MINIMAL BASIS

FOR A VECTOR SPACE WITH AN APPLICATION TO SINGULAR GRAPHS

Irene Sciriha, Stanley Fiorini and Joseph Lauri

Department of Mathematics
University of Malta
Msida, MALTA

Abstract

A graph is singular if its adjacency matrix is singular. In this note a parameter $\tau(G)$, termed the core-width for a singular graph G, is defined. The weight of a vector is the number of non-zero components. To determine the core-width, the bases of the nullspace of A, the adjacency matrix of G, are ordered lexicographically according to their weight; then the core-width is obtained from a minimal basis in this ordering. The core-width is unique and a minimal basis in the nullspace of the adjacency matrix of G has a unique weight sequence. We show that each term in a minimal basis is less than or equal to the corresponding term of any other basis. Corresponding to such minimal bases, certain subgraphs of G of order $\tau(G)$ are identified.

Keywords: nullity, core, core-order, weight-sequence, minimal basis, kernel eigenvector, singularity, nut graph, min-max core, core-order sequence.

1 Introduction

All the graphs we consider are **simple**, i.e. without multiple edges or loops. The **adjacency matrix** A(G) or A of a graph G with ordered vertex set $\mathcal{V}(G) = \{v_1, v_2, \dots, v_n\}$ is an $n \times n$ symmetric matrix $[a_{ij}]$ such that $a_{ij} = 1$

if v_i and v_j are adjacent and 0 otherwise. The matrix A is also represented by $(R_1^T, R_2^T, \ldots, R_n^T) = (R_1, R_2, \ldots, R_n)^T$, where R_i is the *i*th row vector of A corresponding to vertex v_i . Vertices which have the same neighbours are described by the same row vectors in A and are called **vertices of the same type.**

The **rank** of a graph G, denoted by r(G), is the rank of its adjacency matrix. A graph is said to be **singular** if its adjacency matrix A is a singular matrix; then at least one of the eigenvalues of A is zero. There corresponds a non-zero vector v_0 such that $Av_0 = 0$. Thus the vector v_0 is an eigenvector in the nullspace of A which is denoted by $\mathcal{E}_0(A)$.

Since the adjacency matrix A is symmetric the algebraic multiplicity of any eigenvalue λ is the same as its geometric multiplicity. This common value for $\lambda = 0$ is the **nullity** of G, denoted by $\eta(G)$, and is the dimension of $\mathcal{E}_0(A)$, that is the multiplicity of the zero eigenvalue of A. It follows that the rank of G, r(G) is $n(G) - \eta(G)$, where n(G) is the order of the graph G.

2 The cores of a singular graph

Let V be the n-dimensional vector space F^n , the set of n-tuples $\{(\delta_1, \delta_2, \dots, \delta_n) : \delta_i \in F, \forall i\}$, of elements of a field F.

Henceforth the adjacency matrix A of the graph G with vertices v_1, v_2, \ldots, v_n will be considered to be a linear transformation acting on the vector space $V = \mathbb{R}^n$. If in $V, v = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ is a vector and $\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_s}$ are the non-zero components in v then the subgraph of G induced by the vertices $v_{i_1}, v_{i_2}, \ldots, v_{i_s}$ is called **the subgraph of** G **corresponding to** v.

Definition 1: If G is a singular graph, with adjacency matrix A and v_0 is a vector in $\mathcal{E}_0(A)$, then the subgraph of G corresponding to v_0 , denoted by χ_{v_0} , is said to be the **core** (w.r.t v_0). The number of vertices of the core is called its **core-order**.

In [1], M. Brown et al defined the graph singularity $\kappa(G) = \kappa$ of a singular graph G as the least core-order in the graph. In [4], the structure of singular graphs having one core of core-order up to 5 was investigated. In this paper, the concept of a core-space and of a minimal basis, in which the core-order sequence is unique, will be discussed. The first term of the sequence is κ and its last term is defined as the core-width τ . Graphs can be classified according to τ and then more finely according to the corresponding core.

3 The Weight-Sequence of a Basis

Definition 2: Let $v \in V$. Then the **weight** of v denoted by wt(v) is the number of non-zero entries of v.

