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Introduction 

 The accumulation of large boulders related to waves generated by tsunami 

and extreme storm events have been observed in different areas of the 

Mediterranean. Along the NE and E low-lying rocky coasts of Malta tens of large 

boulder deposits have been recognised and mapped (Furlani et al., 2011; 

Mottershead et al., 2014). These boulders are detached and moved by the seafloor 

by the action of sea waves. Reconstructing the history of these blocks and 

distinguishing events, such as storm waves or tsunami, play a crucial role in 

assessing the coastal vulnerability and risk. The Maltese coasts are seasonally 

affected by extreme storm waves: heavy seas are in fact frequent and are originated 

by the NE and NW winds. Moreover in the past some important tsunami events 

which occurred in the Mediterranean Sea, such as the 1693 and the 1908, have 

been reported on the historical chronicles of Malta (Galea, 2007). The seismicity is 

related mainly to the Malta Escarpment, the Sicily Channel Rift Zone and the 

Hellenic Arc. In this study we present a multidisplinary approach, which aim to 

characterize the boulder accumulations in order to assess the natural hazard for the 

coasts of Malta Island, where extreme waves have been and are able to detach and 

move large rocky blocks on the coast. 

 

Study area 

 The Island of Malta lies in the Sicily Channel, which has been affected 

during Neogene-Quaternary age (Finetti, 1984; Dart et al., K.R., 1993) by 

continental rifting. It produced extensive structures, such as the Pantelleria, Malta 

and Linosa tectonic depressions, which are controlled by NW-SE normal faults.  

The tectonic setting of Malta is characterized by two graben systems. The most 

ancient one, ENE-WSW oriented, has been active since early Miocene and caused 

the development of a horst and graben system, which is characterized by 
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alternating highlands and lowlands (Alexander, 1988). This system is crossed by 

faults belonging to the Pantelleria Rift, NW-SE oriented, which developed during 

the late Miocene and early Pliocene (Reuther &Eisbacher, 1985). The uplift caused 

by the Pantelleria Rift is responsible for the emergence of the island above sea 

level during Neogene-Quaternary and it also brought the island to a tilting position 

towards NNE (Alexander, 1988), with a resulting downlift of its eastern flanks. 

This tectonic development - with relatively higher topography and steep coasts 

along the western side of Malta and low-lying coasts along the eastern side - 

conditioned also the hydrological catchment of the islands during the pluvial 

Quaternary period, with fluvial channels draining heavily from WSW to a NNE 

direction. This caused a more intense fluvio-coastal erosion in the eastern part and 

the removal of a large part of the stratigraphic sequence in the lower topographic 

regions. These are the reasons why the eastern rocky coast is suitable, from a 

geomorphological viewpoint, for the accumulation of large boulders, from 

decimetric to metric in size, which are detached from the sea bottom by the waves 

and are deposited on the coast, also some tens of meters away from the coastline 

(Figure 1). Malta is formed by sedimentary rocks, deposited in shallow marine 

conditions between late Oligocene and Miocene (Pedley et al. 1976). The bedding 

is mainly horizontal or sub-horizontal. 

 The stratigraphic sequence starts with the Lower Coralline Limestone 

Formation (Upper Oligocene: Chattian, thickness: 140 m), which is characterized 

by bioclastic, bedded, grey limestones. It is followed by the soft and yellowish 

Globigerina Limestone Formation (late Oligocene – middle Miocene: late Chattian 

- Langhian, thickness: 20-207 m, Giannelli&Salvatorini, 1972; Baldassini et al., 

2013) which is composed by massive fine-grained biomicrites. The sequence 

continues with the Blue Clay Formation (middle Miocene: late Langhian - early 

Tortonian, thickness: 20-75 m), mostly formed by alternating layers of dark-grey 

and pale-grey marls. The upper part of the sequence is made up of the Upper 

Coralline Limestone Formation (Upper Miocene: late Tortonian – early Messinian, 

thickness: 10-170 m), which is very similar to the oldest carbonate unit (Pedley et 

al., 1976).  

 

Matherials and methods 

 The eastern low-lying coasts of Malta have been surveyed in order to 

identify and map all the boulder accumulations. Some of the them have already 

been described by Furlani et al. (2011) and Biolchi et al. (2014) at Armier Bay, and 

by Mottershead et al. (2014), at Ahrax Point, Water Park, Xghajra and Zonqor.  

The most representative boulders, in term of size, shape and distance to the 

coastline, were chosen for further analysis. The candidate boulders include the 

largest observed blocks, slab-like, roughly cubic and rectangular, as well as 

assembled andisolated ones. 

