
Compensations in an Imperative Programming Language

Adrian Francalanza
CS Dept, ICT

University of Malta
adrian.francalanza@um.edu.mt

Gordon Pace
CS Dept, ICT

University of Malta
gordon.pace@um.edu.mt

Lydia Vella
CS Dept, ICT

University of Malta
lvel0019@um.edu.mt

ABSTRACT
Numerous mechanisms are used to deal with failure of sys-
tems or processes, one of which is that of compensating ac-
tions. A compensation can be seen as a program which
somehow cancels out the effects of another — and by or-
ganising code in such a way so as to associate each program
with its compensation, enables implicit recovery to a sane
state if part of a computation somehow fails. In this paper
we present an imperative programming language natively
supporting the notion of compensations, thus enabling the
programmer to program using a notion of compensations at
the source level of the system under development.

1. INTRODUCTION
The abnormal termination of a process may compromise the
data integrity as well as the overall consistency of the sys-
tem. For this reason, failure handling is deemed to be an
essential task in software solutions. While several differ-
ent methods may be employed for handling failure, perhaps
the two most predominant are reparation and compensation.
Using a reparation mechanism, one would attempt a block
of code, whilst having a second block of code that one can
execute to repair the state of the system should anything
go wrong while the first block is executing. Such a mecha-
nism is already present in numerous programming languages
through the use of exception handling.

However, this approach cannot be used for all types of fail-
ure. In some cases, attempting to correct the state of the
system through the use of exceptions may not be sufficient,
as in the case of hardware failure, where the execution of
the exception handler alone cannot repair the state of the
system [6]. A possible option for resuming execution in such
cases would be to have a backup system available that one
can resort to. For this to work effectively, checkpoints need
to be recorded, such that the backup system may resume its
execution from a recorded checkpoint.

A further enhancement to this approach is presented through

the notion of transactions. A transaction is essentially a
number of actions, grouped together in an single atomic
block, such that either all of the actions within the trans-
action succeed, or if they fail, no trace of their execution
remains. This allows for the interleaving of parallel pro-
cesses, as well as for failures to be hidden from the program-
mer [8]. This is similar to the use of checkpoints, where a
checkpoint would be created at the very beginning of each
transaction, the only difference being that all actions fol-
lowing the checkpoint are undone upon returning to that
particular checkpoint, using what is referred to as a roll-
back mechanism [6]. This approach has yielded quite decent
results especially when dealing with database operations.

However, there remain a number of situations where atomic
transactions cannot be applied. The main problem with
transactions is that these usually place locks on the shared
resources used within the transactions e.g., database tables
. Modern enterprise systems often involve numerous long-
running transactions, where the duration of the transaction
itself, together with the fact that long-running transactions
usually access a greater number of shared resources, would
undoubtedly give rise to lengthy locking delays, reducing
the throughput of the system [8]. Furthermore, transactions
may interact with other systems. Here, once again, the use
of locking is inadequate since a system often is prohibited
from creating a lock on another system’s resources. Interac-
tion might also take place with other agents, such as humans
in the real world, where checkpoints cannot be applied, and
should there be failures, rollback would not be viable.

A solution to these problems may be found through the use
of compensations. A compensation is an activity defined
by the programmer, associated to some other activity or
process. When executed a compensation cancels out the
effects of the activity to which it is associated. Unlike the
notion of rollback, a compensation does not simply remove
all evidence of a transaction from the database. A trace of
the failed activity remains, however, this is followed by a
trace of its compensating activity [6].

In this paper we develop programming constructs to deal
with compensations in the context of an imperative pro-
gramming language. Since this involves the design of a lan-
guage, it is important to keep in mind the simplicity and re-
liability of the language whilst keeping syntax additions to a
minimum. The designed language should allow the program-
mer to represent compensations in a natural and comprehen-

sible manner. The language is evaluated by means of a case
study, through which the effectiveness of the language may
be assessed. As a case study, a simple File Transfer Protocol
(FTP) client command line interface was implemented, hav-
ing compensating activities associated to each of the FTP
commands, and developed in both the designed language as
well as an imperative language, to enable comparison of the
two. The case study demonstrates the improved readability
and maintainability of programs employing compensations,
developed using the designed language, over those developed
using a conventional imperative programming language.