Definition 3: Let B be an ordered basis (u_1, u_2, \ldots, u_m) for a subspace of dimension m. Let the weights of the vectors in B be t_1, t_2, \ldots, t_m respectively. Then $\sum_{i=1}^m t_i$ is called the **weight-sum** of the basis B. If the sequence of vectors in B is such that their weights are in non-decreasing order, then the sequence of weights t_1, t_2, \ldots, t_m is said to be the **weight-sequence** of B.

The convention adopted will be to write **an ordered basis** such that the weights of its vectors are in **non-decreasing order**.

Definition 4: Let W be a subspace of V of dimension $m \le n$. If the bases of W are ordered such that their weight-sequences are in ascending lexicographic order then a basis with the minimal weight-sequence is said to be a **minimal basis**. All bases with weight-sequence not minimal are said to be **non-minimal**.

The standard basis $((1,0,0,\ldots,0)^T,(0,1,0,\ldots,0)^T,\ldots,(0,0,0,\ldots,1)^T)$ is a minimal basis for V. From the definition it follows that in a subspace W

- (i) there exists at least one basis which is minimal,
- (ii) the weight-sequence for each minimal basis for W is unique.

Theorem 1: Let W be an m-dimensional subspace of V. Let $B_1 = (u_1, u_2, \ldots, u_m)$ be a minimal basis and $B_2 = (w_1, w_2, \ldots, w_m)$ be another ordered basis for W with weight-sequences t_1, t_2, \ldots, t_m and s_1, s_2, \ldots, s_m respectively. Then $t_i \leq s_i, \forall i$.

Proof: Since B_1 is minimal then $t_1 \leq s_1$ and $\exists k \in \{2, 3, ..., m+1\}$ such that $t_i \leq s_i, \forall i < k$. Suppose that $k(\leq m+1)$ is the least positive integer such that $s_k < t_k$. Since the weights in the sequences are in non-decreasing order, $s_i < t_k, \ \forall i \leq k$. Thus each $w_i, \ i \leq k$ is a non-trivial linear combination of $v_1, v_2, ..., v_{k-1}$; otherwise one of the w_i 's can be chosen to form a basis $B = B_1 \cup \{w_i\} - v_j$, for some $j \geq k$, whose weight-sequence is lexicographically before that of B_1 . But then the k linearly independent vectors $w_1, w_2, ..., w_k$ are spanned by the k-1 linearly independent vectors $v_1, v_2, ..., v_{k-1}$; a contradiction. Thus $t_i \leq s_i, \forall i$.

Corollary: A minimal basis for a subspace W has a minimum weight-sum.

Given any two bases in a vector space, the vectors in one of them can always be written as a linear combination of vectors in the other. The next result then follows:

Lemma 1: Let W be a vector space of dimension m. Let $B = (w_1, w_2, ..., w_m)$ be a non-minimal ordered basis for W. Then by linear combinations of the w_j 's a minimal basis can be obtained.

When Lemma 1 is used to extract a minimal basis B_1 from B, then B is said to be **reduced** to B_1 .

4 Applications To Graphs

Definition 5: A kernel eigenvector v_0 of a singular graph with adjacency matrix A, is an eigenvector in the nullspace $\mathcal{E}_0(A)$.

Let G be a singular graph with no isolated vertices and with adjacency matrix A. It is noted that a kernel eigenvector v_0 of G, corresponds to χ_{v_0} , a core of G, the core-order of which is equal to $wt(v_0)$.

It follows that a core χ_{v_0} of G (with respect to a kernel eigenvector v_0 of G) is a vertex-induced subgraph of G which is itself singular and has a vector in its nullspace $\mathcal{E}_0(A(\chi))$ each of whose components is non-zero. If v_0 and w_0 are two vectors in $\mathcal{E}_0(A)$ inducing cores χ_{v_0} and χ_{w_0} , then $v_0 + w_0$ is also a vector in $\mathcal{E}_0(A)$ and corresponds to another core $\chi_{v_0+w_0}$. If χ_{v_0} and χ_{w_0} have δ vertices in common and β and γ remaining vertices respectively, then $\chi_{v_0+w_0}$ has at least $\beta + \gamma$ and at most $\beta + \gamma + \delta$ vertices (the number of vertices being equal to $wt(v_0 + w_0)$). Similarly if $\lambda \in \mathbb{Q}$ then λv_0 is a vector in $\mathcal{E}_0(A)$ and corresponds to a core $\chi_{(\lambda v_0)}$. Thus addition and scalar multiplication can be defined in $C_0(G)$.

