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Abstract— The paper proposes a multilayer perceptron neu-
ral network controller for dual adaptive control of a class
of stochastic MIMO nonlinear systems subject to functional
uncertainty. The neural network parameters are adjusted in
real-time using the Unscented Kalman filter algorithm and
no pre-operational training phase is required. Dual adap-
tive control aims to strike a compromise between the two
control characteristics of caution and probing, leading to
an improved overall performance. The system is evaluated
through numerical simulations and Monte Carlo analysis. The
resulting performance of the dual adaptive controller is not only
consistently superior to non-dual adaptive control schemes, but
also surpasses the performance of similar controllers that are
based on Extended Kalman filter estimators. This reflects the
enhanced accuracy of the Unscented Kalman filter estimator,
despite being a local estimation method. In addition, unlike use
of other estimators, the proposed approach neither requires the
computation of complex Jacobian matrices as part of the design,
nor the evaluation of such matrices in real-time. This renders
the proposed controller inherently amenable and practical for
real-time implementation.

I. INTRODUCTION

Dual adaptive control is an adaptive control strategy based
on stochastic control principles. It aims to generate a control
signal which not only takes into consideration the degree of
uncertainty present in the estimates of the plant’s unknown
features, but also probes the plant input so as to actively
reduce this uncertainty. These two aims, referred to as
caution and probing (hence dual control), aim to generate
a control signal that is able to maintain an optimal tracking
performance in the presence of uncertainty. This is obtained
through optimization of a suitably-defined cost function [1],
[2].

The ideal cost function which leads to an optimal dual
controller entails the use of dynamic programming to solve
the Bellman Equation, whose computation in this context
inevitably results in a hugely impractical computational
demand [3], [4]. It is thus common practice to design instead
dual controllers that are based on a suboptimal cost function
that leads to a tractable, albeit less optimal, solution but
which somewhat retains the two desirable properties of dual
control. Several dual suboptimal cost functions have been
proposed in the literature [5]–[7].

In this paper we are concerned with dual adaptive con-
trol of a nonlinear class of multiple-input, multiple-output
(MIMO) systems subject to functional uncertainty. A related
but simpler problem was originally considered by Fabri
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and Kadirkamanathan [4], [8] for input-affine single-input,
single-output (SISO) nonlinear systems. Both Gaussian basis
function and multilayer perceptron (MLP) neural networks
were considered as estimators for the unknown nonlinear
functionals. Kalman filter and Extended Kalman filter (EKF)
techniques were applied for neural network training and
for generation of the control signal. The Innovations Dual
Control (IDC) criterion, originally proposed by Milito et al.
[6], was used as cost function. In [9] Bugeja and Fabri
extended the SISO work in [4] and [8] to dual adaptive
trajectory tracking control of a mobile robot, which is a
specific example of MIMO systems. This was followed by
Král and Šimandl’s dual adaptive controller [10] for a more
general MIMO class of nonlinear systems which utilizes
Filatov and Unbehauen’s Bicriterial cost function [5] instead
of the IDC, and a Gaussian Sum Filter (GSF) for parameter
estimation.

The main novel contribution reported in this paper is the
extension of the adaptive controllers developed in [4], [8]
and [9] to a generic class of MIMO nonlinear systems that
are affine in the control input, utilizing MLP dual adaptive
neuro-control laws. In addition, the use of Unscented Kalman
filter (UKF) techniques [11] is proposed for a more accurate,
efficient and real-time estimation of the MLP parameters
and a less complex derivation of the dual adaptive control
laws which does not require computation of the system’s
Jacobian matrices. This differs from [10] in two main as-
pects: (a) use of the UKF instead of the GSF as parameter
estimator. As in all global estimation methods, the GSF
requires higher computational demands than local estimation
methods such as the UKF or EKF [12]; (b) avoidance of
complex computation and on-line evaluation of the system’s
Jacobian matrices. The novel controller proposed in this
paper inherently circumvents such issues, making the system
more amenable and practical for real-time implementation.

The rest of the paper will present the problem formulation
and mathematical preliminaries in Section II, followed by a
description of the controller design in Section III. Section IV
presents the performance results of the proposed controller
together with a comparative analysis using Monte Carlo
simulations, followed by conclusions in Section V.

