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Abstract

A graph is singular if its adjacency matrix is singular. In this note
a parameter 7(G), termed the core-width for a singular graph G, is
defined. The weight of a vector is the number of non-zero compo-
nents. To determine the core-width, the bases of the nullspace of A,
the adjacency matrix of GG, are ordered lexicographically according to
their weight; then the core-width is obtained from a minimal basis in
this ordering. The core-width is unique and a minimal basis in the
nullspace of the adjacency matrix of G has a unique weight sequence.
We show that each term in a minimal basis is less than or equal to the
corresponding term of any other basis. Corresponding to such minimal

bases, certain subgraphs of G of order 7(G) are identified.
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1 Introduction

All the graphs we consider are simple, i.e. without multiple edges or loops.

The adjacency matrix A(G) or A of a graph G with ordered vertex set

V(G) = {v1,v2,...,v,} is an n x n symmetric matrix [a;;] such that a;; =1
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if v; and v; are adjacent and 0 otherwise. The matrix A is also represented
by (RT,RY,....Rl) = (Ry,Ry,...,R,)T, where R; is the ith row vector
of A corresponding to vertex v;. Vertices which have the same neighbours
are described by the same row vectors in A and are called vertices of the

same type.

The rank of a graph G, denoted by r(G), is the rank of its adjacency matrix.
A graph is said to be singular if its adjacency matrix A is a singular matrix;
then at least one of the eigenvalues of A is zero. There corresponds a non-
zero vector vy such that Avg = 0. Thus the vector vy is an eigenvector in
the nullspace of A which is denoted by & (A).

Since the adjacency matrix A is symmetric the algebraic multiplicity of any
eigenvalue )\ is the same as its geometric multiplicity. This common value
for A = 0 is the nullity of G, denoted by 7(G), and is the dimension of
&o(A), that is the multiplicity of the zero eigenvalue of A. It follows that the
rank of G, r(G) is n(G) — n(G), where n(G) is the order of the graph G.

2 The cores of a singular graph

Let V be the n—dimensional vector space F", the set of n—tuples
{(61,02,...,0) : &; € F,Yi}, of elements of a field F.

Henceforth the adjacency matrix A of the graph G with vertices vy, ve, ..., v,
will be considered to be a linear transformation acting on the vector space
V=R"IftinV,v=(aq,a2,...,a,) is a vector and a;,, vy, . .., a;, are the
non-zero components in v then the subgraph of G induced by the vertices
Viys Vig, - - -, Vi, is called the subgraph of G corresponding to v.

Definition 1: If G is a singular graph, with adjacency matriz A

and vy is a vector in Ey(A), then the subgraph of G corresponding

to vy, denoted by Xu,, is said to be the core (w.r.t vg). The

number of vertices of the core is called its core-order.
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In [1], M. Brown et al defined the graph singularity x(G) = & of a singular
graph G as the least core-order in the graph. In [4], the structure of singular
graphs having one core of core-order up to 5 was investigated. In this paper,
the concept of a core-space and of a minimal basis, in which the core-order
sequence is unique, will be discussed. The first term of the sequence is s
and its last term is defined as the core-width 7. Graphs can be classified

according to 7 and then more finely according to the corresponding core.

3 The Weight-Sequence of a Basis

Definition 2: Let v € V. Then the weight of v denoted by

wt(v) is the number of non-zero entries of v.

Definition 3: Let B be an ordered basis (uy,usg, ..., uy) for a

subspace of dimension m. Let the weights of the vectors in B be

m

t1,to, ..., tm respectively. Then Z t; is called the weight-sum
i=1

of the basis B. If the sequence of vectors in B is such that their

weights are in non-decreasing order, then the sequence of weights

t1,t2,...,tm is said to be the weight-sequence of B.

The convention adopted will be to write an ordered basis such that the

weights of its vectors are in non-decreasing order.

Definition 4: Let W be a subspace of V' of dimension m <n. If
the bases of W are ordered such that their weight-sequences are
in ascending lexicographic order then a basis with the minimal
weight-sequence is said to be a minimal basis. All bases with

weight-sequence not minimal are said to be non-minimal.

The standard basis ((1,0, 0,...,007,(0,1,0,...,007,...,(0,0,0,..., 1)T> is

a minimal basis for V. From the definition it follows that in a subspace W
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(i) there exists at least one basis which is minimal,

(ii) the weight-sequence for each minimal basis for W is unique.

