
Runtime Verification using Larva

Christian Colombo and Gordon J. Pace

Department of Computer Science, University of Malta, Malta.

Abstract. Larva, which has been in use and continuous development
for almost a decade, has been extended in several ways and used in a
wide range of scenarios, from industrial deployment to educational ones.
In this paper we give an overview of Larva and give an overview of its
extensions and uses.

1 Introduction

Larva [13, 14] was originally developed by the authors between 2007 and 2008
with the main drive being that of an industrial financial transaction system
guiding the choice of features and design of the tool. Since then, the tool has
been used (i) in various industrial projects and case studies; (ii) as a test-bed
(to experiment with extensions and re-implementations) for research purposes;
(iii) for teaching purposes. In the rest of the paper, after an overview of Larva
in the next section, we dedicate a section to each of these three aspects. Finally,
we relate Larva to other tools and conclude.

2 High-Level Overview of the Tool

Perhaps the most defining aspect of Larva is the use of symbolic automata as the
basis of the specification language. This allows users who are already familiar to
finite state machines to quickly grasp how to specify properties, while at the same
time ensuring Turing completeness by allowing Java code to be embedded in the
transitions. As an example consider the property below which keeps track of a
risk value depending on a sequence of transaction actions carried out by the user.
In particular note how by detecting relevant events, the automaton transitions
from one state to another and updates a float value, risk, in the process. The label
of the transition (given in square brackets) contains three backslash separated
elements — the event which triggers the transition, a condition which must hold
for the transition to be taken and the action to be executed when the transition
is taken.

Variables {float risk;}
Property RiskManagement {
States {...}
Transitions {
start -> active [activate \ \ risk=1;]



active -> active [spendMoney \ \ risk*=0.5;]
active -> active [createCard \ risk < 5 \ risk*=1.7;]
active -> danger [createCard \ risk >= 5 \ ]
...

}
}

Another defining element of Larva is the foreach construct which allows
top level universal quantification in specifications in a straightforward manner.
Building on the previous example, using the foreach construct, the property can
be instantiated for every unique user encountered1:

foreach (User u) {
Variables {...}
Property RiskManagement {...}

}

Larva also supports the property engineer by providing timer actions on
transitions. These make it easier to define real-time properties such as marking
a user inactive following 30 days without carrying out any transaction (and then
detecting a violation if any transaction is detected while inactive):

foreach (User u) {
Variables {...
Clock inactivity;

}
Property RiskManagement {
States {...}
Transitions {
...
active -> active
[u.spendMoney \ \ risk*=0.5; u.inactivity.reset();]

active -> inactive [u.inactivity @ 30 days \ \]
inactive -> violation [anyActivity \ \]
...
}

}
}

Finally, to facilitate the definition of properties which can benefit from a mod-
ular definition, Larva properties can communicate between themselves through
the use of non-blocking channels — allowing the transmission of any Java object
across monitors over these internal communication events. In what follows, we
extend the example such that the individual user’s property sends updates to a
central property which keeps count of high risk users:
1 This effectively checks the property for every instance of class User using the default
notion of object equivalence, although which notion of equivalence to use can be set
by the property writer.



Variables {...
int highRiskUsers=0;

}
Property systemRisk {...
normalRisk -> normalRisk

[notify.receive(u,risk) \ highRiskUsers < 100 \ highRiskUsers++;]
normalRisk -> highRisk

[notify.receive(u,risk) \ \ alertHuman();]
}

foreach (User u) {
Property RiskManagement {
...
active -> active [createCard \ risk > 5 \ notify.send(u,risk);]
...

}
}

To support users in making the best use of the above extensive feature list,
Larva is supported by a comprehensive user manual providing a running exam-
ple, ships with a number of examples, and has also been more recently integrated
into an Eclipse plugin2 which provides syntax highlighting and automatic seam-
less generation of the monitoring (.lrv) files in an Eclipse project.

3 Case Studies

Larva has been conceived in the context of an industrial case study [13] in
the financial transactions industry. Later, it was again applied and extended
in several ways (see Section 4) on another, more extensive, case study in the
same domain [10]. Subsequently, Larva has been applied to numerous other
case studies from other domains including astronomy, user profiling, business
intelligence, and video surveillance. To avoid repeating what has already been
published, below we only give a short description:

Business intelligence through Facebook Keeping track of all the relevant
comments, messages, and posts might be a daunting task for a marketing
officer responsible for social media. Through the use of runtime monitoring
this can be alleviated by enabling the user to specify rules in a purposely-
designed language [9, 12].

