
Polynomial Reconstruction

Old and New Techniques ∗

Irene Sciriha

Department of Mathematics

Faculty of Science

University of Malta

irene.sciriha-aquilina@um.edu.mt

Fax: 00356-333908

25th March, 2002

Abstract

The Polynomial Reconstruction Problem (PRP) asks whether for a

graph G of order at least three, the characteristic polynomial can be re-

constructed from the p-deck PD(G) of characteristic polynomials of the

one-vertex-deleted subgraphs. The problem is still open in general but

has been proved for certain classes of graphs. We discuss the tools and

techniques most commonly used and survey the main positive results ob-

tained so far, pointing out the classes of graphs for which we know that

the PRP has a positive resolution.
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1 Introduction

The adjacency matrix A(H) (or A ) of a graph H of order n(H) = n, having

vertex set V(H) = {v1, v2, . . . , vn}, is the n × n symmetric matrix [aij ], such

∗2000 Mathematics Subject Classification: 05C50; 05C60; 05B20.
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that aij = 1 if vi and vj are adjacent and 0 otherwise. The adjacency matrix

describes H completely (up to isomorphism).

The characteristic polynomial of A(H) is denoted by φ(H,λ) (= φ(H)) and

φ(H,λ) = Det(λI−A) =
n
∑

i=0

aiλ
i =

n
∏

i=1

(λ− λi). (1)

The values λ1, λ2, . . . , λn are called the eigenvalues of H and form the spectrum,

Sp(H), of H [1, 2, 4]. If λi = 0 for some i, then A is singular and H is said to

be a singular graph. Otherwise H is non-singular.

Figure 1: Ulam’s RC

Ulam’s Reconstruction Conjecture (RC) [9, 16] claims that a graph H, of or-

der at least 3, can be recovered from the collection {H − v} of the one-vertex

deleted subgraphs of H (See Figure 1). A variation of the RC is the Polynomial

Reconstruction Problem (PRP) which asks whether it is possible to recover the

characteristic polynomial of a graph H of order at least three from the p-deck,

PD(H), of H, consisting of the characteristic polynomials of the one-vertex-

deleted subgraphs (with multiplicities). For each vi ∈ V(H), there is a card

in the p-deck showing φ(H − vi) or equivalently the spectrum of H − vi (See

Figure 2). It is the purpose of this article to discuss the tools and techniques

usually employed for polynomial reconstruction. We survey the main positive

results obtained so far, pointing out the classes of graphs for which the PRP is

still open.
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Figure 2: The PRP

In Section 2, we discuss the results proved so far relating to the PRP. A counter

example pair (H, G) to the PRP would show that the PRP has a negative

result. Two such graphs H and G would have the same p-deck but a different

spectrum. After recalling which information can be immediately derived from

PD(H) in Section 3, we highlight the main tools usually utilized in polyno-

mial reconstruction. Using these methods, the PRP has a positive resolution

for regular graphs. Moreover, disconnected graphs are weakly polynomial re-

constructible. The Interlacing Theorem is a very powerful tool in resolving the

PRP for classes of graphs such as windmills and singular graphs with a termi-

nal vertex, since these have repeated eigenvalues in a card of their p-deck. We

proceed to derive, in Section 4, certain properties that a counter example pair

(H, G) to the PRP must have. There are classes of graphs, such as trees, which

do not pair up with any graphs to give a counter example and hence must be

polynomial reconstructible. In section 5, we describe new techniques that prove

useful for graphs with terminal vertices. We conclude by pointing out certain

classes of graphs for which the PRP is not yet resolved.

2 The PRP

The PRP, first posed by D.M.Cvetković in 1973 and later considered by

I.Gutman and D.M.Cvetković in [8], asks whether it is possible to reconstruct

the characteristic polynomial of a graph H, of order at least three, from the

p-deck, PD(H), of H. The restriction on the order is necessary, in view of the

fact that the pair of graphs on two vertices, namely, K2 with one edge and its

complement K2, form a counter example. All graphs of order at most ten and

many other graphs of higher order have been shown to be polynomial recon-

structible. However, the general feeling is that a counter example that answers
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the PRP negatively will eventually be found.

The PRP has been shown to have a positive result for certain classes of graphs

but is still open in general [5, 6, 10]. It is true for regular graphs as we show

in section 3. S. Simić proved it true, in [14], for connected graphs with the

smallest eigenvalue of the one-vertex-deleted subgraphs bounded below by −2.