Theorem 1: Let W be an m—dimensional subspace of
V. Let By = (u1,ug,...,uy) be a minimal basis and By =
(w1, ws, ..., wy) be another ordered basis for W with weight-
sequences t1,ta, ..., ty, and 1, So, ..., Sy respectively. Then t; <

Si,Vi.

Proof:  Since Bj is minimal then ¢; < s; and 3k € {2,3,...,m + 1}
such that t; < s;,Vi < k. Suppose that k(< m + 1) is the least positive
integer such that sp < . Since the weights in the sequences are in non-
decreasing order, s; < tg, Vi < k. Thus each w;, ¢ < k is a non-trivial linear
combination of vy, vs,...,vr_1; otherwise one of the w;’s can be chosen to
form a basis B = By U {w;} — vj, for some j > k, whose weight-sequence
is lexicographically before that of B;. But then the k linearly independent
vectors wi, wa, . . ., wy are spanned by the k — 1 linearly independent vectors

v1,09,...,V5_1; a contradiction. Thus t; < s;, Vi.

Corollary: A minimal basis for a subspace W has a minimum

weight-sum.

Given any two bases in a vector space, the vectors in one of them can always
be written as a linear combination of vectors in the other. The next result

then follows:

Lemma 1: Let W be a wvector space of dimension m. Let
B = (wi,wa,...,wy) be a non-minimal ordered basis for W.
Then by linear combinations of the w;’s a minimal basis can be

obtained.

When Lemma 1 is used to extract a minimal basis By from B, then B is
said to be reduced to Bj.
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4 Applications To Graphs

Definition 5: A kernel eigenvector vg of a singular graph

with adjacency matriz A, is an eigenvector in the nullspace

Eo(A).

Let G be a singular graph with no isolated vertices and with adjacency
matrix A. It is noted that a kernel eigenvector vg of G, corresponds to Xy,

a core of G, the core-order of which is equal to wt(vp).

It follows that a core x,, of G (with respect to a kernel eigenvector vy of
@) is a vertex-induced subgraph of G which is itself singular and has a vec-
tor in its nullspace & (A(x)) each of whose components is non-zero. If vy
and wp are two vectors in £y(A) inducing cores x,, and Xw,, then vy + wy
is also a vector in & (A) and corresponds to another core Xuyot+wo- If Xuvo
and X, have ¢ vertices in common and  and vy remaining vertices re-
spectively, then xy,+w, has at least 5 + v and at most 3 + v 4 0 vertices
(the number of vertices being equal to wt(vg + wp)). Similarly if A € Q
then Avg is a vector in £(A) and corresponds to a core X (yy,)- Thus addition

and scalar multiplication can be defined in Cy(G).

Definition 6: The set of cores corresponding to the set of vec-
tors in Ey(A) is called the core-space Cy(G), which is a vec-
tor space if addition is defined by Xuvy + Xwo = X(votwo) aNd
scalar multiplication by AXvy = X (o) Such that Axuv, + 1Xw, =
X(Awopwo)s A B € Q and the zero in Co(G) corresponding to the
zero vector in Ey(A) is the formal graph with no vertex, which

we call the zero-graph.

Definition 7: Let B = (u1,u2,...,u,) be a basis for Ey(A)
where A is the adjacency matrix of a singular graph G. The

sequence of cores B' = (Xuy, Xuzs --+»Xu,) 5 called a core

basis for G.
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Definition 8: Let G be a singular graph with adjacency matriz
A. A core basis, B, for the core space Cy(QG) is called minimal
if the corresponding basis of kernel eigenvectors B € &Ey(A), is
minimal. Otherwise it is non-minimal and corresponds to a

non-minimal basis of kernel eigenvectors.

Figure 1:

The graph Y in Fig. 1 has an adjacency matrix whose nullspace & (Y) is of
dimension 4. A vector v’ € &(Y) is (1,2,0,0,—1,—1,—1,0)" corresponding

to the core < vy, vy, vs5,v6, v7 > in Co(G) of core-order 5.

If n(G) > 1, then the minimum core-order is the singularity of G denoted
by (G) [1]. Therefore if among the kernel eigenvectors of G, vy is one
with a minimal number of non-zero entries then x(G) = wt(vg). For graph
Y of Fig. 1, k(G) = 2 corresponding to cores of order 2 one of which is
< wg,v7 >. It had been shown in [4] that given a singular graph G with a
kernel eigenvector vg there exist a subgraph of G which is one of a set of
particular graphs of nullity one (called minimal configurations) that depend
on vg and on its corresponding core of G. These minimal configurations

have been extensively dealt with in [4].