Profiling user web interfaces Understanding how users use a web interface
can be crucial in improving the design to help users complete their tasks
efficiently. Through the use of runtime verification, voluminous logs of user
actions on a web interface could be recognised efficiently as fitting into par-
ticular usage patterns and generating usage statistics [12].

2 http://www.cs.um.edu.mt/svrg/Tools/LARVA/update-site/



Tax fraud detection Tax fraud experts would typically rely on technical per-
sonnel to carry out their querying of the data available. To avoid the commu-
nication overhead, with its hurdles of misunderstandings, a controlled natural
language which automatically compiles into monitors has been designed and
implemented [4].

Intelligent video surveillance Watching and analysing hours of surveillance
footage is tedious for humans to do. One way of automating this is by al-
lowing a user to specify rules which would classify suspicious behaviour. A
case study has been carried out at a high security venue in Malta using this
technique [12].

Astronomy Radio telescope observations result in large chunks of data which
needs to be sifted for patterns of interest. While there are techniques in place
to achieve this, runtime monitoring techniques provide another alternative
[12].

Monitoring an enterprise service bus In component-based systems such as
an enterprise service bus, where components can easily be added and re-
moved, runtime monitoring provides more benefit over and above testing
(than in the case of monolithic systems), since it is harder for testing to
be representative all the possible environments a component would be func-
tioning in. As a means of exploring ways in which runtime verification could
be applied in this context, Larva has been instrumented in several ways
together with the Mule Enterprise Service Bus [6].

Network intrusion detection Intrusion detection systems often rely on a num-
ber of rules which their users set to identify suspicious behaviour. A case
study was carried out using duration calculus as a specification language,
which was then translated automatically into native Larva automata [16].

4 Variations of Larva

Over the years, a number of extensions have been added to Larva with the
aim of providing more features and make it more easily usable. We split this
into different types of extensions: (i) extensions from an expressivity point of
view, i.e., providing additional notations in which to express properties (but not
extended expressivity per se), and (ii) architectural modifications which enable
Larva to provide additional features.

Expressivity enhancement

Interval time logics While timer actions offer the property engineer a quick
way of constructing monitors for real-time properties dealing with points in
time, reasoning about time intervals might be more challenging. For example
consider the property “There should never be more than three bad logins in
any one minute interval ”. While it can be encoded using timers, it would
be significantly straight forward had the notion of an interval been natively
supported. In this respect, a Larva add-on3 provides conversion of a subset

3 http://www.cs.um.edu.mt/svrg/Tools/LARVA/Converter.zip



of duration calculus formulae [16] as well as QDDC formulae [15] into Larva
notation.

Statistics Taking the view of monitor-oriented programming instead of strict
runtime verification, we explored the possibility of using monitors to collate
statistical data. In this respect, we created a notation extension [8] which
supports two main additional constructs: one supporting point statistics and
one supporting interval statistics. Point statistics are those which aggregate
statistical results over the whole system history while interval statistics com-
pute information over intervals defined in terms of the starting and ending
events.

Domain specific languages Larva has also been used as an intermediate lan-
guage to which domain specific languages can be compiled. Of particular
significance are the following two: Firstly, we have compiled a language in
the domain of business intelligence gathering from social media [9]. Secondly,
we have compiled a language from the domain of tax fraud detection into
Larva specifications [4].

Feature enhancement

Asynchronous monitoring Where one would want to keep the intrusion of
monitoring on the system to a bare minimum, an option is to monitor asyn-
chronously, i.e., allowing the monitor to lag behind the system. A version of
Larva does this by consuming events from a database rather than aspect-
oriented programming [10].

Database support When monitoring real-life industrial system, a considerable
concern is to ensure the monitor behaves correctly even under a system crash,
or when the resources required for monitoring grow significantly large. For
this purpose, a version of Larva comes equipped with a database to store
and retrieve monitors [10]. This means that in case of a system crash, the
monitor state would not be lost, and the size of the monitor state would not
be constrained by the main memory.