Also D.M.Cvetković and M.Lepović showed that trees are polynomial recon-

structible in [7]. In [13] a disconnected graph in which one component is a tree,

is shown to have no partner graph G with which it can pair up to give a counter

example to the PRP. Also, in [12], graphs with more than bn
3 c pendant edges

are shown to be polynomial reconstructible.

W.T.Tutte proved that the spectrum of a graph is reconstructible from the

collection (deck) of its one-vertex-deleted subgraphs [15]. Thus non-isomorphic

graphs, on at least 3 vertices, with the same deck have the same characteristic

polynomial. This means that the PRP is still open for non-isomorphic graphs

with distinct decks but the same p-decks (See Figure 3). Were the PRP to have

a positive result for all graphs, then non-isomorphic graphs with non-identical

decks but with the same p-decks, would be cospectral. However, a counter

example pair to the PRP, would not correspond to a counter example pair

to the RC since distinct characteristic polynomials must stem from different

decks. Moreover, a pair of graphs, which would form a counter example to the

RC, would be cospectral.

The attempt to prove the truth of the PRP for a class C of graphs is usually

approached in two stages. Firstly, we establish whether some of the properties

of a graph H, derived from its p-deck PD(H), are necessary and sufficient for

H to lie in C. This first stage is called the Recognition Stage. In the second,

the Reconstruction Stage, we use information from the p-deck to recover the

characteristic polynomial φ(H). If both stages are performed successfully, then

the graphs in class C are said to be polynomial reconstructible and the PRP is

said to be true for C. If only the second stage is established for all graphs in C,
then the graphs in C are said to be weakly reconstructible.

A different technique was first used fruitfully by D.Cvetković and M. Lepović,

in [7], to prove that trees are polynomial reconstructible. A graph H in a

particular class is supposed to be not polynomial reconstructible. Then there

exists a graph G such that (H, G) is a counter example pair to the PRP.

Thus G has the same p-deck as H but a different spectrum. This approach

reveals the properties which G must have and rules out certain classes C′ of

graphs which do not allow the existence of G. The PRP would then be proved
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Figure 3: A counter example to the PRP

true for such classes C′ and the existence of polynomial reconstruction would be

established for C′ without demonstrating the actual reconstruction.

3 Properties Derived from the p-deck

Remark 3.1 It is well known that if we express the characteristic polynomial

φ(H,λ) = Det(λI−A) as

φ(H,λ) =
n
∑

i=0

aiλ
i =

n
∏

i=1

(λ− λi),

then the number of edges of H is −an−2 and a0 = Det(−A) = (−1)n
n
∏

i=1

λi.

A powerful tool, that may initially give the impression that polynomial recon-

struction is not as hard a problem as it is in fact proving to be, is the result

φ′(H,λ) =
n
∑

i=1

φ(H−wi, λ) [1, 3]. The following two lemmas follow immediately.

Lemma 3.2 From the p-deck of H all the terms of the characteristic poly-

nomial can be determined except for the constant term a0.
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Proof: The p-deck, PD(H), is the collection {φ(H−wi, λ) : wi ∈ V(H)}. Since

φ′(H,λ) =
n
∑

i=1

φ(H − wi, λ)

[1, 3], then by integrating, φ(H) is determined, save for the constant term a0

which is Det(−A(H)).

Remark 3.3 The degree of a vertex v is the number of edges incident to v in

G. The degree sequence, dg, is the sequence of the degrees of the vertices of G

for a particular labelling of G. A graph is not determined by dg.

Lemma 3.4 The degree sequence, dg, of H is determined from the p-deck,

PD(H).

Proof: The degree sequence dg of H is {di} where di is the degree of the ith

vertex vi of H. The integer di is the number of edges lost when vi is deleted and

works out as the difference in the coefficients of −λn−2 in φ(H) (determined

as in the proof of Lemma 3.2) and of −λn−3 in φ(H − wi) (known from the

p-deck).

3.1 Boundary Conditions

Figure 4: Data derived from the p-deck.

Remark 3.5 Though a rich source of information, the p-deck of a graph H

fails to give a direct way of determining Det(A(H)) from which the constant

term a0 of the characteristic polynomial of H is derived. To recover a0, other

techniqes need to be used to yield proper boundary conditions.

Lemma 3.6 If an eigenvalue λ0 of G is known, then G is polynomial re-

constructible.



Polynomial Reconstruction – Old and New Techniques – I. Sciriha 7

Proof: : Since φ(G,λ0) = 0, then a0(G) can be determined.