Definition 9: Let G be a singular graph with adjacency matrix
A. The largest weight in the weight-sequence of a minimal basis

for Ey(A), is called the core-width of G and is denoted by 7(G).
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The positive integer 7(G) is equal to the maximum order of a core in a
minimal basis for the core space Cyp(G). That it is well defined follows from
Theorem 1. In related work [3,5], it is shown that 7(G) is bounded above
by r(G) + 1. For r(G) > 6, the upperbound r(G) + 1 could be attained.
If furthermore x(G) = 7(G) = r(G) + 1 = n then G is a special minimal
configuration called a nut graph, that is a singular graph whose core is the

graph itself. One such example is the graph in Fig. 2.

Figure 2:

Definition 10: Let G be a graph with adjacency matriz A and
core space Cy(G). A core of largest order in a minimal basis for

Co(Q) is called a min-max core.

It follows that the core-order of a min-max core is equal to the core-width
of G, 7(G). A set Q of cores, of maximum core-order, in each basis for

Co(G) contains min-max cores. These are the cores of minimum order in Q.
Lemma 2: If G is a singular graph, 7(G) < r(G) + 1.

Proof: Let A = (Ry,Rs,...,R.,Rry1,Rrya,...,Ry)T, where r = 7(G)
and

Ri,Rs,...,R,, are the linearly independent rows [2] of A. Let By =
(Xu1> Xuz> --+»Xu,) be a minimal basis for Cy(G). The eigenvector
uy = (o, 00,...,00,0,0,..) where 3 # 0 and not all the «; are zero. Thus
7(G) = wt(uy) <r+ 1.

For graph Y of Fig. 1, 7(Y) = 4 corresponding to cores of order 4 one of

which is < vy, v2,v3,v4 >. This core is therefore a min-max core of Y.
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While all min-max cores have the same order not each core of order 7(G)
is a min-max core. The graph Y in Fig. 1 has order 8 and nullity 4. The
kernel eigenvectors (1,1, —1,—1,0,0,0,0)%,

(1,1,0,0,—-1,-1,0,0)", (0,1,0,0,0,0,—1,0)",(0,0,1,0,0,0,0,—1)7, form
a minimal basis for £ (A), (relative to the the labelling in the diagram).
However the kernel eigenvector (0,1,1,0,0,0, —1, —1)7 corresponds to a core
of order 7(Y) which is not a min-max core since a basis of cores having
< vg,v3,v7,v8 > as a member can be reduced (in the sense of Lemma 1) by

replacing it with < v9, v7 > or < vz, vg >.

A

Figure 3:

The graph A of Fig. 3 has nullity one and so k(A) = 7(A) = 4.

Definition 11: Let B' = (Xuy, Xus» ---»Xu,) e a core ba-
sis for G. If t; is the core-order of xu, then the sequence

t1,to, ..., ty,where t; < tiy1, 1 <@ < n—1, 1s said to be the
n
core-order sequence of B’ and Zti is said to be its weight-

1
sum.

The results in the previous sections then give:

Theorem 3:  All minimal bases of cores for the core-space
of a singular graph of finite order n, have a unique core-order

sequence and a minimum weight-sum amongst all core-sequences.
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The adjacency matrix of a singular graph G without isolated vertices, cannot
have a kernel eigenvector with weight one. Thus k > 2 and equality follows
if the graph has vertices of the same type. From this and the definition of

core-width the next result follows:

Lemma 3: Let G be a singular graph G without isolated ver-
tices. If s1,82,...,5y is the core-order sequence of a minimal
basis for Co(G), then s1 =k > 2 and s, = 7(G) < r(G) + 1.

It is observed that the uniqueness of the weight-sequence of a minimal basis
for the nullspace of A(G) can be used to classify singular graphs. If a mini-
mal basis for y(A) is known, then the corresponding minimal basis B; for
the core-space can be determined. Furthermore, a graph with core-width
7(G) and corresponding min-max core X, has minimal configurations, as
subgraphs, whose cores are of order 7(G) or less. Each core in By corre-

sponds to a minimal configuration from which G' can be ”grown” [4].
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