Definition 6: The set of cores corresponding to the set of vectors in $\mathcal{E}_0(A)$ is called the **core-space** $C_0(G)$, which is a vector space if addition is defined by $\chi_{v_0} + \chi_{w_0} = \chi_{(v_0+w_0)}$ and scalar multiplication by $\lambda \chi_{v_0} = \chi_{(\lambda v_0)}$ such that $\lambda \chi_{v_0} + \mu \chi_{w_0} = \chi_{(\lambda v_0+\mu w_0)}$, $\lambda, \mu \in \mathbb{Q}$ and the zero in $C_0(G)$ corresponding to the zero vector in $\mathcal{E}_0(A)$ is the formal graph with no vertex, which we call the **zero-graph**.

Definition 7: Let $B = (u_1, u_2, ..., u_\eta)$ be a basis for $\mathcal{E}_0(A)$ where A is the adjacency matrix of a singular graph G. The sequence of cores $B' = (\chi_{u_1}, \chi_{u_2}, ..., \chi_{u_\eta})$ is called a **core** basis for G.

Definition 8: Let G be a singular graph with adjacency matrix A. A core basis, B', for the core space $C_0(G)$ is called **minimal** if the corresponding basis of kernel eigenvectors $B \in \mathcal{E}_0(A)$, is minimal. Otherwise it is **non-minimal** and corresponds to a non-minimal basis of kernel eigenvectors.

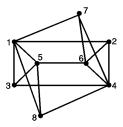


Figure 1:

The graph Y in Fig. 1 has an adjacency matrix whose nullspace $\mathcal{E}_0(Y)$ is of dimension 4. A vector $v' \in \mathcal{E}_0(Y)$ is $(1, 2, 0, 0, -1, -1, -1, 0)^T$ corresponding to the core $\langle v_1, v_2, v_5, v_6, v_7 \rangle$ in $C_0(G)$ of core-order 5.

If $\eta(G) \geq 1$, then the minimum core-order is the **singularity** of G denoted by $\kappa(G)$ [1]. Therefore if among the kernel eigenvectors of G, v_0 is one with a minimal number of non-zero entries then $\kappa(G) = wt(v_0)$. For graph Y of Fig. 1, $\kappa(G) = 2$ corresponding to cores of order 2 one of which is $\langle v_2, v_7 \rangle$. It had been shown in [4] that given a singular graph G with a kernel eigenvector v_0 there exist a subgraph of G which is one of a set of particular graphs of nullity one (called minimal configurations) that depend on v_0 and on its corresponding core of G. These minimal configurations have been extensively dealt with in [4].

Definition 9: Let G be a singular graph with adjacency matrix A. The largest weight in the weight-sequence of a minimal basis for $\mathcal{E}_0(A)$, is called the **core-width** of G and is denoted by $\tau(G)$.

The positive integer $\tau(G)$ is equal to the maximum order of a core in a minimal basis for the core space $C_0(G)$. That it is well defined follows from Theorem 1. In related work [3,5], it is shown that $\tau(G)$ is bounded above by r(G) + 1. For $r(G) \geq 6$, the upperbound r(G) + 1 could be attained. If furthermore $\kappa(G) = \tau(G) = r(G) + 1 = n$ then G is a special minimal configuration called a **nut graph**, that is a singular graph whose core is the graph itself. One such example is the graph in Fig. 2.

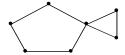


Figure 2:

Definition 10: Let G be a graph with adjacency matrix A and core space $C_0(G)$. A core of largest order in a minimal basis for $C_0(G)$ is called a min-max core.

It follows that the core-order of a min-max core is equal to the **core-width** of G, $\tau(G)$. A set Q of cores, of maximum core-order, in each basis for $C_0(G)$ contains min-max cores. These are the cores of minimum order in Q.

Lemma 2: If G is a singular graph, $\tau(G) \leq r(G) + 1$.