 In order to verify if the boulders are compatible with the storm wave 

regime of the area or if tsunami waves were responsible for their detachment, 

transport and deposition, we applied a hydrodynamic approach. In particular, the 
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Pignatelli et al. (2009), Nandasena et al. (2011) and Engel and May (2012) 

equations were applied in order to calculate the minimum tsunami and storm wave 

heights required to detach a boulder from the cliff-edge. Direct observations on 

each boulder were carried out, regarding size, direction and distance from the 

shoreline, whereas the unit weight was determined by means of the Schmidt 

Hammer (SH). 

 

 

 
Figure 1.Location of the coastal boulder deposits and relative pictures. 

 

 As this approach also depends on the pre-transport environment, the most 

probable setting (submerged, sub-aerial, etc) prior to transportation has been 

determined. Moreover, detailed submerged profiles of the four coastal sites have 

been carried out by direct scuba surveying. The onshore megaboulders at each site 

were inspected to check for the presence of any biological structures, which can 

serve as a definite indicator of a marine (submerged) origin of the boulders since 

died just after their removal from underwater environment.  

 Finally, collected data have been compared to the Maltese wave data 

(Malta Maritime Authority, 2003; Malta Environment and Planning Authority, 

2007;http://www.capemalta.net/maria/pages/waveforecast.html).  

 

Results and conclusions 

The three axes of the most representative boulders, together with their volume and 

their density are listed in Table 1. Density has been evaluated by means of the Katz 



    Geo-Risks in the Mediterranean and their Mitigation 

86 
 

et al. (2000) formula, which relates the rebound values of a rock to the uniaxial 

compressive strength and its density. Moreover, the height of tsunami and storm 

waves required for detaching and moving a boulder from the coast edge, calculated 

with Nandasena et al. (2011), Pignatelli et al. (2009) and Engel and May (2012) 

approaches, are reported.  

 

 
Table 1.Physical parameters of the boulders (axis a, b and c, volume and density) and 

results of the application of the hydrodynamic equations provided by Nandasena et al., 

2011; Pignatelli et al., 2009 and Engel and May, 2012 respectively for Tsunami wave (T) 

and Storm wave (S) 

SITE 
BOUL
DER 

a 
(m) 

b 
(m) 

c 
(m) 

V 
(m3) 

δ 
(g/cm3) 

NT 

(m) 
NS 

(m) 
PT 

(m) 
PS 

(m) 
ET 

(m) 
ES 

(m) 

A 
H 

R 
A 

X 

 

P 

O 

I 
N 

T 

AA1 4.1 2.4 1.1 
10.8
2 

1.39 1.18 4.71 1.11 4.46 0.80 3.21 

AA2 2.8 1.2 1.1 3.70 1.70 2.18 8.71 2.06 8.24 0.49 1.97 

AA3 1.8 0.8 0.8 1.15 1.70 1.58 6.34 1.50 5.99 0.33 1.31 

AA4 3 2.2 0.65 4.29 1.70 1.29 5.15 1.22 4.87 0.90 3.61 

AA5 2.25 1.9 0.3 1.28 1.70 0.59 2.38 0.56 2.25 0.78 3.11 

AA7 1.7 1 0.8 1.36 1.70 1.58 6.34 1.50 5.99 0.41 1.64 

AA8 2 1 0.5 1.00 1.70 0.99 3.96 0.94 3.75 0.41 1.64 

AA9 2 1.2 0.45 1.08 1.62 0.78 3.13 0.74 2.96 0.47 1.87 

A 

R 
M 

I 

E 
R 

 

B 
A 

Y 

AB1 4.2 2.8 0.5 5.88 1.78 1.10 4.41 1.04 4.17 1.20 4.80 

AB2 3.5 1.6 0.55 3.08 1.85 1.33 5.32 1.26 5.03 0.71 2.85 

AB3 2 1.6 0.8 2.56 1.62 1.39 5.57 1.32 5.27 0.62 2.50 

AB4 1.9 1.4 1.4 3.72 1.81 3.24 12.95 3.06 12.24 0.61 2.45 

AB6 1.6 1.2 0.5 0.96 1.70 0.99 3.96 0.94 3.75 0.49 1.97 

AB7 3.4 1.6 1.15 6.26 1.70 2.28 9.11 2.15 8.61 0.66 2.62 

C16 0.9 0.8 0.25 0.18 1.80 0.57 2.27 0.54 2.15 0.35 1.39 

AB5 2.56 1.06 0.92 2.50 1.70 1.82 7.29 1.72 6.89 0.43 1.74 

new 2.39 1.69 0.82 3.31 1.58 1.33 5.31 1.26 5.02 0.64 2.57 

Q2 0.75 0.55 0.5 0.21 1.70 0.99 3.96 0.94 3.75 0.23 0.90 

B 
A 

H 

A 
R 

 