Lemma 3.7 If the graph G is regular, then the number of non-zero entries

in each row of A is the degree ρ.

Theorem 3.8 If the graph G is regular, then G is polynomial recon-

structible.

Proof: If G is regular, then A(1, 1, ...1)t = ρ(1, 1, ...1)t. Thus ρ is an eigenvalue.

Hence a0(G) is uniquely determined.

Theorem 3.9 Disconnected graphs are weakly polynomial reconstructible.

Proof: If the graph G is known to be disconnected, then the largest eigenvalue

that appears in the p-deck of G is also an eigenvalue of G. Thus a0(G) is

uniquely determined.

3.2 Interlacing

Remark 3.10 The following theorem has proved to be a very convenient tool,

not only to determine eigenvalues of G from its p-deck but also to show that

certain classes of graphs cannot be counter examples to the PRP.

The Interlacing Theorem: If G is an n-vertex graph with eigenvalues

λ1, λ2, . . . , λn and G− v is a one-vertex–deleted subgraph of G with eigen-

values µ1, µ2, . . . , µn−1 , then λi ≤ µi ≤ λi+1 , i = 1, 2, . . . , n− 1 .

λ1 λ2 · · · λn−1 λn

• • · · · • •
• • · · · • •
µ1 µ2 · · · µn−2 µn−1

Corollary 3.11 Repeated eigenvalues in the p-deck PD(G) are enough to

reconstruct G.

Proof: If a vertex-deleted subgraph of G has two eigenvalues µi, µi+1 equal,

then, by interlacing, the eigenvalue λi+1 of G is equal to µi. Hence a0(G) is

uniquely determined.

Remark 3.12 A terminal vertex refers to a vertex of degree one. A pendant

edge wGvG of a graph G(6= K2) has a terminal vertex vG and a next-to-

terminal vertex wG of degree at least 2. as seen in Figure 5.
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Figure 5: A graph G with a pendant edge.

Lemma 3.13 If the graph H has a pendant edge wHvH , with terminal

vertex vH , then

φ(H) = λφ(H − vH)− φ(H − vH − wH), (2)

Theorem 3.14 If H is a singular graph with at least one pendant edge

wv, then H is polynomial reconstructible.

Proof: The nullity of H is the same as that of H−w−v. Thus the card H−w,

which shows the union of the spectra of H − w − v and of K1, has repeated

zero eigenvalues. Thus, by interlacing, we can deduce that H is polynomial

reconstructible.

Figure 6: A Windmill: pS.Kr

Definition 3.15 A windmill, is the graph obtained by coalescing a com-

plete graph Kr, r ≥ 2, with disjoint graphs S1, S2, . . . , Sp at p distinct

vertices of Kr, 0 ≤ p ≤ r, so that these vertices are cut vertices of the

graph. The subgraphs, S1, S2, . . . , Sp, are said to be the sails and Kr, the

central clique of the windmill (See Figure 6).

Theorem 3.16 Windmills with more than two identical sails are polyno-

mial reconstructible.
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Proof: In [11], a windmill was shown to have repeated eigenvalues in its p-deck

depending on the repeated sail.

4 Properties of a Counter Example

Remark 4.1 New techniques need to be developed to study certain classes of

graphs for which the data acquired from the p-deck provides very little informa-

tion. An approach that is yielding fruitful results is to investigate the properties

of a counter example pair (H, G) such that φ(G)( 6= φ(H)) is a reconstruction

from PD(H). This method has been used successfully in [7], [12] and [13].

Lemma 4.2 The characteristic polynomials of H and of G differ only in

the constant term a0.

Proof: The result follows from Lemma 3.2.

Remark 4.3 It is clear that H and G are mutual partners in a counter example

pair. Thus we write a0(H) = a0(G) + ∆a0, ∆a0 ∈ Z − {0}. (See Figure 7.)

Figure 7: The polynomials φ(G) and φ(H).

Lemma 4.4 G and H have no eigenvalues in common.

Proof: Suppose that λ0 is an eigenvalue found in each of the spectra of

H and of G. Then φ(H,λ0) = 0 and φ(G,λ0) = 0. But by Lemma 3.2,

φ(H,λ)− a0(H) = φ(G,λ)− a0(G), for all values of λ. Thus a0(H) = a0(G)

and therefore φ(H,λ) = φ(G,λ). By Lemma 4.2, this contradicts the properties

of G as a counter example partner of H.
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Lemma 4.5 No polynomial in the p-deck PD(H) has repeated eigenvalues.