2. COMPENSATIONS DESIGN OPTIONS
A compensation can be described as a history-dependent
reparation whereby the recovery required to be computed
by the reparation is determined at runtime, based on pre-
vious execution paths taken i.e., the history of the program
execution so far. The differences between compensations
and reparations are best understood w.r.t., the following
example using a commonly used reparation mechanism, the
try-catch command.

try { while e do c1} catch {c2}

The reparation c2 in the code above is usually static in na-
ture, in the sense that its execution is the same for every
instance where while e do c1 throws an exception. Situa-
tions however arise whereby it would be advantageous to
make the reparation c2 dependent on the execution path of
while e do c1 before it throws the exception. For instance,

it would be natural for the program to want to execute c2
for every iteration of c1 completed. Although this func-
tionality can, of course, be coded within a Turing complete
language, it introduced the possibility for coding errors and
affects the intelligibility of the code. This abstraction can
however be neatly expressed through compensations, and
in this study we seek to explore the integration of such a
mechanism within a standard algol-like language.

There are various design decisions that need to be analysed
before such a mechanism is incorporated. While doing so, it
is important to keep in mind the simplicity and reliability of
the language, whilst keeping syntax additions to a minimal.
The design choices explored include:

Installation of Compensations: At which instant should
compensating actions be installed and to which activ-
ity or aspect should compensation installation be as-
sociated?

Scoping of compensations: A compensation should have
a scope, identifying the boundaries within which the
program may triggered it. Furthermore, one has a
choice as to what action to take once the end of a scope
is reached — should compensations pertaining to that
particular scope be kept, or should they be discarded?

Activation of compensations: The whole point behind
the specification of compensations is so that they can
be triggered later on, so as to undo some forward ac-
tion. This raises the question of whether compensa-
tions should be activated implicitly or explicitly. Im-
plicit activation of compensations implies that com-
pensations are activated through the occurrence of an

exception in the system or the failure of an action. This
means that the application programmer would have no
means by which to force the activation of the currently
installed compensation handlers. Explicit activation,
on the other hand, entails that the programming lan-
guage contains a special construct, through which all
the installed compensations since the beginning of a
scope may be triggered.

Recovery checkpoints: Once compensations are triggered,
the program can be seen as though it is running ‘back-
wards’, undoing the previous actions. However, in
most cases, it is desirable to allow the program to
recover and continue to progress forwards in its exe-
cution. Through such mechanisms upon encountering
failure, the program may set off into backward recov-
ery mode, compensating its executed activities up to
the point where an alternative route of execution is
encountered.

Variable handling: The use of variables in compensating
activities raises an important implementation issue.
Since the installation and the activation of compen-
sations occur at different stages within a program, the
use of global variables within compensating activities
may have unforeseen consequences. For example, con-
sider a variable x, being used to hold the cost of an
item which is used to debt a client’s account. The com-
pensation of the debt action would most naturally be
that of crediting the account by x (possible subtracting
some processing fee). However, the value of x might
change by the time the failure occurs — clearly the
compensation should be triggered with the old value
of x (at the time of installation of the compensation),
and not the value of x at the time of recovery.

3. A COMPENSATION LANGUAGE
Our compensation-aware language assumes the normal con-
structs found in a standard imperative language with side-
effect free expressions e and commands c that include vari-
able assignment, sequential composition, branching, itera-
tion and exception handling. In addition we add four new
compensation-related constructs for compensation scoping,
installation, activation and purging. The syntax of our lan-
guage is summarised in Figure 1.

The runtime execution of our compensation-aware programs
assumes that the underlying system offers functionality for
registering compensating blocks of code in a LIFO struc-
ture; these compensations can also be grouped and identified
through a scope name. Intuitively, the execution can be in
two modes: in the forward mode the program executes the
normal commands in order whereas in the backward mode
the program executes the compensations installed. We next
discuss each of the compensation constructs.

Compensation Installation This construct enables the
programmer to associate a compensation block of code
c2 with another block of code c1.

undo c1 with c2

The block of code c2 is installed upon the successful
termination of sub-program c1.

n ∈ ScopeName
v ∈ VarName
e ∈ Expression

::= n | v | e and e | not e | e + e | e - e | . . .
c ∈ Command

::= skip | c; c | v := e | if e then c else c
| while e do c | try c catch c | scope n c
| undo c with c | compensate n | purge n

Figure 1: The compensation language syntax

The Scoping Construct Using this construct, a program-
mer may create a new compensation scope with name
n such that, all compensations installed during the ex-
ecution of the sub-program c pertain to this scope.

scope n c

Scoping, or compensation grouping, acts both as an
identifier for a group of compensations and well as a
delimiter when compensations are activated - the back-
ward execution mode. Indeed we require a mechanism
to specify up to which point a program needs to com-
pensate until it continues computing in forward mode
again.