Proof: Let $A = (R_1, R_2, ..., R_r, R_{r+1}, R_{r+2}, ..., R_n)^T$, where r = r(G) and

 R_1, R_2, \ldots, R_r , are the linearly independent rows [2] of A. Let $B_1 = (\chi_{u_1}, \chi_{u_2}, \ldots, \chi_{u_\eta})$ be a minimal basis for $C_0(G)$. The eigenvector $u_\eta = (\alpha_1, \alpha_2, \ldots, \alpha_r, \beta, 0, \ldots)$ where $\beta \neq 0$ and not all the α_i are zero. Thus $\tau(G) = wt(u_n) \leq r + 1$.

For graph Y of Fig. 1, $\tau(Y) = 4$ corresponding to cores of order 4 one of which is $\langle v_1, v_2, v_3, v_4 \rangle$. This core is therefore a min-max core of Y.

While all min-max cores have the same order not each core of order $\tau(G)$ is a min-max core. The graph Y in Fig. 1 has order 8 and nullity 4. The kernel eigenvectors $(1, 1, -1, -1, 0, 0, 0, 0)^T$,

 $(1,1,0,0,-1,-1,0,0)^T$, $(0,1,0,0,0,0,-1,0)^T$, $(0,0,1,0,0,0,0,-1)^T$, form a minimal basis for $\mathcal{E}_0(A)$, (relative to the the labelling in the diagram). However the kernel eigenvector $(0,1,1,0,0,0,-1,-1)^T$ corresponds to a core of order $\tau(Y)$ which is not a min-max core since a basis of cores having $\langle v_2, v_3, v_7, v_8 \rangle$ as a member can be reduced (in the sense of Lemma 1) by replacing it with $\langle v_2, v_7 \rangle$ or $\langle v_3, v_8 \rangle$.

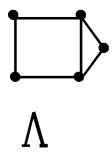


Figure 3:

The graph Λ of Fig. 3 has nullity one and so $\kappa(\Lambda) = \tau(\Lambda) = 4$.

Definition 11: Let $B' = (\chi_{u_1}, \chi_{u_2}, \ldots, \chi_{u_{\eta}})$ be a core basis for G. If t_i is the core-order of χ_{u_i} then the sequence $t_1, t_2, \ldots, t_{\eta}$, where $t_i \leq t_{i+1}, \ 1 \leq i \leq \eta - 1$, is said to be the core-order sequence of B' and $\sum_{i=1}^{\eta} t_i$ is said to be its weightsum.

The results in the previous sections then give:

Theorem 3: All minimal bases of cores for the core-space of a singular graph of finite order n, have a unique core-order sequence and a minimum weight-sum amongst all core-sequences.

The adjacency matrix of a singular graph G without isolated vertices, cannot have a kernel eigenvector with weight one. Thus $\kappa \geq 2$ and equality follows if the graph has vertices of the same type. From this and the definition of core-width the next result follows:

Lemma 3: Let G be a singular graph G without isolated vertices. If $s_1, s_2, \ldots, s_{\eta}$ is the core-order sequence of a minimal basis for $C_0(G)$, then $s_1 = \kappa \geq 2$ and $s_{\eta} = \tau(G) \leq r(G) + 1$.

It is observed that the uniqueness of the weight-sequence of a minimal basis for the nullspace of A(G) can be used to classify singular graphs. If a minimal basis for $\mathcal{E}_0(A)$ is known, then the corresponding minimal basis B_1 for the core-space can be determined. Furthermore, a graph with core-width $\tau(G)$ and corresponding min-max core χ_u has minimal configurations, as subgraphs, whose cores are of order $\tau(G)$ or less. Each core in B_1 corresponds to a minimal configuration from which G can be "grown" [4].

5 Reference

- [1] M. Brown, J. W. Kennedy and B. Servatius, *Graph Singularity*, Graph Theory Notes of New York XXV, The New York Academy of Sciences, (1993) 23-32.
- [2] M. N. Ellingham, *Basic subgraphs and graph spectra*, Australasian Journal of Combinatorics 8 (1993) 245-265
- [3] I. Gutman and I. Sciriha, *Graphs with Maximum Singularity*, Graph Theory Notes New York XXX (1996)
- [4] I. Sciriha, On the Construction of Graphs of Nullity One, Proceedings of the 15th British Combinatorial Conference, (International Conference held at Stirling University, 1995): forthcoming.
- [5] I. Sciriha, The Rank of Graphs, forthcoming.