Proof: If for some wi ∈ H, H − wi has the eigenvalue λ0 repeated, then by

the interlacing theorem, it follows that each of the graphs H and G have the

eigenvalue λ0. Thus by Lemma 4.4, this contradicts the existence of G.

Lemma 4.6 The two graphs H and G are not both disconnected.

Proof: The maximum eigenvalue of a disconnected graph is the maximum

eigenvalue that appears in the deck. We recall that G and H have the same

deck. Thus if both graphs are disconnected, their maximum eigenvalue is the

same. This is not allowed by Lemma 4.4.

Lemma 4.7 If n(H) = n, each spectrum of the graphs H and G has n real

eigenvalues. Also φ(H) has dn−1
2 e minimum values and bn−1

2 c maximum

values.

Proof: Since the adjacency matrix A of a graph is real and symmetric, the n

eigenvalues of A are real. For large values of λ, φ(H) = O(λn). Thus in the

range between the two larger eigenvalues, φ(G) has a minimum value. The result

now follows since polynomials are continuous and by Lemma 4.5, a polynomial

from the deck has only simple roots.

Remark 4.8 By examining the graphs of φ(G) and φ(H) against λ, the fol-

lowing result follows immediately (See Figure 7).

Theorem 4.9 Let (G, H) be a counter example pair to the PRP and let

a0(H) > a0(G). If the eigenvalues of G are Λ1,Λ2, . . . ,Λn and `1, `2, . . . , `n

are the eigenvalues of H, then Λ1 > `1 ≥ `2 > Λ2 ≥ Λ3 > `3 ≥ `4 >

Λ4 . . . ≥ Λn−1 > `n−1 ≥ `n > Λn. If φ(G) has a minimum value between

two successive eigenvalues of G, then H has one double eigenvalue or

two simple eigenvalues in this range. There are no eigenvalues of H

between every pair of successive eigenvalues of G in which range φ(G) has

a maximum value.

Theorem 4.10 If a counter example pair (H, G) to the PRP exists, then

|minmaxφ(G)-maxminφ(G)|≥ ∆a0 > 1.

Proof: The required condition is necessary for both G and H to have n real

eigenvalues.
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Theorem 4.11 Let φ denote the integral of the sum of the polynomials in

the p-deck of a graph H. Let φb be the largest value of the local minima of

φ and φt be the least value of the local maxima of φ. If bφtc = dφbe, then
H is polynomial reconstructible.

Proof: The constant term of the characteristic polynomial is an integer. The

required condition ensures that a0(H) takes only one value.

Remark 4.12 In all examples tried so far the condition in Theorem 4.11 was

found to hold. This condition is an easy criterion in the search for a counter

example to the PRP.

Theorem 4.13 (Cvetković) If (G, H) is a counter example pair to the

PRP, and H is disconnected, then H has two components only.

Remark 4.14 The proofs of the two theorems that follow make use of the

counter example technique. They show that interlacing would be violated so

that counter examples cannot exist for particular classes of graphs , thus proving

that these classes are polynomial reconstructible.

Theorem 4.15 (Cvetković and Lepović) Trees are polynomial recon-

structible.

Theorem 4.16 (Sciriha and Formosa) If a component of a disconnected

graph G is a tree, then G is polynomial reconstructible.

5 Graphs with Pendant Edges

Remark 5.1 Although the counter example method is used in [12] to study

the polynomial reconstruction of a graph with at least one terminal vertex,

the techniques employed have little in common with those used earlier. The

relation between the geometrical structure of the cospectral one-vertex-deleted

subgraphs H − uH , G− uG and the particular properties of the singular cards

in the p-deck are taken advantage of, to yield powerful results for this class of

graphs.

Disconnected graphs with more than two components or with components of

different order are polynomial reconstructible. Besides there are no counter

examples to the PRP for graphs of order 10 or less [7]. Hence graphs with K2

as a component are polynomial reconstructible.
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In this section, the graph H refers to any graph with at least one terminal vertex

which does not have K2 as a component. Thus if wv is a pendant edge and v the

terminal vertex, then the degree of w is at least two. We suppose that H is not

polynomial reconstructible and that as a result there exists a counter example

pair (G, H) to the polynomial reconstruction problem PRP.

Figure 8: A Counter Example pair (G, H).

Lemma 5.2 For a card containing the characteristic polynomial φ(H−vH)

in the p-deck of H corresponding to a terminal vertex vH , there exists a

terminal vertex vG in G such that φ(G− vG) = φ(H − vH). (See Figure 8.)