Compensation Activation Through this construct, the
programmer may explicitly activate all the installed
compensations, in reverse order of installation, un-
til the beginning of the scope named n. Use of the
compensate n construct outside the scope of n should
not be permitted and should generate a compile time
error.

compensate n

Compensation Purging This constructs serves the pur-
pose of discarding currently installed compensations.
Calling this construct from within a scope named n
discards all the installed compensations since the be-
ginning of that scope. Again, use of this construct
outside a scope with matching name should not be
permitted.

purge n

Example 1. Consider the following sub-program:

scope one{
undo c1 with c′1;

scope two{
try {

try {
undo c2 with c′2

} catch { compensate one};

undo c3 with c′3;

c4

} catch { compensate two; purge one}
}

}

The four compensation constructs give us a finer-grained
control to be able to dynamically program compensations as
part of the language. For instance, if the execution of c2 fails
and throws an exception, then we compensate up to scope
one. This means that c′1 is compensated before we continue
executing from c3. Interestingly however, the compensations
executed by compensate two are determined dynamically by
the execution. Assuming that c2 executes successfully, then
if c3 fails, only compensation c′2 is executed. However if
c4 fails, then compesations c′3 and c′2 are executed in that
order. Purging then allows us to dispose of the remaining
compensations up to scope one, i.e., c′1.

The four constructs seem to satisfy the minimality con-
straints. The expressivity of our compensation constructs
are asses in two ways. First, we show how higher level con-
structs usually associated with compensations can be ex-
pressed as syntactic sugaring using our four constructs. Sec-
ond, in Section 4 we consider the utility of these construct
in constructing a medium sized application where compen-
sations are a useful abstraction.

Attempt Otherwise This construct is used to give the
program an alternative. That is, should program P fail,
all the completed actions within P are compensated for,
and the program resumes by executing program Q.

attempt scname { P } otherwise { Q }

This construct may be defined in terms of the basic
language constructs as follows:

scope scname {

undo {

try {

P

} catch {

Q

}

}

}

Local Scope The purpose of this construct is to discard all
accumulated compensations upon the successful termi-
nation program P.

local_scope scname { P }

This may be defined in terms of the basic language
constructs as follows:

scope scname {

...

purge scname;

}

Local Attempt Otherwise Similar to the previously dis-
cussed construct, this command invokes the process Q

should P fail, that is, after compensating for all the
previously completed actions within P. However, an
additional feature of this construct is that all accumu-
lated compensations are discarded upon the successful
termination of either of P or Q.

local_attempt scname { P } otherwise { Q }

This may be defined in terms of the basic language
constructs in the following manner:

scope scname {

try {

P;

purge scname;

} catch {

Q;

purge scname;

}

}

Override Compensation The principal function behind
this construct is to replace the number of compen-
sations accumulated within program P with a single
global compensation Q.

override_comp scname { P } with { Q }|

This may be defined in terms of the basic language
constructs as follows:

undo {

scope scname {

P;

purge scname;

}

} with {

Q;

}

4. CASE STUDY
To evaluate the designed language, a simple File Trans-
fer Protocol (FTP) client command line interface was im-
plemented using both the designed compensation-enhanced
language as well as the C programming language. The com-
mand line interface accepts from the user a selected subset
of the basic FTP commands and defines compensating ac-
tions for each of the supported commands, enabling the end
user to undo any previously executed command.

However, the availability of compensations as a built-in con-
struct in the language, allows for new FTP commands to be
defined, which broaden the range of functions available to
the user from those offered in a standard FTP command line
client and which may be easily programmed using the avail-
able compensation constructs, the most notable of which
probably being checkpoints. The checkpoint command en-
ables the user to establish a point in the program’s execu-
tion, defined by a name given by the end-user himself, such
that, at any further stage in the program, the user may de-
cide to return to a particular checkpoint, identified by its
name, undoing all the executed commands subsequent to
that checkpoint.

Using the designed language, checkpoints may be easily pro-
grammed as follows:

int createCheckpoint(string name) {

scope name {

string input {

while (input != close) {

gets(input);

if (input == get)

then {

undo { getFile{}; }

with { printf("Deleting local file"); }

}

...

...

...

if(input == checkpoint)

then {

printf("Enter name for checkpoint");

string input2 {

gets(input2);

createCheckpoint(input2);

}

}

if (input == return)

then {

string toReturn {

printf("Which checkpoint to return to?");

gets(toReturnTo);

compensate toReturnTo;

}

}

}

};

}

Similarly, a command that may be easily programmed using
the compensation oriented language is the undo last com-
mand. As its name states, this command enables the user
to undo the last executed command.