Monitor fast-forwarding Due to the monitors usually needing to keep some
kind of state (essentially, a summary of the system’s history), if monitors
are substantially modified or new ones introduced, the monitor state might
have to be rebuilt taking into consideration all of the system’s history. One
way of bypassing this is if the property writer can provide a way of directly
abstracting away irrelevant details of the system’s history to compute the
monitor state at a particular point in time without replaying all the events
individually, i.e., the point at which the new (or modified) monitors are
introduced. This has been incorporated as a feature in one of the flavours of
Larva [11].

Dynamic state generation In cases where the number of explicit monitor
states is significantly high, the property engineer might prefer to encode
such states programmatically, i.e., compute the next state program without
providing an enumeration of all the possible states (similar to property mon-
itoring through rewriting as opposed to full a priori state space exploration).
The tool adaptation supporting this feature has been called dLarva [5].



Memory-bounded monitoring Amajor concern in monitoring is the resources
used, since these are typically consumed from those available to the system.
While this is virtually impossible to avoid, one way an engineer could control
the effects this might have on the system is by being aware of a predeter-
mined upperbound so that enough resources can be allocated by design. This
is supported in Larva [15] by enabling monitors to be defined as Lustre code
for which computing strict resource consumption upperbounds is standard.

Combining Larva with static analysis Overheads induced by runtime ver-
ification can be a concern in some systems. One way in which this has been
addressed in the literature is by using static analysis to simplify the prop-
erties and reduce what still has to be checked at runtime. In STaRVOOrs4
[1, 2], Larva has been combined with the deductive verification tool KeY
to verify properties which combine data-flow aspects (in the form of pre-
/postconditions) and control-flow ones (in terms of Larva automata).

We conclude this section by noting that while the main Larva implementa-
tion is for Java (and all the above extensions are in Java), there are also basic
implementations for Erlang [7], C#, and an adaptation for the (Java-based)
OSGi framework [19].

5 Larva in Education

Over the years, Larva has been used for teaching runtime verification. Due to
its automata-based notation, even undergraduate students with a knowledge of
Java and automata can use the tool. Students are typically expected to be able
to write and modify specifications in Larva. The tool has also been used in
graduate courses, in which students get to build their own simplified version of
Larva. They are given basic infrastructure code (for instance to parse proper-
ties), and through the course they add code to enable their system to mimic
Larva features.

6 Related Work and Conclusions

There are several tools which are close to Larva in both their architecture and
purpose, particularly, JavaMOP [17] (which came before Larva) and MarQ [18]
(which came after). What might be considered as the contribution of body of
work surrounding Larva is that it broke off from the traditional specification
languages (particularly LTL) towards an automaton-based notation. Another
interesting difference is that Larva has always been used on case studies sig-
nificantly different from what previous Java tools had been applied to: Before
Larva, Java properties revolved around correct API usage checks (e.g., correct
action sequences on iterators [3]); on the other hand, the properties Larva has
been used for, are higher level “business rules” such as the one in the exam-
ple above. The philosophy behind this choice was that if the Java API requires
4 http://cse-212294.cse.chalmers.se/starvoors/



monitoring, then this should be something which ships with the JVM (which
can perhaps be turned on and off), without involving the programmer in such
concerns. Conversely, having a specification language which is high-level enough
could even allow the quality assurance personnel to write the properties rather
than the developers. This has the added benefit that the property writers are
not the programmers — with more value for one view of the system validating
the other.

While the ease with which one can write properties would be one of the
pluses of Larva, it is not a tool which has been primarily designed for efficiency.
However, typically when monitoring high level business rules, one would not
expect events of interest to occur as frequently as when monitoring low level
properties. Another element which has never been properly tackled in Larva
is dealing with concurrency (and distribution). Although Larva ensures there
are no data races by strictly avoiding non-determinism, the extremely prudent
approach of serialising all threads leads to inefficiency.

Summary Summarising the above into the main characteristics of Larva:

+ Ideal where high property expressivity is preferred
+ Suitable for high-level properties
+ Low learning curve for non-logicians
– Not for applications where efficiency is crucial
– No support for dealing with concurrency or distribution efficiently

References

1. Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo Schnei-
der. A specification language for static and runtime verification of data and control
properties. In FM 2015: Formal Methods - 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings, pages 108–125, 2015.

2. Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo Schnei-
der. Verifying data- and control-oriented properties combining static and runtime
verification: theory and tools. Formal Methods in System Design, pages 1–66, 2017.