I 
C 

B1 2.3 0.6 0.36 2.55 1.70 1.14 4.55 1.12 4.49 0.76 3.03 

B10 3.1 1.6 0.6 2.98 1.39 0.66 2.62 0.61 2.43 0.54 2.14 

B11 3.3 1.8 0.69 4.10 1.39 0.75 3.01 0.70 2.80 0.60 2.41 

B12 3.1 2.35 0.5 3.64 1.39 0.55 2.18 0.51 2.03 0.79 3.15 

B13 4.3 3.4 0.7 10.2 1.39 0.76 3.06 0.71 2.84 1.14 4.55 
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C 

A 

G 
H 

A 

Q 

B14 3.2 2.1 1.1 7.39 1.39 1.20 4.81 1.11 4.46 0.70 2.81 

B2 4.35 3.65 0.4 6.35 1.80 0.87 3.48 0.86 3.44 1.58 6.33 

B3 2.4 1.8 0.55 2.38 1.80 1.20 4.78 1.18 4.73 0.78 3.12 

B4 2.6 1.7 0.7 3.09 1.80 1.52 6.09 1.50 6.01 0.74 2.95 

B5 2.15 1.93 0.7 2.90 1.80 1.52 6.09 1.50 6.01 0.84 3.35 

B6 2 1.5 0.55 1.65 1.80 1.20 4.78 1.18 4.73 0.65 2.60 

B7 2.3 1.6 0.36 1.32 1.80 0.78 3.13 0.77 3.09 0.69 2.78 

B8 3 2.4 1 7.20 1.80 2.17 8.70 2.15 8.59 1.04 4.17 

B9 3.3 1.65 0.6 3.27 1.39 0.66 2.62 0.61 2.43 0.55 2.21 

B 

U 

G 
I 

B 

B 
A 

LB1 4 2 1.2 9.60 1.70 2.44 9.78 2.25 8.99 0.82 3.28 

LB10 2.4 2.3 0.5 2.76 2.05 1.50 5.98 1.41 5.66 1.13 4.54 

LB2 2.9 1.65 1.05 5.02 1.98 3.03 12.13 2.79 11.15 0.79 3.16 

LB3 2.6 1.8 1.1 5.15 2.08 3.54 14.17 3.20 12.81 0.90 3.60 

LB4 3.3 2.8 0.6 5.54 1.62 1.09 4.37 0.99 3.95 1.09 4.37 

LB6 2.02 1.12 0.35 0.79 1.85 0.89 3.54 0.80 3.20 0.50 2.00 

LB7 1.98 1.8 1.1 3.93 2.02 3.34 13.35 3.02 12.07 0.87 3.50 

LB8 1.74 1.6 0.85 2.37 1.74 1.86 7.45 1.68 6.73 0.67 2.68 

LB9 2.5 2.15 0.8 4.30 1.70 1.63 6.52 1.50 5.99 0.88 3.52 

Q 
A 

W 

R 
A 

Qa1 1.8 1.4 1.3 3.28 1.80 2.95 11.81 2.79 11.17 0.61 2.43 

Qa2 2.2 1.2 0.65 1.72 1.80 1.54 6.18 1.40 5.58 0.52 2.08 

Qa3 1.5 1.5 0.7 1.58 1.85 1.77 7.08 1.60 6.40 0.67 2.68 

qawra_
2 

2 1.05 0.6 1.26 1.74 1.24 4.97 1.19 4.75 0.44 1.76 

qawra_

3 
2.3 1.5 1.1 3.80 1.88 2.74 10.95 2.62 10.47 0.68 2.72 

P 

E 
M 

B 

R 
O 

K 

E 

P1 2.55 1.2 0.6 1.84 2.24 2.18 8.72 2.02 8.09 0.65 2.60 

P10 2.55 1.5 0.35 1.34 2.08 1.07 4.26 1.02 4.08 0.75 3.00 

P16 2 1.3 0.4 1.04 1.80 0.90 3.60 0.86 3.44 0.56 2.26 

P2 2 1.5 0.65 1.95 2.20 2.28 9.11 2.11 8.45 0.80 3.18 

P3 2.85 2.7 0.8 6.16 2.19 2.78 11.11 2.58 10.31 1.43 5.70 

P4 2.5 1.8 0.7 3.15 2.08 2.20 8.79 2.04 8.15 0.90 3.60 

P5 2.8 1.5 0.7 2.94 2.08 2.20 8.79 2.04 8.15 0.75 3.00 

P6 2.4 2.1 0.7 3.53 2.08 2.20 8.79 2.04 8.15 1.05 4.21 

P7 2.55 1.4 0.5 1.79 2.08 1.52 6.09 1.46 5.82 0.70 2.80 

P9 2.55 1.5 0.6 2.30 2.08 1.83 7.31 1.75 6.99 0.75 3.00 

Z Z1 2.8 2.2 0.8 4.93 1.53 1.17 4.66 1.13 4.50 0.81 3.25 
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O 
N 

