MINIMAL BASIS
 FOR A VECTOR SPACE
 WITH AN APPLICATION TO SINGULAR GRAPHS
 Irene Sciriha, Stanley Fiorini and Joseph Lauri

Department of Mathematics
University of Malta
Msida, MALTA

Abstract

A graph is singular if its adjacency matrix is singular. In this note a parameter $\tau(G)$, termed the core-width for a singular graph G, is defined. The weight of a vector is the number of non-zero components. To determine the core-width, the bases of the nullspace of A, the adjacency matrix of G, are ordered lexicographically according to their weight; then the core-width is obtained from a minimal basis in this ordering. The core-width is unique and a minimal basis in the nullspace of the adjacency matrix of G has a unique weight sequence. We show that each term in a minimal basis is less than or equal to the corresponding term of any other basis. Corresponding to such minimal bases, certain subgraphs of G of order $\tau(G)$ are identified.

Keywords: nullity, core, core-order, weight-sequence, minimal basis, kernel eigenvector, singularity, nut graph, min-max core, core-order sequence.

1 Introduction

All the graphs we consider are simple, i.e. without multiple edges or loops.
The adjacency matrix $A(G)$ or A of a graph G with ordered vertex set $\mathcal{V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an $n \times n$ symmetric matrix $\left[a_{i j}\right]$ such that $a_{i j}=1$
if v_{i} and v_{j} are adjacent and 0 otherwise. The matrix A is also represented by $\left(R_{1}^{T}, R_{2}^{T}, \ldots, R_{n}^{T}\right)=\left(R_{1}, R_{2}, \ldots, R_{n}\right)^{T}$, where R_{i} is the i th row vector of A corresponding to vertex v_{i}. Vertices which have the same neighbours are described by the same row vectors in A and are called vertices of the same type.

The rank of a graph G, denoted by $r(G)$, is the rank of its adjacency matrix. A graph is said to be singular if its adjacency matrix A is a singular matrix; then at least one of the eigenvalues of A is zero. There corresponds a nonzero vector v_{0} such that $A v_{0}=0$. Thus the vector v_{0} is an eigenvector in the nullspace of A which is denoted by $\mathcal{E}_{0}(A)$.

Since the adjacency matrix A is symmetric the algebraic multiplicity of any eigenvalue λ is the same as its geometric multiplicity. This common value for $\lambda=0$ is the nullity of G, denoted by $\eta(G)$, and is the dimension of $\mathcal{E}_{0}(A)$, that is the multiplicity of the zero eigenvalue of A. It follows that the rank of $G, r(G)$ is $n(G)-\eta(G)$, where $n(G)$ is the order of the graph G.

2 The cores of a singular graph

Let V be the n-dimensional vector space F^{n}, the set of n-tuples $\left\{\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right): \delta_{i} \in F, \forall i\right\}$, of elements of a field F.

Henceforth the adjacency matrix A of the graph G with vertices $v_{1}, v_{2}, \ldots, v_{n}$ will be considered to be a linear transformation acting on the vector space $V=\mathbb{R}^{n}$. If in $V, v=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a vector and $\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{s}}$ are the non-zero components in v then the subgraph of G induced by the vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{s}}$ is called the subgraph of G corresponding to v.

Definition 1: If G is a singular graph, with adjacency matrix A and v_{0} is a vector in $\mathcal{E}_{0}(A)$, then the subgraph of G corresponding to v_{0}, denoted by $\chi_{v_{0}}$, is said to be the core (w.r.t v_{0}). The number of vertices of the core is called its core-order.

In [1], M. Brown et al defined the graph singularity $\kappa(G)=\kappa$ of a singular graph G as the least core-order in the graph. In [4], the structure of singular graphs having one core of core-order up to 5 was investigated. In this paper, the concept of a core-space and of a minimal basis, in which the core-order sequence is unique, will be discussed. The first term of the sequence is κ and its last term is defined as the core-width τ. Graphs can be classified according to τ and then more finely according to the corresponding core.

3 The Weight-Sequence of a Basis

Definition 2: Let $v \in V$. Then the weight of v denoted by $w t(v)$ is the number of non-zero entries of v.

Definition 3: Let B be an ordered basis $\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ for a subspace of dimension m. Let the weights of the vectors in B be $t_{1}, t_{2}, \ldots, t_{m}$ respectively. Then $\sum_{i=1}^{m} t_{i}$ is called the weight-sum of the basis B. If the sequence of vectors in B is such that their weights are in non-decreasing order, then the sequence of weights $t_{1}, t_{2}, \ldots, t_{m}$ is said to be the weight-sequence of B.