II. PROBLEM FORMULATION

We consider the following stochastic class of input-affine,
nonlinear square MIMO systems in discrete-time k having s
inputs and s outputs:

yk = f(xk−1) +G(xk−1)uk−1 + εk (1)
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where
• yk ∈ Rs is the output vector
• uk ∈ Rs is the control input vector

• xk−1 =
[
yT
k−n . . .y

T
k−1 uT

k−1−p . . .u
T
k−2

]T
∈

Rs(n+p) is the state vector, where 0 ≤ p ≤ n. The
u terms vanish from the state vector if p = 0

• vector f(xk−1) : Rs(n+p) 7→ Rs and matrix G(xk−1) :
Rs(n+p) 7→ Rs×s consist of unknown nonlinear func-
tionals of the state vector

• εk ∈ Rs is an additive noise signal.
The control objective is for the output vector to track
a reference input vector ydk ∈ Rs under the following
assumptions that are fairly standard in this type of work:

Assumption 1: The noise signal εk is statistically indepen-
dent and has a white zero-mean Gaussian distribution with
covariance Rε.

Assumption 2: The parameters s, p, n and the noise co-
variance Rε are known.

Assumption 3: The reference input yd is bounded and
known at least one time step ahead i.e. ydk+1 is available at
time k.

Assumption 4: G(xk−1) is bounded (has finite elements)
and nonsingular. The latter constrains system (1) to be
square.
Since the nonlinear functionals in f(xk−1) and G(xk−1)
are unknown, the problem becomes one of adaptive control
where two MLP neural networks are used to estimate and
approximate these functionals within an arbitrarily large
compact set χ in which the state vector is known to be
contained. The estimates from the neural network will be
utilized by the dual adaptive control law. The structure of
the neural networks, both with one hidden layer, is depicted
in Figure 1. Their outputs are given by (2) and (3) for the

networks approximating f(xk−1) andG(xk−1) respectively,
where f̃ ∈ Rs and G̃ ∈ Rs×s.

f̃k−1 =




φf
T (xk−1, âk)ŵ1k

φf
T (xk−1, âk)ŵ2k

...
φf

T (xk−1, âk)ŵsk


 (2)

The terms in these neural network equations are defined as:
Definition 1: ŵik represents the synaptic weight estimate

vector of the connection between the neuron hidden layer
and the ith element of the first neural network output
f̃k−1. Similarly, v̂i,jk represents the synaptic weight estimate
vector of the connection between the neuron hidden layer
and the (i, j)th element of the second neural network output
G̃k−1. The ˆ notation is used to indicate that the operand is
undergoing estimation.

Definition 2: φf and φG are vectors of sigmoidal acti-
vation functions whose ith element is respectively given by

φf (i) =
(
1 + exp

(
−ŝ T

i x̌
) )−1

, i = 1, . . . , Lf

φG(i) =
(
1 + exp

(
−t̂ T

i x̌
) )−1

, i = 1, . . . , LG

where x̌ =
[
xT 1

]T
(of length La) denotes the system state

vector augmented by an additional constant input serving
as a bias term. ŝi and t̂i (both having the same length
as x̌) serve to shape the hidden layer units and denote
the ith vectors in the group vectors â, b̂ respectively i.e.

â =
[
ŝT1 · · · ŝ T

Lf

]T
and b̂ =

[
t̂T1 · · · t̂ T

LG

]T
repre-

senting the hidden neuron parameters. Lf and LG denote
the number of sigmoidal activation functions and the time
index, which is the same on both sides, has been dropped
for clarity.

xk−1

ŵik { i = 1, . . . , s
φf (1)

f̃k−1

+

+

φf (Lf )

φf (2)

ŝik { i = 1, . . . , Lf

(a) neural network for f(xk−1)

xk−1

v̂i,jk

{
i = 1, . . . , s
j = 1, . . . , s

G̃k−1

+

+

φG(1)

φG(LG)

φG(2)

t̂ik { i = 1, . . . , LG

(b) neural network for G(xk−1)

Fig. 1: Sigmoidal multilayer perceptron neural networks.

G̃k−1 =




φG
T (xk−1, b̂k)v̂1,1k φG

T (xk−1, b̂k)v̂1,2k · · · φG
T (xk−1, b̂k)v̂1,sk

φG
T (xk−1, b̂k)v̂2,1k φG

T (xk−1, b̂k)v̂2,2k · · · φG
T (xk−1, b̂k)v̂2,sk

...
...

. . .
...

