artificial intelligence (AI) component which attempts
to mimic human game-play behaviour. The most prim-
itive forms of such AI use a form of fixed script which
is run during a game session. These scripts are usually

written in a domain-specific language (DSL) which is
closely coupled to the game and often use a complex
algorithm which attempts to capture all possible game-
play strategies to reach a winning solution. This makes
the AI quite rigid when compared to actual human
intelligence. The aspect which makes human game-
play behaviour so versatile is the ability to asses the
information presented by the game and adapting to the
situation at hand by selecting a possible strategy on-
the-fly. Based on the strategy selected, the player then
comes up with the sequence of actions to take which
are supplied to the game using its input system. AI
techniques such as trained neural networks or greedy
algorithms exist which attempt to emulate this adaptive
behaviour by generating fresh, adaptive scripts during
a game session. Such processes however might demand
too much computation-power or time in order to gen-
erate the required script and due to this often resort
to an approximate best solution rather than an optimal
solution.

In recent years a versatile technique has been de-
veloped where a DSL can be embedded into a host
language. Such a domain-specific embedded language
(DSEL) is not developed from scratch as is the case
with normal DSLs, but rather a hosting language,
which is usually a general purpose language, is adapted
to supply the required syntax and semantics and
also act as the embedded language’s compiler. These
DSELs allow us to quickly and efficiently create
scripting languages which may be used to write scripts
which encode simple and elaborate fixed AI strategies.
However, the use of embedding brings about various
other advantages which, by making possible the cre-
ation of adaptive scripts during a game-play session,
allow our AI to become dynamic and enable it to act in
a similar manner to how a human player behaves. This
is possible since by virtue of embedding the AI scripts
are first class objects of the host language thus allowing



the latter to manipulate them. By querying the game
state and selecting the appropriate strategy, the host
language can act as a meta-language which generates
the appropriate embedded language script. Various
embedded language techniques have been developed
lately for use with DSELs which we believe allow
us to achieve this close emulation of a human player
behaviour during game-play by a computer player.

Multi-tiered embedded language frameworks where
languages which vary in level of abstraction are em-
bedded within one another supply us with another ad-
vantage based on another human game-play behaviour,
that of translating abstract strategies into concrete
operations. It is possible by means of a simple trans-
lation process to expand high-level strategies written
in an abstract language automatically into lower-level
tactical plans of a less abstract nature and so on until
the lowest level, that of an operational script is reached.
We believe that embedded language frameworks would
allow us to achieve this effect.

In this paper we briefly introduce language embed-
ding and its use by the functional language Haskell
[1] and proceed by showing how it may be used to
create fixed and dynamic AI scripts for a Tetris-like
game implemented in Haskell. Finally, we outline our
current work on embedded language frameworks and
exemplify their use by means of a turn-based strategy
game.

2. Domain-Specific Embedded Languages

The notion of language embedding can be traced
back to Landin’s 1966 seminal paper “The Next 700
Programming Languages” [2]. Here Landin remarked
that a language consists of a basic set of constructs
and a number of ways in which to combine them
but stressed the fact that the suitability of a language
towards a domain is closely tied to the former rather
than the latter. Thus, by identifying a number of basic
constructs related to a domain, an appropriate DSL
for the latter is formed. Landin then proceeded with
building upon such a notion of a DSL by proposing
DSELs as a natural step forward. To achieve this he
suggested the creation of a general-purpose language
which can be geared towards a particular domain
by selecting a number of basic constructs. The first
actual uses of language embedding were done via the
functional language Lisp’s [3] macro system. More
recently, Hudak [4], [5] reintroduced the approach and
made it popular as a viable methodology to develop
programming languages for subsequent use in soft-
ware development. DSLs offer the right amount of
abstraction for software projects but creating a new

language from scratch each time requires a consider-
able amount of work in terms of language design and
tool development. Hudak thus suggested the use of an
existing infrastructure of an existing language whose
properties meet the requirements of the DSL. Using
such a host language’s mechanisms and tools, adapted
to a particular domain it is possible to create the
required DSEL with the added advantage of reducing
costs, time and effort. The work required is only in
adding the domain-specific functionality to the host
language.