3. Eric Bodden, Feng Chen, and Grigore Rosu. Dependent advice: a general ap-
proach to optimizing history-based aspects. In Aspect-oriented software develop-
ment (AOSD), pages 3–14. ACM, 2009.

4. Aaron Calafato, Christian Colombo, and Gordon J. Pace. A controlled natural
language for tax fraud detection. In Controlled Natural Language - 5th Interna-
tional Workshop, CNL 2016, Aberdeen, UK, July 25-27, 2016, Proceedings, pages
1–12, 2016.

5. John Paul Cassar, Christian Colombo, and Gordon J. Pace. Dynamic automata
in larva. Technical Report 02-WICT-2010, Department of Computer Science, Uni-
versity of Malta, 2010.

6. Christian Colombo, Gabriel Dimech, and Adrian Francalanza. Investigating instru-
mentation techniques for ESB runtime verification. In Software Engineering and
Formal Methods - 13th International Conference, SEFM 2015, York, UK, Septem-
ber 7-11, 2015. Proceedings, pages 99–107, 2015.



7. Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A monitoring
tool for erlang. In Runtime Verification - Second International Conference, (RV),
volume 7186 of Lecture Notes in Computer Science, pages 370–374. Springer, 2012.

8. Christian Colombo, Andrew Gauci, and Gordon J. Pace. Larvastat: Monitoring
of statistical properties. In Runtime Verification - First International Conference,
(RV), volume 6418 of Lecture Notes in Computer Science, pages 480–484. Springer,
2010.

9. Christian Colombo, Jean-Paul Grech, and Gordon J. Pace. A controlled natural
language for business intelligence monitoring. In Natural Language Processing and
Information Systems - 20th International Conference on Applications of Natural
Language to Information Systems, NLDB 2015 Passau, Germany, June 17-19,
2015 Proceedings, pages 300–306, 2015.

10. Christian Colombo, Gordon Pace, and Patrick Abela. Safer asynchronous runtime
monitoring using compensations. Formal Methods in System Design, 41(3):269–
294, 2012.

11. Christian Colombo and Gordon J. Pace. Fast-forward runtime monitoring - an
industrial case study. In Runtime Verification, Third International Conference, RV
2012, volume 7687 of Lecture Notes in Computer Science, pages 214–228. Springer,
2012.

12. Christian Colombo, Gordon J. Pace, Luke Camilleri, Claire Dimech, Reuben A.
Farrugia, Jean-Paul Grech, Alessio Magro, Andrew C. Sammut, and Kristian Zarb
Adami. Runtime verification for stream processing applications. In Leveraging
Applications of Formal Methods, Verification and Validation: Discussion, Dissem-
ination, Applications - 7th International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, volume 9953 of Lecture Notes in Computer Science, pages 400–406, 2016.

13. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-based
runtime monitoring of real-time and contextual properties. In Formal Methods for
Industrial Critical Systems (FMICS), volume 5596 of Lecture Notes in Computer
Science, pages 135–149. Springer, 2008.

14. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Larva — safer moni-
toring of real-time java programs (tool paper). In Software Engineering and Formal
Methods (SEFM), pages 33–37. IEEE, 2009.

15. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Resource-bounded
runtime verification of java programs with real-time properties. Technical Report
CS2009-01, Department of Computer Science, University of Malta, 2009. Available
from http://www.cs.um.edu.mt/~reports.

16. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Safe runtime verifi-
cation of real-time properties. In Formal Modeling and Analysis of Timed Systems,
7th International Conference (FORMATS), volume 5813 of Lecture Notes in Com-
puter Science, pages 103–117, Budapest, Hungary, 2009.

17. Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore
Roşu. An overview of the MOP runtime verification framework. International
Journal on Software Techniques for Technology Transfer, 14:249–289, 2012.

18. Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. Marq: Monitoring at
runtime with QEA. In Tools and Algorithms for the Construction and Analysis
of Systems TACAS, volume 9035 of Lecture Notes in Computer Science, pages
596–610. Springer, 2015.

19. Stéphane Frénot Christian Colombo Yufang Dan, Nicolas Stouls. A Monitor-
ing Approach for Dynamic Service-Oriented Architecture Systems. In SERVICE
COMPUTATION 2012: The Fourth International Conferences on Advanced Ser-
vice Computing, pages 20–23. XPS (Xpert Publishing Services), 2012.