φG
T (xk−1, b̂k)v̂s,1k φG

T (xk−1, b̂k)v̂s,2k · · · φG
T (xk−1, b̂k)v̂s,sk


 (3)
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Let all the neural network synaptic weights and hidden
neuron parameters be grouped into a single weights vector
ẑk defined as follows:

Definition 3: ẑk ,
[
q̂Tk r̂Tk

]T
, where

q̂k =
[
ŵ1k

T . . . ŵsk
T âT

k

]T

r̂k =
[
v̂1,1k

T . . . v̂1,sk
T . . . . . . v̂s,1k

T . . . v̂s,sk
T b̂Tk

]T
.

Furthermore the following condition is assumed, justified by
the neural network Universal Approximation Property [13]:

Assumption 5: Inside the compact set χ, there exists an
optimal value for the weights vector ẑk, denoted by z∗k , such
that the neural network approximation errors are negligibly
small.
This optimal value of ẑk is unknown and thus requires
estimation. Utilizing Definitions 1 to 3, Equations (2), (3)
and Assumption 5, then within χ the MIMO system (1) can
be represented in the following state space form:

z∗k+1 = z∗k + ρk

yk = h (xk−1,uk−1, z
∗
k) + εk,

(4)

where the vector-valued function h (xk−1,uk−1, z
∗
k) is non-

linear in z∗k and is given by

h (xk−1,uk−1, z
∗
k) = f̃(xk−1, q

∗
k) + G̃(xk−1, r

∗
k)uk−1.

(5)
Furthermore, an additive white noise term ρk, taken to be
Gaussian distributed with zero mean and covariance Qρ, is
introduced in (4) so as to model any small errors resulting
from Assumption 5. This so-called process noise term has
the additional benefit of aiding parameter convergence during
the estimation process.

III. CONTROLLER DESIGN

Dual control design is based upon a stochastic approach.
Thus the unknown optimal weights vector z∗k is modelled
as a random variable with initial condition z∗0 taken to be
Gaussian distributed with mean ẑ0 and covariance P0. It
is additionally assumed that the output noise term εk, the
process noise ρk and the initial condition ẑ0 are mutually in-
dependent for all k. In effect, under these considerations and
Assumption 1, Equation (4) represents a nonlinear stochastic
state space model subject to additive Gaussian noise terms.

Since the output equation in (4) is nonlinear in the optimal
weights vector term, the distribution of the random variables
will not remain Gaussian. Hence nonlinear estimation tech-
niques must be applied in order to compute the probability
distribution of these variables and its propagation through
time. In this work we opt to use the UKF as a nonlinear
estimator [11], [14]. The UKF uses a Gaussian density
function to approximate the non-Gaussian distribution but
it is specified using a set of sample points, called sigma
points, which when propagated through the nonlinear system
dynamics, capture the posteriors more accurately than the
EKF, up to second order. The GSF, which approximates
non-Gaussian distributions through a summation of several

Gaussian components, can achieve better accuracy in gen-
eral. However, being based on multiple components whose
quantity may also increase at each time step unless pruning
is applied [15], the GSF is much more computationally
demanding than the UKF.

The dual adaptive control law developed in this paper is
based upon the explicit-type IDC cost function (6) adopted
from [4], [6], [8] and redesigned to fit the nonlinear MIMO
system under consideration, namely:

Jinn = E
{(
yk+1 − ydk+1

)T
Q1

(
yk+1 − ydk+1

)
+

uT
kQ2uk + iTk+1Q3ik+1

∣∣∣Ik
}

(6)

where E
{
· | Ik

}
denotes mathematical expectation

conditioned upon the information state Ik ,
{yk · · ·y0 uk · · ·u0}. This cost function explicitly includes
the estimator’s innovations vector ik+1 by means of which
we can influence the extent to which the innovations remain
high, thereby driving the estimator by richer information
which could improve and accelerate the estimation process.
In this manner a controlled level of probing is introduced.
The weighting matrices Q1 and Q2 are (s× s) diagonal
matrices with real positive elements. Hence Q1 and Q2 are
positive-definite. Q3 is also an (s× s) diagonal matrix, and
each of its diagonal elements is less than or equal to zero,
and greater than or equal to the corresponding element in
−Q1, i.e. −Q1 ≤ Q3 ≤ 0 (element-wise).

Weighting matrix Q1 introduces a penalty on tracking
errors, Q2 penalizes large control inputs, and Q3 is used
to adjust the weight of the innovations vector within the
cost function. The latter is what induces the dual-like effect
characterizing the proposed stochastic control law.