When selecting a host language for embedding,
choosing the right language is important as both the
positive and negative features of the host language are
inherited by the embedded language. Functional lan-
guages are often selected as host languages due to their
features which include pattern matching, lazy evalu-
ation, module system, higher-order functions, strong
typing, polymorphism and overloading which are use-
ful for language embedding [6]. These combined fea-
tures allow for a level of abstraction which enables the
user to focus on the domain itself rather than having to
consider a lot of implementation details which clutter
domain-specific thoughts. Nowadays, the language of
choice for embedding is Haskell since it has the fea-
tures just mentioned while adding some of its own such
as monads and a non-restrictive syntax. Languages
related to various domains successfully embedded in
this language, including: geometric constructions [7],
[8], images [9], animations [10], hardware description
[11], [12] and business processes [13].

Once a host language, in our case Haskell, is se-
lected the domain-related abstractions are encoded by
Haskell data types. These data types provide us with
the syntax of our embedded language. Haskell’s syntax
allows us create an embedded language which is free
from annotations which are not domain-related, some-
thing which often plagues other hosting languages,
resulting in a look and feel of a separate language
rather than an embedded one. The semantics of our
language are provided by a number of functions in
Haskell itself which act as the language’s compilers or
interpreters. By traversing the data structures created
by the domain-related data types they attribute a mean-
ing to such structures and return the required result of
interpretation.

3. DSELs for Game Scripting

3.1. Fixed AI Scripting

The use of language embedding allows us to quickly
create a domain-specific language for any game we



Figure 1. 4Blocks game implemented in Haskell.

might wish to script in order to provide it with a
form of AI. Implementing a game scripting language
is usually the case of determining the possible ac-
tions a player or any other entity can make during a
game session and creating the appropriate commands
accordingly as a data type of the host language. Using
this embedded language we can then manually create
elaborate scripts which the game can then process
during a game session as a form of fixed or static AI.

Puzzle Game Case Study. As a case-study for static
AI scripting we implemented a Tetris-like game in
Haskell which we called 4Blocks (Figure 1). During a
session of this game a continuous number of bricks ap-
pear on the upper side of the screen and fall downwards
at a constant rate. The player performs a series of
moves upon the brick such that it is positioned on the
bottom of the game area with the objective of creating
one or more complete lines. When a line is completed
it disappears and any uncompleted lines above it shift
downwards to replace it. Completing lines awards the
player score points. Bonus points are obtained when
the user completes more than one line at one go
with a possible maximum of four lines at once. Other
bonus points are given when the user forces the brick
downwards themselves. As more lines are completed
by the player they might reach the level’s line-goal.
When they do, the level is incremented causing the
brick to fall faster. This allows the game to become
more challenging as the player must move the brick
in place faster in order to keep playing and earn more
points.

There are a fixed number of axiomatic commands
the player can perform upon the falling brick. These
are:

• Shifting to the left/right,
• Rotating to the left/right,

• Performing a hard/soft drop,
• Performing no action at all.

These can be represented using a Haskell data type
Instruction as follows:
data Instruction

= ShiftLeft | ShiftRight
| RotateLeft | RotateRight
| HardDrop | SoftDrop
| NoAction

A number of such instructions combined in the correct
way allow us to move the brick in the desired position.
We have thus created another data type which we call
Program defined as follows:
data Program a
-- do nothing statement
= Skip
-- sequential composition
| Program a :> Program a
-- perform an instruction
| Do a
-- if-then-else statement
| IfThenElse Pred (Program a ) (Program a )
-- repeat a program forever
| Repeat (Program a )
-- while statement
| While Pred (Program a )
-- perform program for this piece
| ForThisPiece (Program a )

Using this data type as our language’s syntax, objects
of type Program Instruction form the static AI scripts
for our 4Blocks game. The auxiliary type Pred consists
of any form of predicate which can be used to make
a decision. In our case it takes the form of a func-
tion which queries the game’s state Game to return a
Boolean value (Game −> Bool). A simple static script
which can be written using this DSEL is as follows:
Do RotateRight :>
Do ShiftLeft :>
Do ShiftLeft :>
Do HardDrop