5. COMPILING COMPENSATIONS
To encode compensations, a naive approach would be to im-
plement the checkpoint mechanism using lists. Considering
the following sequence of events within a program:

Checkpoint A ; a ; b ; Checkpoint B ; c ; d

One is faced with two options. The first would be to keep
a list of all compensations of actions performed after the
last declared checkpoint in the program. In such a case, the
program would offer no means by which to return to check-
point A once checkpoint B has been declared. Alternatively,
one can also keep a separate list of committed actions for
each of the checkpoints declared. However, in this case, and
without additional information, if the user decides to return
to checkpoint A after returning to checkpoint B, the compen-
sations for actions c and d would be executed twice, since
they would appear on both the list of checkpoint A and that
of checkpoint B.

To effectively store installed compensations, and allow the
programmer to explicitly activate them in reverse of the

chronological order in which their forward transactions were
completed, the appropriate structures need to be employed.
The proposed solution uses a global stack of instructions
which may be invoked by the program. Each stack location
may contain either a compensating action, that is, a block of
code representing a compensation for a previously executed
action in the program, or the name of a scope, a string
representing the name of a currently open scope within the
program.

Different instructions supported by the language affect the
global compensation stack in different ways. The execution
of imperative language instructions leaves the stack unaf-
fected. Upon encountering an undo...with block, the undo

block is executed and the action within the with block is
pushed onto the stack. Similarly, whenever a scope is en-
countered its name is pushed onto the stack. At the end of
the scope the name is removed, however all compensations
installed during the scope are left on the stack. Then, to
compensate a particular scope n, compensations are popped
off the stack and executed until the name n is found. How-
ever, any scope names found on the stack, including n itself
are not removed from the stack.

Two alternative approaches were recognised for handling
variables within compensations. The first solution is to cre-
ate local copies of the global variables within the compensa-
tion functions themselves. Nonetheless, this approach still
does not eliminate the issue completely, as portrayed by the
following scenario:

...

scope T {

...

while(i<10){

x = 100;

undo {

Debit Client Account(x);

}

with {

Credit Client Account(x);

}

x = x + 10;

i--;

}

...

...

...

compensate T;

...

In this example, the local value of x changes with every iter-
ation of the while loop. Since the value of x is being stored
as a local variable in the credit account function, it is be-
ing modified with every iteration. Therefore, then upon the
completion of the tenth iteration, the local value of x would
be equivalent to the value of x during the tenth iteration of
the while loop. Consequently, while running the sequence
of credit account compensations, the value of x would not
reflect the actual value during each of their respective for-
ward actions, but merely reflect the value of x during the
execution of the last action completed in the loop, that is,

the tenth action.

To solve the problem of handling compensations within loops,
a slight modification over the latter approach is proposed.
Associated to each compensation, a structure containing all
the variables being used within that compensation should
be created. Then, with every compensation that is installed
on the global compensation stack, its respective variable-
structure should be instantiated and pushed onto a global
variable stack, for use with the installed compensation. Sim-
ilarly, whenever a compensation is popped off the global
compensation stack, its respective variable-structure is also
popped off the global variable stack. Using this approach,
the values of variables used within compensations when these
are executed is the same as the value at the instant when
the compensation was installed.

6. EVALUATION
In comparing the two implementations, it is evident that
the designed language offers a more structured and clear
approach for defining compensating activities in a program,
than its equivalent C implementation. The declaration of
compensation pairs is concise and rather comprehensible,
concealing from the programmer the underlying mechanism
used for creating and installing compensations. Similarly,
the scopes pertaining to each compensating activity are clearly
defined, and the activation of all installed compensations ly-
ing within a particular scope may be achieved using one
simple construct. The use of meaningful constructs for han-
dling compensations ensures that programs developed using
the designed language may be easily read by others, thus
increasing their maintainability.

Although the same functionalities may be achieved using the
imperative C programming language, the code produced to
install and activate compensations exposes all the under-
lying mechanisms used for compensation handling, making
the code much more complex to read and understand. The
process of declaring and installing compensating activities
is a rather complex one and the code produced is somewhat
cluttered when compared to the implementation using the
designed language. The language’s compensation mecha-
nism does however impose a cost, that is incurred by every
program developed in the designed language, regardless to
whether it uses compensations or not. This overhead is the
creation of the global compensation stack, and the global
variable stack, together with their respective push and pop
methods, as well as other global variables used by the stack.
These are created every time a program is compiled, how-
ever, they are never used in programs which do not make
use of compensating activities.