A. The UKF estimator

The estimator recursively generates a predictive estimate
ẑk+1|k of the optimal weights vector z∗k+1 at every time
instant k for use by the dual adaptive control law. The
prediction is required because of the relative degree of one
appearing in the system equation. The mean of the non-
Gaussian conditional distribution of z∗k+1 given Ik represents
a good choice for such an estimate. The UKF approximates
this distribution by a Gaussian density function. We thus take
the mean of the latter to approximate the required predictive
estimate ẑk+1|k. The covariance of the Gaussian distribution
from the UKF, Pk+1|k can be viewed as a measure of this
estimate’s uncertainty. These two statistics are computed
at each time instant k according to the following UKF
procedure which is largely the same as that in [14] but
modified slightly so as to generate predictive instead of
filtered updates. At any time step k, given the previous
prediction

(
ẑk|k−1,Pk|k−1

)
, calculate

(
ẑk+1|k,Pk+1|k

)
by

first forming the matrix Zk|k−1 of 2N + 1 sigma point
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vectors, where N denotes the length of ẑk, as follows:

Z(:,1)k
= ẑk|k−1

Z(:,i)k
= ẑk|k−1 + γ

√
Pk|k−1

(:,i)
, i = 2, . . . , N + 1

Z(:,i)k
= ẑk|k−1 − γ

√
Pk|k−1

(:,i)
, i = N + 2, . . . , 2N + 1

where the notation A(:,i) denotes the ith column vector of
any given matrix A,

√
Pk|k−1 denotes a matrix square root-

like operation such as lower-triangular Cholesky factoriza-
tion, and γ =

√
N + λ where λ is a scaling parameter given

by λ = α2 (N + κ) − N . The constant α determines the
spread of the sigma points around ẑk and is usually set to
a small positive value, and the constant κ is a secondary
scaling parameter typically set to 3−N [14].

The sigma point vectors are then propagated through (4)
and (5), the system dynamic equations, as follows:

F (:,i)k−1 = f̃
(
xk−1,Zq(:,i)k

)

G(:,:,i)k−1 = G̃
(
xk−1,Zr(:,i)k

)

Y(:,i)k
= F (:,i)k−1 + G(:,:,i)k−1uk−1

where i = 1, . . . , 2N + 1, the notation A(:,:,i) denotes
the ith matrix from a group of matrices A, and Zqk,
Zrk are submatrices of size

(
Lf (s+ La) × 2N + 1

)
and(

LG

(
s2 + La

)
× 2N + 1

)
respectively, from the matrix

of sigma vectors Zk after its columns are repartitioned
according to Definition 3 i.e. Zk =

[
Zq

T
k Zr

T
k

]T
.

These are then used to approximate the mean and covari-
ance of the estimated output vector ŷk using a weighted
sample mean and covariance from the propagated sigma
points Yk:

ŷk|k−1 =

2N+1∑

i=1

Wm(i)Y(:,i)k

Pyyk|k−1 =

2N+1∑

i=1

Wc(i)

(
Y(:,i)k

− ŷk
) (

Y(:,i)k
− ŷk|k−1

)T

+Rε

Pzyk|k−1 =

2N+1∑

i=1

Wc(i)

(
Z(:,i)k

− ẑk
) (

Y(:,i)k
− ŷk|k−1

)T

where the above so-called Unscented Transform weights are:

Wm(1) =
λ

N + λ

Wc(1) =
λ

N + λ
+ 1− α2 + β

Wm(i) =Wc(i) =
1

2 (N + λ)
, i = 2, . . . , 2N + 1

The constant parameter β is used to incorporate prior knowl-
edge of the estimate’s distribution (for a Gaussian, β = 2
[14]). The predictive estimates

(
ẑk+1|k,Pk+1|k

)
are then

given by:

ẑk+1|k = ẑk|k−1 +Kkik

Pk+1|k = Pk|k−1 −KkPyyk|k−1K
T
k +Qρ

where Kk = Pzyk|k−1Pyy
−1
k|k−1 represents the Kalman

Gain and ik = yk − ŷk|k−1 is the innovations vector.

B. The control law

The minimization of cost function (6) requires estimation
of the probability density function of yk+1 | Ik. Following
the UKF methodology, this is approximated by a Gaussian
of mean ŷk+1|k and covariance Pyyk+1|k given by:

ŷk+1|k = f̂k + Ĝkuk, (7)

where

f̂k =

2N+1∑

i=1

Wm(i)F (:,i)k
and Ĝk =

2N+1∑

i=1

Wm(i)G(:,:,i)k

(8)
and covariance:
Pyyk+1|k = Rε +

2N+1∑

i=1

Wc(i)

(
Df (:,i) +DG(:,:,i)uk

)(
Df (:,i) +DG(:,:,i)uk

)T

(9)
where

Df (:,i) = F (:,i)k
− f̂k and DG(:,:,i) = G(:,:,i)k

− Ĝk (10)

These equations follow directly by applying the Unscented
Transform and its related Gaussian approximations to cal-
culate the statistics of z∗k+1 after undergoing the nonlinear
transformation h

(
xk,uk, z

∗
k+1

)
.