This script simply rotates the falling brick to the right,
moves it two times to the left and then drops it to the
bottom of the screen. A more elaborate script, such
as:
ForThisPiece (
While (brickHeightGreaterThan 5)

(Do SoftDrop ) :>
Do ShiftLeft )

may be used to side-fit a brick into position. Using the
ForThisPiece construct we are restricting the encapsu-
lated code to the current brick only. The encapsulated
code performs a soft drop until the brick’s height is
less then or equal to five block lengths at which point
it then moves the brick to the side, thus completing
the side-fit. More elaborate scripts can be created and
composed together to script the game’s desired AI.



The script handling component of the game, em-
bodied in the stepAI function, takes the game state
and the installed script (the Maybe type is used, since
no script may be installed), and performs a single
instruction along the installed script if one exists. If no
script is currently installed, a script generator thinkAI
(embodying the actual AI), is executed, to generate a
new script.

type AI = Maybe (Program Instruction )

stepAI : : (Game , AI ) −> (Instruction , AI )
stepAI (game , Nothing ) = thinkAI game
stepAI (game , Just Skip ) = skipAI game
stepAI (game , Just (prog1 :> prog2 ) ) =

sequenceAI (game , prog1 , prog2 )
. . .

This approach emulates human game-play since once
the game-plan is known it is carried out mechanically
a step at a time. As a simple example of interpretation
see Figure 2. Here we see the effects of our first
example script on an initial game state which consists
of an empty game-area and the first brick.

3.2. Adaptive AI Scripting

When a human player thinks about where to position
the current brick they do no usually think in terms of
one unified script as our AI has been doing so far
but rather they select one of a number of different
strategies which they have come up with during the
various times they have played the game. Once a
strategy is selected they create their plan of action
which is then carried out mechanically.

These concepts can be mapped to our AI allowing
it to generate adaptive scripts based on the current
game state. Our implementation for fixed AI scripts
already handles the mechanical carrying-out of the AI
script when there is an outstanding script. The only
change we need to perform is upon stepAI’s case
which implements the thinking phase (thinkAI). This
case should no longer simply fetch a predefined script
but rather it should select a strategy from a number
of different strategies and then based on the selected
strategy generate automatically the required script. We
have thus defined thinkAI as follows:

thinkAI : : Game −> (Instruction , AI )
thinkAI game = (NoAction , Just prog )

where prog = think game

think : : Game −> Program Instruction
think game
| detectCompleteFourLines game

= completeFourLinesStrategy game
| detectMinimizeHeight game

= minimizeHeightStrategy game
. . .

| otherwise
= lowestBestFitStrategy game

The thinkAI function makes use of an auxiliary func-
tion think which selects the relevant strategy and then
generates the script accordingly. In order to do so we
make use of a number of predicates, one for each strat-
egy listed by priority, which query the game state to
check whether the latter would benefit from selecting
that particular strategy. In our case we have set the AI
to pick a strategy from a number of arbitrary strategies
which we believe can lead it into surviving for a good
amount of time. It is however possible to come up
with worse or better AI based on the selected strategies
and their relative ordering. For example, for games
such as 4Blocks, various other possible strategies exist
which one might wish to include such as a strategy
which positions the current brick while catering for
the next one. In regards to ordering we have decided
to give priority to our strategy which completes four
lines since it awards the most points and reduces the
well’s height by four (the maximum possible). The next
strategy attempts to minimize height by completing
one to three lines if the well’s height is above a fixed
value such as twelve blocks. This strategy does not
cater for creating holes in the well’s construction when
selecting the location where to place the brick since it
attempts to clear lines in order to survive for a longer
game session. And so on, until we reach the default
strategy which simply attempts to find the lowest best
fit for the current brick.