The convention adopted will be to write an ordered basis such that the weights of its vectors are in non-decreasing order.

Definition 4: Let W be a subspace of V of dimension $m \leq n$. If the bases of W are ordered such that their weight-sequences are in ascending lexicographic order then a basis with the minimal weight-sequence is said to be a minimal basis. All bases with weight-sequence not minimal are said to be non-minimal.

The standard basis $\left((1,0,0, \ldots, 0)^{T},(0,1,0, \ldots, 0)^{T}, \ldots,(0,0,0, \ldots, 1)^{T}\right)$ is a minimal basis for V. From the definition it follows that in a subspace W
(i) there exists at least one basis which is minimal,
(ii) the weight-sequence for each minimal basis for W is unique.

Theorem 1: Let W be an m-dimensional subspace of V. Let $B_{1}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ be a minimal basis and $B_{2}=$ $\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ be another ordered basis for W with weightsequences $t_{1}, t_{2}, \ldots, t_{m}$ and $s_{1}, s_{2}, \ldots, s_{m}$ respectively. Then $t_{i} \leq$ $s_{i}, \forall i$.

Proof: Since B_{1} is minimal then $t_{1} \leq s_{1}$ and $\exists k \in\{2,3, \ldots, m+1\}$ such that $t_{i} \leq s_{i}, \forall i<k$. Suppose that $k(\leq m+1)$ is the least positive integer such that $s_{k}<t_{k}$. Since the weights in the sequences are in nondecreasing order, $s_{i}<t_{k}, \forall i \leq k$. Thus each $w_{i}, i \leq k$ is a non-trivial linear combination of $v_{1}, v_{2}, \ldots, v_{k-1}$; otherwise one of the w_{i} 's can be chosen to form a basis $B=B_{1} \cup\left\{w_{i}\right\}-v_{j}$, for some $j \geq k$, whose weight-sequence is lexicographically before that of B_{1}. But then the k linearly independent vectors $w_{1}, w_{2}, \ldots, w_{k}$ are spanned by the $k-1$ linearly independent vectors $v_{1}, v_{2}, \ldots, v_{k-1} ;$ a contradiction. Thus $t_{i} \leq s_{i}, \forall i$.

Corollary: A minimal basis for a subspace W has a minimum weight-sum.

Given any two bases in a vector space, the vectors in one of them can always be written as a linear combination of vectors in the other. The next result then follows:

Lemma 1: Let W be a vector space of dimension m. Let $B=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ be a non-minimal ordered basis for W. Then by linear combinations of the w_{j} 's a minimal basis can be obtained.

When Lemma 1 is used to extract a minimal basis B_{1} from B, then B is said to be reduced to B_{1}.

4 Applications To Graphs

Definition 5: A kernel eigenvector v_{0} of a singular graph with adjacency matrix A, is an eigenvector in the nullspace $\mathcal{E}_{0}(A)$.

Let G be a singular graph with no isolated vertices and with adjacency matrix A. It is noted that a kernel eigenvector v_{0} of G, corresponds to $\chi_{v_{0}}$, a core of G, the core-order of which is equal to $w t\left(v_{0}\right)$.

It follows that a core $\chi_{v_{0}}$ of G (with respect to a kernel eigenvector v_{0} of $G)$ is a vertex-induced subgraph of G which is itself singular and has a vector in its nullspace $\mathcal{E}_{0}(A(\chi))$ each of whose components is non-zero. If v_{0} and w_{0} are two vectors in $\mathcal{E}_{0}(A)$ inducing cores $\chi_{v_{0}}$ and $\chi_{w_{0}}$, then $v_{0}+w_{0}$ is also a vector in $\mathcal{E}_{0}(A)$ and corresponds to another core $\chi_{v_{0}+w_{0}}$. If $\chi_{v_{0}}$ and $\chi_{w_{0}}$ have δ vertices in common and β and γ remaining vertices respectively, then $\chi_{v_{0}+w_{0}}$ has at least $\beta+\gamma$ and at most $\beta+\gamma+\delta$ vertices (the number of vertices being equal to $w t\left(v_{0}+w_{0}\right)$). Similarly if $\lambda \in \mathbb{Q}$ then λv_{0} is a vector in $\mathcal{E}_{0}(A)$ and corresponds to a core $\chi_{\left(\lambda v_{0}\right)}$. Thus addition and scalar multiplication can be defined in $C_{0}(G)$.