Theorem 1: The control law minimizing cost function
Jinn of (6) subject to the nonlinear dynamic system (1) and
all previous definitions, assumptions and preliminary results
derived in the formulation of the UT-based scheme is given
by

uk =
(
ĜT

kQ1Ĝk +Q2 +NGGk

)−1

×
(
ĜT

kQ1

(
ydk+1 − f̂k

)
− κGf k

)
(11)

where f̂k and Ĝk are computed via (8) and the auxiliary
terms κGf k and NGGk are given by

κGf k =

2N+1∑

i=1

Wc(i)DG(:,:,i)
TQ4Df (:,i) (12)

NGGk =

2N+1∑

i=1

Wc(i)DG(:,:,i)
TQ4DG(:,:,i) (13)

with DG(:,:,i) and Df (:,i) computed as in (10) and matrix
Q4 , Q1 +Q3.

Proof: Given the approximate Gaussian distribution of
yk+1 | Ik specified by the mean and covariance (7) and (9),
and standard results from multivariate probability theory, it
follows that cost function (6) can be rewritten as:

Jinn =
(
ŷk+1|k − ydk+1

)T
Q1

(
ŷk+1|k − ydk+1

)

+tr
(
Q4Pyyk+1|k

)
+ uT

kQ2uk. (14)
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By substituting for ŷk+1|k and Pyyk+1|k in (14), Jinn can be
factorized completely in terms of uk. The resulting quadratic
function is differentiated with respect to uk and equated to
zero in order to determine the stationary point. This leads
to the dual control law (11). Moreover, the Hessian matrix
obtained by the second derivative of Jinn with respect to uk

yields

∂

∂uk

(
∂Jinn
∂uk

)
= 2

(
ĜT

kQ1Ĝk +Q2 +NGGk

)
.

Since Q1 and Q2 are positive-definite and Q4 is positive-
semidefinite, it follows that the above Hessian matrix is
positive-definite subject to the non-stringent condition that
Wc(i) > 0 ∀ i, in order to ensure that NGGk in (13) remains
positive-semidefinite. Hence, the dual adaptive control law
in Theorem 1 minimizes uniquely the selected performance
index Jinn (6) in the context of this scheme, and the inverse
term in the control law exists without exceptions.
It is worth noting the effect of the innovations weighting
matrix Q3, appearing in cost function (6), on matrix Q4

and consequently the control law (11). At one extreme,
with Q3 = −Q1, matrix Q4 becomes zero which in turn
makes the terms κGf k, NGGk vanish in (11). The controller
thus ignores completely the estimates’ uncertainty which
leads to a Heuristic Certainty Equivalent (HCE) control law.
At the other extreme, with Q3 = 0, maximum attention
is given to the uncertainty terms in (11), which leads to
cautious control. Both these extremes are inferior to dual
control in terms of performance [4]. HCE control leads to
large tracking errors and excessive control actions when the
estimates’ uncertainty is relatively high, whereas cautious
control is notorious for a sluggish response and control turn-
off. For intermediate settings of Q3, the controller strikes a
compromise and operates in dual adaptive mode by obtaining
a balance between these two extremes of excessive caution
or aggressive control action, leading to a greatly improved
performance.

IV. RESULTS

The dual adaptive control scheme proposed in this paper
is tested and validated using numerical simulations of a plant
that satisfies the stochastic MIMO-square, input-affine model
defined in (1) with the unknown nonlinear functionals in
f(xk−1) and G(xk−1) given by:

f(xk−1) =

[
sinx(1) cosx(2)
cos
(
x(1) + x(2)

)
]

G(xk−1) =

[
2 + sinx(1) cosx(2)

− cos
(
2x(1) + x(2)

)
1 + sinx2(2)