Proof: Since the p-decks ofH andG are the same, the two graphs have the same

degree sequence. Thus there is a one-to-one matching σ between the vertices

in V(G) and those in V(H) such that when σ(uG) = uH , then φ(G − uG) =

φ(H − uH). From the proofs of Lemmas 3.4 and 4.2, it follows that a necessary

condition is that corresponding vertices, uG and uH , have the same degree. This

matching need not be unique.

Remark 5.3 We denote by wHvH a pendant edge of H and by wGvG the

pendant edge of G such that φ(G−vG) = φ(H−vH), with vH , vG being terminal

vertices. We refer to wH and wG as next-to-terminal (NTT) vertices.

Lemma 5.4 If the graph H has a pendant edge wHvH , with terminal vertex

vH , then −a0(H) is the coefficient of λ in φ(H − wH).

Proof:

This follows by comparing the constant terms in

φ(H) = λφ(H − vH)− φ(H − vH − wH),

bearing in mind that φ(H − vH − wH) = φ(H−wH)
λ [1].
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5.1 The Singular Cards in PD(H)

Theorem 5.5 If G, H are non-singular, then the graphs G−wG and H −
wH are singular and their characteristic polynomials differ only in the λ

term.

Proof: Each of the graphs G−wG and H−wH has an isolated vertex and so has

nullity one. The removal of a pendant edge and its vertices from a graph leaves

the nullity unchanged. Thus each of the graphs H − vH −wH and G− vG −wG

is non-singular.

By applying equation (2) to graphs G and H in turn, and bearing in mind that

φ(H − vH) = φ(G− vG) as well as Remark 4.3, we deduce that

φ(H)−φ(G) = φ(G−vG−wG)−φ(H−vH −wH) = ∆a0, ∆a0 ∈ Z−{0}. (3)

We now use

φ(G− vG − wG) =
φ(G− wG)

λ
(4)

and a similar relation for H. Thus

φ(G− wG) = φ(H − wH) + λ(∆a0), ∆a0 ∈ Z − {0} (5)

as required.

Figure 9: The vertices x and y in (G, H).

Theorem 5.6 If the graph H has a pendant edge wHvH , with terminal

vertex vH , and (G, H) is a counter example pair to the PRP, then there

exists a vertex x of H of the same degree as wH such that H − x and

H − wH are singular and φ(H − x) = φ(H − wH) + λ(∆a0), ∆a0 ∈ Z − {0}.
(See Figure 9.)

Proof: Since G and H have the same p-deck, and φ(G − wG) 6= φ(H − wH)

by Theorem 5.5, there exists a vertex x of H such that φ(H − x) = φ(G−wG).

Thus both H − x and H −wH are singular. Substitution in equation (5) yields

the result.



Polynomial Reconstruction – Old and New Techniques – I. Sciriha 14

Corollary 5.7 At least two cards in the p-deck of H have nullity one.

Proof: From the proof of Theorem 5.6, it follows that the cards for H − wH

and H − x have a zero eigenvalue.

Lemma 5.8 Let y be a vertex of G and x a vertex of H such that

φ(G − wG) = φ(H − x) and φ(H − wH) = φ(G − y). Then the four ver-

tices x, y, wG, wH have the same degree.

Proof: We recall that the number of edges of a graph is the negative of the

second non-zero coefficient of the characteristic polynomial. This coefficient is

the same for G and H and also for G− wG, H − x, H − wH and G− y.

Remark 5.9 Lemma 5.8 supplies an alternative proof that a graph with K2

as a component is polynomial reconstructible. If one of the NTT vertices wG

or wH is of degree one then both are of degree one, so that both G and H are

disconnected, a contradiction by Lemma 4.6. In [12] we find sufficient conditions

for graphs with at least one pendant edge to be polynomial reconstructible.

Theorem 5.10 Vertices x and y, defined in Lemma 5.8, do not have neigh-

bours of degree one.

Theorem 5.11 Let k > 0 and H be a graph, with k pendant edges, which

is not polynomial reconstructible. Then there exist k singular cards

{φ(H −xi
H) : 1 ≤ i ≤ k} where x1

H , x2
H , . . . , xk

H are vertices of degree at least

two, with no neighbour of degree one. Furthermore there exist at least

another k singular cards φ(H − w1), φ(H − w2), ... where w1, w2, ... are the

NTT vertices (also of degree at least two).