Definition 6: The set of cores corresponding to the set of vectors in $\mathcal{E}_{0}(A)$ is called the core-space $C_{0}(G)$, which is a vector space if addition is defined by $\chi_{v_{0}}+\chi_{w_{0}}=\chi_{\left(v_{0}+w_{0}\right)}$ and scalar multiplication by $\lambda \chi_{v_{0}}=\chi_{\left(\lambda v_{0}\right)}$ such that $\lambda \chi_{v_{0}}+\mu \chi_{w_{0}}=$ $\chi_{\left(\lambda v_{0}+\mu w_{0}\right)}, \lambda, \mu \in \mathbb{Q}$ and the zero in $C_{0}(G)$ corresponding to the zero vector in $\mathcal{E}_{0}(A)$ is the formal graph with no vertex, which we call the zero-graph.

Definition 7: Let $B=\left(u_{1}, u_{2}, \ldots, u_{\eta}\right)$ be a basis for $\mathcal{E}_{0}(A)$ where A is the adjacency matrix of a singular graph G. The sequence of cores $B^{\prime}=\left(\chi_{u_{1}}, \chi_{u_{2}}, \ldots, \chi_{u_{\eta}}\right)$ is called a core basis for G.

Definition 8: Let G be a singular graph with adjacency matrix A. A core basis, B^{\prime}, for the core space $C_{0}(G)$ is called minimal if the corresponding basis of kernel eigenvectors $B \in \mathcal{E}_{0}(A)$, is minimal. Otherwise it is non-minimal and corresponds to a non-minimal basis of kernel eigenvectors.

Figure 1:

The graph Y in Fig. 1 has an adjacency matrix whose nullspace $\mathcal{E}_{0}(Y)$ is of dimension 4. A vector $v^{\prime} \in \mathcal{E}_{0}(Y)$ is $(1,2,0,0,-1,-1,-1,0)^{T}$ corresponding to the core $<v_{1}, v_{2}, v_{5}, v_{6}, v_{7}>$ in $C_{0}(G)$ of core-order 5.

If $\eta(G) \geq 1$, then the minimum core-order is the singularity of G denoted by $\kappa(G)$ [1]. Therefore if among the kernel eigenvectors of G, v_{0} is one with a minimal number of non-zero entries then $\kappa(G)=w t\left(v_{0}\right)$. For graph Y of Fig. 1, $\kappa(G)=2$ corresponding to cores of order 2 one of which is $\left\langle v_{2}, v_{7}\right\rangle$. It had been shown in [4] that given a singular graph G with a kernel eigenvector v_{0} there exist a subgraph of G which is one of a set of particular graphs of nullity one (called minimal configurations) that depend on v_{0} and on its corresponding core of G. These minimal configurations have been extensively dealt with in [4].

Definition 9: Let G be a singular graph with adjacency matrix A. The largest weight in the weight-sequence of a minimal basis for $\mathcal{E}_{0}(A)$, is called the core-width of G and is denoted by $\tau(G)$.

The positive integer $\tau(G)$ is equal to the maximum order of a core in a minimal basis for the core space $C_{0}(G)$. That it is well defined follows from Theorem 1. In related work [3,5], it is shown that $\tau(G)$ is bounded above by $r(G)+1$. For $\mathrm{r}(G) \geq 6$, the upperbound $r(G)+1$ could be attained. If furthermore $\kappa(G)=\tau(G)=r(G)+1=n$ then G is a special minimal configuration called a nut graph, that is a singular graph whose core is the graph itself. One such example is the graph in Fig. 2.

Figure 2:

Definition 10: Let G be a graph with adjacency matrix A and core space $C_{0}(G)$. A core of largest order in a minimal basis for $C_{0}(G)$ is called a min-max core.

It follows that the core-order of a min-max core is equal to the core-width of $G, \tau(G)$. A set Q of cores, of maximum core-order, in each basis for $C_{0}(G)$ contains min-max cores. These are the cores of minimum order in Q.

Lemma 2: If G is a singular graph, $\tau(G) \leq r(G)+1$.