Each of the different predicates triggers the match-
ing strategy’s function. These functions act as program
generators which generate the required script automat-
ically based on a number of criteria which depend
on the strategy itself. The general procedure followed
by these strategy functions is that of first querying
the game state for the possible number of brick fit
locations. This is carried out by means of a number
of predefined functions which are supplied to the AI’s
programmer in order to interface with the game state.
The best location is then selected based on the criteria
of the strategy which is usually a question of sorting
the possible locations via their attributes such as their
x-position or y-position, or by means of a fitness
function carried out upon all the locations. In the latter
case each location returns its fitness value which is then
used to select the best position. Finally, the selected
target location is used to generate the required script
to reach it. To achieve this we make use of two types of
specialized functions called parametrized objects and
connection patterns. The first of these generate a script
given a number of parameters as input while the latter



Figure 2. An example script and its interpretation by means of a number of stepAI function calls.

combine scripts together using a regular patterns. As an
example of this approach we provide the code for the
“complete four lines” strategy mentioned above. The
predicate which triggers the selection of this strategy
is defined as follows:
detectCompleteFourLines : : Game −> Bool
detectCompleteFourLines game

= (length fourLines > 0)
where

fourLines = get4LinesPoss game

The function queries the game for the number of fits
which complete four lines. It at least one is found this
strategy is triggered. The strategy itself is defined by
the following function:
completeFourLinesStrategy : : Game −>

Program Instruction
completeFourLinesStrategy game

= generateNFScript game locX orient
where

fourLines = get4LinesPoss game
( (locX ,_ ) ,orient ) = head $ sortBy

(compare ‘on ‘ (snd .fst ) ) fourLines

This time when the game state is queried for the
number of fits which complete four lines these are
sorted on the fit’s y-position, thus ensuring that the
lowest fit is selected. The fit’s x-position and the brick’s
orientation at that position are saved and supplied to a
parametrized object called generateNFScript which
uses these values to generate the required script to
perform a normal fit. The latter consists of rotating
the brick to face the required orientation, moving it
to the required x-position and then performing a hard
drop to lock it into place.

Using this approach we were able to create the
strategies shown earlier and depending on which one
was triggered during a game session the adaptive
AI generated the appropriate script. This was only

rendered possible by means of the embedding process
which allowed our game scripts to be first-class ob-
jects manipulated by Haskell which acted as a meta-
language. We have tested the approach over a number
of runs and we believe that that results obtained are
comparable to that of an intermediate-level human
player. We believe that introducing more strategies
and improving our current strategies could allow us
to reduce the negative results and improve our AI.

4. Extending the Approach: Multi-Tiered
Language Embedding

Having more than one language at our disposal
was advantageous as it has provided us with the right
abstraction mechanisms to enable a two-tiered ap-
proach towards game scripting. For our future work we
are considering whether allowing for further levels of
abstraction, by means of various embedded languages
embedded within one another, would provide us with
further benefits. Using this approach, suggested by
Claessen and Pace [14], the higher-level languages’
syntax are implemented as a normal data type in
Haskell but the structures of that latter type are not
interpreted or compiled directly to Haskell which is
an indirect host, but rather to the direct host language.
Translation to Haskell is possible by means of a two-
stepped translation: first to embedded hosting language
and then the latter to the actual host language. This
approach allows the creation of a multi-tier language
framework where each language is at a level of ab-
straction higher than its host. Allowing for different
levels of abstraction allows for faster programming in
a specialized abstract domain which can be concretised
by means of a simple function which takes the abstract



program to a more concrete, realisable level.
Language frameworks may enable us to make use

of higher levels of abstraction in our scripting lan-
guages. We believe that such frameworks would be
able to model another aspect of how a person plays
a game into our AI, that is the process of translating
abstract thought into concrete action. A human player
first thinks in a strategic high level and then breaks
down his thoughts into tactical, more manageable
ones. Finally each tactic is developed into a number
of implementable operations. We might map this be-
haviour by developing a framework with three scripting
languages: operational, tactical and strategical, where
one is more abstract and high-level than the previous
one. We can use the game state to create a script at a
global level using the strategy-level DSEL. This script
may then be used, by means of translation into a lower-
level script, to come up with the right tactics which
agree with the selected strategy. Finally, each tactical
script is translated on a fine-grain scale into the actual
operational script which is carried out within the game.