The strength of the designed language lies purely in the way
it handles compensating activities, providing the appropri-
ate constructs and syntax to program compensations in a
natural, effortless manner. Furthermore the availability of
syntactic sugar constructs further enhances the simplicity,
readability and maintainability offered by the language.

7. RELATED WORK
A compensable transaction is composed of a pair of pro-
grams: a forward action followed by its associated compen-
sating action. The forward action is reminiscent of conven-

tional transactions, that is, it either completes successfully
or causes the system to be rolled-back to the state it was
in prior to the execution of the transaction. As the com-
piler starts executing a transaction, the compensation for
each successfully executed instruction is remembered. The
stream of accumulated compensations continues to build up
during execution, up to the point where the system encoun-
ters a failure, at which point all the accumulated compen-
sations are executed.

The use of this mechanism for handling failure makes the
idea of atomic long-running transactions feasible, since they
may be based on a weaker notion of atomicity which relies
on compensations [7]. This means that long-running trans-
actions are split into a number of shorter, atomic ones. Yet
a weaker notion of atomicity remains, because should one of
these shorter-duration transactions fail, compensations for
all the sub-transactions forming part of the long-running
transaction, that were committed prior to the failure of the
transaction are invoked, cancelling out the effect of these
transactions. An additional advantage of using compensa-
tions is that interaction with other systems or external enti-
ties in the real world becomes possible, seeing as how it can
easily be undone at a later stage if need for it arises [9].

Existing formalisms dealing with compensations include: Sagas
Calculi [7] in which long-lived transactions are split up into
a number of independent atomic activities, executed collec-
tively as a non-atomic Saga, Compensating CSP [4] which
extends CSP to deal with long-running transactions through
the use of compensations and StAC [3], a business process
modelling language supporting the use of the compensation
construct.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have focused on the introduction of compensation-
handling constructs in a sequential programming language,
and the issues rising in such a setting. Typically, com-
pensations are handled using libraries, rather than through
specific constructs at the programming language level. In
the case study, we have shown how compensations can also
be used to program scenarios not strictly related to error-
recovery.

Moving to a parallel programming language poses interest-
ing additional design questions, most of which should, how-
ever, be orthogonal to the ones addressed in this paper. For
instance, compensating parallel processes would introduce a
choice regarding the triggering of compensations of concur-
rent processes — should their compensations be triggered
concurrently? It is interesting to see how these issues can
be addressed effectively in a programming language setting.

9. REFERENCES
[1] Roberto Bruni. Theoretical foundations for

compensations in flow composition languages. In In
Principles of Programming Languages, pages 209–220.
ACM Press, 2005.

[2] Roberto Bruni, Michael Butler, Carla Ferreira, Tony
Hoare, Hernán Melgratti, and Ugo Montanari.
Comparing two approaches to compensable flow
composition. CONCUR 2005 - Concurrency Theory,
pages 383–397, 2005.

[3] Michael Butler and Carla Ferreira. An operational
semantics for stac, a language for modelling
long-running business transactions. In In Coordination
2004, volume 2949 of LNCS, pages 87–104.
Springer-Verlag, 2004.

[4] Michael Butler, Carla Ferreira, Peter Henderson,
Y Chessell, Catherine Griffin, David Vines, Y Chessell,
Catherine Griffin, David Vines, Michael Butler, Carla
Ferreira, and Peter Henderson. Extending the concept
of transaction compensation. IBM Systems Journal,
41:743–758, 2002.

[5] Michael Butler and Shamim Ripon. Executable
semantics for compensating csp. In In: Proc. of the 2nd
International Workshop on Web Services and Formal
Methods. LNCS 3670, pages 243–256. Springer, 2005.

[6] Christian Colombo and Gordon J. Pace.
Compensations. Technical Report 2010-01, Department
of Computer Science, University of Malta, 2010.

[7] Hector Garcia-Molina and Kenneth Salem. Sagas. In
SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD
international conference on Management of data, pages
249–259, New York, NY, USA, 1987. ACM.

[8] Paul Greenfield, Alan Fekete, Julian Jang, and Dean
Kuo. Compensation is not enough. In Proceedings of
the 7th International Conference on Enterprise
Distributed Object Computing, page 232, Washington,
DC, USA, 2003. IEEE Computer Society.

[9] Tony Hoare. Compensable transactions. Microsoft
Research, Cambridge, England, 2007.