Proof: Let $A=\left(R_{1}, R_{2}, \ldots, R_{r}, R_{r+1}, R_{r+2}, \ldots, R_{n}\right)^{T}$, where $r=r(G)$ and
$R_{1}, R_{2}, \ldots, R_{r}$, are the linearly independent rows [2] of A. Let $B_{1}=$ $\left(\chi_{u_{1}}, \chi_{u_{2}}, \ldots, \chi_{u_{\eta}}\right)$ be a minimal basis for $C_{0}(G)$. The eigenvector $u_{\eta}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \beta, 0, ..\right)$ where $\beta \neq 0$ and not all the α_{i} are zero. Thus $\tau(G)=w t\left(u_{n}\right) \leq r+1$.

For graph Y of Fig. 1, $\tau(Y)=4$ corresponding to cores of order 4 one of which is $\left.<v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$. This core is therefore a min-max core of Y.

While all min-max cores have the same order not each core of order $\tau(G)$ is a min-max core. The graph Y in Fig. 1 has order 8 and nullity 4. The kernel eigenvectors $(1,1,-1,-1,0,0,0,0)^{T}$,
$(1,1,0,0,-1,-1,0,0)^{T},(0,1,0,0,0,0,-1,0)^{T},(0,0,1,0,0,0,0,-1)^{T}$, form a minimal basis for $\mathcal{E}_{0}(A)$, (relative to the the labelling in the diagram). However the kernel eigenvector $(0,1,1,0,0,0,-1,-1)^{T}$ corresponds to a core of order $\tau(Y)$ which is not a min-max core since a basis of cores having $<v_{2}, v_{3}, v_{7}, v_{8}>$ as a member can be reduced (in the sense of Lemma 1) by replacing it with $\left\langle v_{2}, v_{7}\right\rangle$ or $\left\langle v_{3}, v_{8}\right\rangle$.

Λ

Figure 3:

The graph Λ of Fig. 3 has nullity one and so $\kappa(\Lambda)=\tau(\Lambda)=4$.
Definition 11: Let $B^{\prime}=\left(\chi_{u_{1}}, \chi_{u_{2}}, \ldots, \chi_{u_{\eta}}\right)$ be a core basis for G. If t_{i} is the core-order of $\chi_{u_{i}}$ then the sequence $t_{1}, t_{2}, \ldots, t_{\eta}$,where $t_{i} \leq t_{i+1}, 1 \leq i \leq \eta-1$, is said to be the core-order sequence of B^{\prime} and $\sum_{1}^{\eta} t_{i}$ is said to be its weightsum.

The results in the previous sections then give:
Theorem 3: All minimal bases of cores for the core-space of a singular graph of finite order n, have a unique core-order sequence and a minimum weight-sum amongst all core-sequences.

The adjacency matrix of a singular graph G without isolated vertices, cannot have a kernel eigenvector with weight one. Thus $\kappa \geq 2$ and equality follows if the graph has vertices of the same type. From this and the definition of core-width the next result follows:

Lemma 3: Let G be a singular graph G without isolated vertices. If $s_{1}, s_{2}, \ldots, s_{\eta}$ is the core-order sequence of a minimal basis for $C_{0}(G)$, then $s_{1}=\kappa \geq 2$ and $s_{\eta}=\tau(G) \leq r(G)+1$.

It is observed that the uniqueness of the weight-sequence of a minimal basis for the nullspace of $A(G)$ can be used to classify singular graphs. If a minimal basis for $\mathcal{E}_{0}(A)$ is known, then the corresponding minimal basis B_{1} for the core-space can be determined. Furthermore, a graph with core-width $\tau(G)$ and corresponding min-max core χ_{u} has minimal configurations, as subgraphs, whose cores are of order $\tau(G)$ or less. Each core in B_{1} corresponds to a minimal configuration from which G can be "grown" [4].

5 Reference

[1] M. Brown, J. W. Kennedy and B. Servatius, Graph Singularity, Graph Theory Notes of New York XXV, The New York Academy of Sciences, (1993) 23-32.
[2] M.N.Ellingham, Basic subgraphs and graph spectra, Australasian Journal of Combinatorics 8 (1993) 245-265
[3] I. Gutman and I. Sciriha, Graphs with Maximum Singularity, Graph Theory Notes New York XXX (1996)
[4] I. Sciriha, On the Construction of Graphs of Nullity One, Proceedings of the 15th British Combinatorial Conference, (International Conference held at Stirling University, 1995): forthcoming.
[5] I. Sciriha, The Rank of Graphs, forthcoming.