Puzzle Game Case Study As an initial attempt
at this approach we have implemented two higher-
order constructs called RotateToOrientation and
ShiftLaterally within out DSEL for 4Blocks. De-
spite being included as part of the Program data type
as follows:
data Program a

= . . .
| RotateToOrientation Int
| ShiftLaterally Int

we intend them to map to a number of lower-level
Program rotations and shifts respectively as these are
common actions most strategies make use of. For
example, a normal fit is usually described by means
of three sub-programs composed together: a number
of rotations followed by a number of shifts laterally
followed by a finalizing move such as a hard drop. A
lower-level example script of this is:
(Do RotateRight :> Do RotateRight ) :>
(Do ShiftLeft :> Do ShiftLeft ) :>
Do HardDrop

This can be abstracted to the higher-level script:
(RotateOrientation 2) :>
(ShiftLaterally (−2)) :>
Do HardDrop

which can then perhaps be abstracted to the highest-
level script NormalFit 2 (−2). Other possible high level
constructs for 4Blocks are for example SoftFit and
SideFit. These two are common idioms for 4Blocks
that differ from NormalFit by moving softly down-
wards instead of hard-dropping and moving sideways
before locking into place, respectively.

Introducing this language framework within our AI
requires us to add a few intermediate steps. Our pre-
vious strategies must now generate high-level scripts
in their thinking phase. Also, when we are carrying-
out the scripts we must first translate and expand the
current high-level construct into the equivalent low-
level constructs which are understood by the game
engine. Conceptually:

stepStratAI : : (Game , StratAI )
−> (Instruction , AI )

stepStratAI (game , Nothing ) = thinkAI game
stepStratAI (game , Just (NormalFit o d ) )

= (toOper .toTact ) (NormalFit o d )
. . .

where toTact and toOper are the translation functions
which allow us to translate a high level script of type
StratAI into a low level one understood by the game
engine.

Turn-based Strategy Game Case Study Despite being
a good initial case study, puzzle games do not usually
benefit from higher levels of abstraction as they are
often tied to a low-level. As a better case study we
are currently developing a turn-based strategy game
which would allow us to make better use of language
frameworks.

The game will set itself as a battle between two
or more generals who wish to control the universe
Risk-style. Each general initially controls a handful of
planets in the universe. As the turns proceed the planets
generate population and wealth. The general must
conquer more and more planets thus increasing their
wealth per turn until the final objective of controlling
all the universe is attained. A particular turn consists
of the deployment of resources to a planet to attack it
or to reinforce it against attack. Each general also has
a number of captains under their command. A captain
is in charge of capturing an entire planet which in turn
consists of a number of land masses or countries. Once
a captain controls all the land masses on a planet they
have conquered the planet for the general.

Our idea is to create an AI for this game which
makes use of a two-tiered language framework consist-
ing of a strategical/tactical language and an operational
language. At the general’s level the AI is strategical
in nature and is concerned with attacking planets,
deploying forces and so on. At a lower level, the
captains are concerned with planning which land-mass
to attack/defend in order to capture the planet and
deploying the resources received from the general. We
thus plan to have a hierarchical AI which generates
the strategic script and then translates it into lower
level scripts for the captains by means of a translation
process. This will enable the AI to become tiered as



suggested earlier.

5. Conclusion

In this paper we have seen how DSELs are an
invaluable tool for the creation of game AI which
models human game-play. They allow us to quickly
create game scripting languages which can be used
to write fixed scripts in a similar manner to how
game AI is often written. However the main advantage
proposed by our approach is that by making use of
two languages at once, the domain-specific scripting
language itself and the general purpose host language
Haskell, we are able to generate adaptive AI scripts.
This we have achieved by using Haskell to write a
number of predefined game strategies which are able
to automatically query the game state and generate
the corresponding script automatically. We have also
outlined how we tested this approach successfully
using a puzzle game as a case study. Finally, we have
proposed our future work on extending the approach
to allow for a hierarchical form of AI which generates
high-level scripts and expands them by an automatic
translation process into low-level scripts. Using the
same case study as before we have shown how this
approach can work to some degree of success for a
puzzle game. Our immediate next work is to attempt
both the adaptive scripting approach and the language
framework approach with another case study which
consists of a turn-based strategy game outlined here.
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