Q 

O 
R 

Z10 4.1 2.2 0.7 6.31 1.74 1.47 5.86 1.39 5.54 0.92 3.69 

Z11 5.3 2.6 1.5 20.7 1.74 3.20 12.81 2.97 11.88 1.09 4.36 

Z12 2.3 1.2 0.7 1.93 1.49 0.97 3.86 0.90 3.59 0.43 1.72 

Z13 2.4 0.86 0.7 1.44 1.85 1.72 6.90 1.60 6.40 0.38 1.53 

Z14 5.1 1.55 1 7.91 1.78 2.25 8.99 2.08 8.34 0.66 2.66 

Z15 2.8 1.1 1 3.08 1.75 2.17 8.69 2.02 8.06 0.46 1.86 

Z2 2.7 1.8 0.5 2.43 1.70 0.97 3.88 0.94 3.75 0.74 2.95 

Z3 3.3 2.8 0.9 8.32 1.70 1.83 7.33 1.69 6.74 1.15 4.59 

Z4 4.35 3 0.7 9.14 1.74 1.51 6.03 1.39 5.54 1.26 5.03 

Z5 2.6 1.5 0.7 2.73 1.74 1.51 6.03 1.39 5.54 0.63 2.52 

Z6 8.5 4 1.2 40.8 1.74 2.46 9.84 2.38 9.50 1.68 6.71 

Z7 3.45 1.45 0.7 3.50 1.70 1.36 5.43 1.31 5.24 0.59 2.38 

Z8 3.3 2.2 0.7 5.08 1.88 1.76 7.04 1.67 6.66 1.00 4.00 

Z9 3.1 1.45 1 4.50 1.74 2.09 8.37 1.98 7.92 0.61 2.43 

 

 

 Concerning the pre-dislodgement setting of the boulders, a joint-bounded, 

submerged scenariois the most frequent, while for some blocks at Zonqor, Bugibba 

and Baharic-Caghaq, a subaerial joint bounded scenario is suggested. 

Underwater surveying highlighted at Zonqor and Armier Bay a submerged scenario 

characterized by isolated boulders, both with fresh contours and coveredby algae 

and populated by marine organisms, niches and fresh detachment scarps. The sea 

bottom is similar to the subaerial geomorphological setting, being characterized by 

a gentle sloping platform, interrupted by small scarps which correspond to the bed 

planes. 

 The application of the hydrodynamic equations (Table 1) has highlighted 

that there are no correlation between density and volume values and the obtained 

results. As a consequence, the larger boulders do not necessarily require high 

waves to be detached from the cliff edge. Results from Nandasena et al. (2011) and 

Pignatelli et al. (2009) are very similar: the highest values are up to reach 14 and 

13.35 m using Nandasena et al. (2011) and up to 12.8 and 12.7 m (Pignatelli et al. 

(2009), thus differing between them of less than 1 m. For all other values, the 

decrease of the storm wave height, decreases also the difference between the 

obtained results. Among the 77 selected boulders, the storm wave heights of 21 of 

them exceed 8 m. Conversely, the calculated tsunami wave heights are very low 

and range between 3.5 m (3.2 m for Pignatelli) and 0.55 m (0.51 m for Pignatelli). 

Engel and May (2012) equations provided very much lower values, suggesting 

storm wave heights ranging between 1 and 6 m. Most of storm wave heights are 

congruent with those measured on the Maltese Arcipelago (Malta Maritime 

Authority, 2003; Malta Environment and Planning Authority, 2007; 
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http://www.capemalta.net/maria/pages/waveforecast.html).During the stormiest 

months, the maximum wave values range between 5 and 5.5 m. However we can 

suppose that in correspondence to the coast, the run-up height can exceed 10 m, as 

testified by the cliff top storm deposits (CTSD) observed at significant elevations at 

Ahrax Point.  

 Biolchi et al. (2014) provided three Radiocarbon datings, performed on 

three marine organisms sampled from three boulders (AB5, C82 and Q2 of this 

study): 1083-1205 BP, 558-639 BP and post 1950 AD. These results suggested the 

possible occurrence of ancient extreme events, somehow correlated to historical 

tsunami events but also a very recent storm event.  

 Additional proof of recent extreme waves is provided by the tracks of 

freshly damaged karst surface, which were generated by rolling/saltation boulder 

transport, leading directly from the fresh scarp at the terrace edge to the boulder‘s 

current position. 

 While new radiocarbon dating are in progress, this preliminary study 

suggests the frequent occurrence of extreme storm waves on the island of Malta. 

This occurred especially along the north-eastern and eastern coasts, where the 

geomorphology of the coast, the sub-horizontal attitude of the strata and the low 

geomechanical properties of the rocks favoured the detachment of large boulders 

from the coast edge, both in submerged and subaerial conditions.  

However, the possibility that also one or more tsunami events have affected these 

coasts is not excluded.  
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