Proof: Since the p-decks of H and G are the same, there is a one-to-one

matching σ between the vertices in V(G) and those in V(H) such that when a

terminal vertex viG corresponds to viH under σ, then φ(G − viG) = φ(H − viH)

for 1 ≤ i ≤ k. By Theorem 5.5, cards corresponding to the next-to-terminal

vertices wi
H and wi

G are different and by Theorem 5.10, match with cards of

vertices with no neighbour of degree one. Thus H has k terminal vertices

viH , k next-to-terminal vertices wi
H corresponding to singular cards H − wi

H

and k vertices xi of degree at least two with no neighbour of degree one, also

corresponding to singular cards H − xi. The same holds for G.



Polynomial Reconstruction – Old and New Techniques – I. Sciriha 15

Remark 5.12 The result of Lemma 5.11 leads to the polynomial reconstruction

of a number of subclasses of the class of graphs with pendant edges. The follow-

ing theorem establishes conditions, based on criteria that are easily recognisable

from the p-deck, which are separately sufficient for polynomial reconstruction.

Theorem 5.13 Let H be a graph with k pendant edges where k > 0. Each

of the following conditions is separately sufficient for the characteristic

polynomial of H to be recovered from the p-deck of H.

(i) the number of singular cards in the p-deck is less than 2k;

(ii) the number of vertices of degree at least 2 is less than 2k.

5.2 Bipartite Graphs with Pendant Edges.

Theorem 5.14 If H is a graph with at least one pendant edge wv, then H

and G in a counter example pair to the PRP are non-singular.

Proof: This follows from Theorem 3.14.

Corollary 5.15 If H is a bipartite graph of odd order with at least one

pendant edge, then H is polynomial reconstructible.

Proof: The result follows since a bipartite graph with an odd number of vertices

is singular.

Remark 5.16 A bipartite graph of even order n with at least one pendant edge

is reconstructible if it is singular since there exists a card with repeated zero

eigenvalues in its p-deck. What remains to be studied is the class of non-singular

bipartite graphs of even order with at least one pendant edge. Let H be a graph

in this class.

If the number of closed walks of size n can be recovered from the p-deck, then

a0 can be determined by Newton’s recursive formulae and H would then be

polynomial reconstructible. An alternative approach is to prove that the partner

G, which together with H forms a counter example to the PRP, cannot exist.

This problem is still open in general.

Remark 5.17 In searching for a counter example to the PRP, the criteria in

the following two theorems should prove useful.

Theorem 5.18 If H has k > 0 pendant edges, and is not polynomial re-

constructible, then there exist k pairs of singular cards in PD(H) cor-

responding to 2k vertices with the vertices in a pair being of the same

degree.
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Theorem 5.19 Let H be a graph with k > 0 pendant edges. The following

condition is necessary for H not to be polynomial reconstructible:

There exists b ∈ Z − {0} and k pairs of singular cards in PD(H) with the

polynomials in each pair differing by bλ.

Remark 5.20 The value of b in Theorem 5.18 is ∆a0, the difference in the

constant terms of φ(H) and φ(G). Thus it is the same for all pairs

{(xi, wi), 1 ≤ i ≤ k}.

Figure 10: Polynomial Reconstructible Graphs.

Remark 5.21 We can deduce that the graphs in Figure 10, which have at least

one vertex of degree one, are polynomial reconstructible by Theorem 5.18, since

the first graph has only one singular one-vertex-deleted subgraph whereas in the

second graph, only NTT vertices have the same degree.

We have considered various subclasses of the class of graphs with at least one

terminal vertex. We have seen that a close look at the singular cards in the p-

deck of a graph H with at least one terminal vertex, can give conclusive evidence

that H is polynomial reconstructible.

6 Conclusion

Remark 6.1 By interlacing, we can show that polynomial reconstruction is

true for a substantial number of graphs if we establish a sufficient condition for

the multiplicity of an eigenvalue to increase with the deletion of at least one

vertex.

There are still subclasses of the class of graphs with terminal vertices for which

the PRP is not yet resolved. Among these we find the even non-singular bipartite

graphs.

The singular cards in the p-deck may give conclusive evidence that a graph is

polynomial reconstructible but the presence of singular cards in the p-deck is
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not sufficient for the parent graph to be singular. The PRP is still open for

singular graphs.

The PRP for a particular class of graphs is often hard to resolve because the

p-deck of a connected graph may appear to reconstruct the characteristic poly-

nomial of a disconnected graph. The PRP is resolved for disconnected graphs

in which one component is a tree [13] but is still open for other types of com-

ponents.
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