]

where s = 2, n = 1, p = 0 and x(1) and x(2) are the
elements of state vector x which in this example is equal
to y. G(xk−1) satisfies Assumption 4. The noise covariance
Rε = 0.0015I2, where Ii denotes an (i× i) identity matrix.
The reference input vector ydk ∈ R2 satisfies Assumption 3
and consists of two terms: the first term yd(1) is generated by
sampling a unit amplitude 5 Hz square wave filtered through
a network of transfer function 1/ (0.5s+ 1), and the second

term yd(2) = −yd(1). The two MLP neural networks used to
estimate f(xk−1) and G(xk−1) are structured with Lf =
6 and LG = 5 neurons, resulting in a total of N = 65
parameters for estimation. The process noise covariance Qρ
is set to 10−8IN and the initial condition and covariance of
z∗0 are set with the elements of ẑ0 generated at random and
P0 = 1.0IN . The UKF parameters are set to α = 10−3, κ =
3−N and β = 2.

Figure 2 shows the typical output response of a single trial
when the controller is tuned to give HCE (Q3 = −Q1),
cautious (Q3 = 0) and dual adaptive (Q3 = −0.7Q1)
control modes respectively. Plots (a) and (b) show that in
HCE mode, the controller leads to an inadequate transient
response characterized by relatively large output overshoots.
Note that, for visual clarity, the y-axis of these two specific
plots is truncated and peak overshoot in excess of 2 units
was actually obtained. This is a direct result of the aggressive
and incautious nature of the HCE approach which completely
ignores the high uncertainty in the initial parameter estimates
and uses them as if they were perfectly true. In cautious
mode (plots (c) and (d)) and dual mode (plots ((e) and (f)),
both controllers exhibit significantly lower transient errors
and overshoot than HCE. However, the cautious controller is
also more sluggish than both the dual and HCE modes. It is
slow to rise at start-up and is practically inactive during the
first 0.3 seconds, which leads to a slower decay of transient
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Fig. 2: Single trial results: HCE, cautious and dual
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errors. Thus, as anticipated, the performance of the dual
control mode lies midway between the two extremes and
qualitatively yields the best transient performance in each of
the three schemes, avoiding excessive overshoot and sluggish
response as evident in plots (e) and (f). However one should
note that in a stochastic system, the information derived form
single trial results is only indicative and does not convey
reliable performance measures characterizing the system’s
general average behaviour over time.

In order to address this issue we resort to Monte Carlo
analysis where, for each control mode, simulation tests are
repeated for 500 trials, each time generating a different noise
realization and setting of initial parameters. The reference
input vector is unchanged and the tracking performance of
each trial is quantified through calculation of a metric C
consisting of the sum of the squared norm of the error
between yd and y over a time horizon of 125 sample
instants: C =

∑125
k=0 ‖ydk − yk‖2. Operating at a sampling

rate of 50Hz, this corresponds to a time window of 2.5 sec-
onds which adequately covers the transient response of the
output for this example. Lower values of C indicate superior
control performance. For evaluation purposes, this metric is
preferred over cost function (6) because it captures uniquely
the tracking capabilities of the controller. Additionally, for
comparative analysis, Monte Carlo trials are also performed
with the controller’s UKF estimator replaced with a standard
EKF estimator. This is expected to lead to larger estimation
inaccuracy, thereby deteriorating the control performance.

Table I summarizes the outcome of the Monte Carlo tests.
It shows the median, mean and variance of C over 500 trials
for each control mode in both the UKF and the EKF-based
cases. These three statistical measures are smaller in all
control modes of the UKF-based controller than the EKF.
This reflects the general superior performance of the UKF
estimator, leading to smaller mean and median accumulated
cost, as well as variance. Moreover, in both cases, the
statistics are lowest for the dual mode case, followed by
cautious control and ultimately HCE control. The UKF-
based dual mode controller thus gives the overall lowest
median, mean and variance measures, reflecting best control
performance in a statistically consistent manner.

TABLE I: Statistical measures of the accumulated cost.

Controller Median Mean Variance

EKF-HCE 86.13 148.6 6.3×104

EKF-Cautious 21.65 24.24 106.3
EKF-Dual 13.36 16.23 100.9
UKF-HCE 74.18 106.4 1.3×104

UKF-Cautious 16.13 18.59 82.55
UKF-Dual 11.76 13.62 55.67

V. CONCLUSION

In this paper we propose a UKF-based MLP neural
network controller for dual adaptive control of a class of
stochastic MIMO nonlinear systems subject to functional
uncertainty. This generalizes the work proposed earlier by
the same authors from dual adaptive control of differential

mobile robots [9], [16] to a more generic class of MIMO
nonlinear systems. This type of adaptive control aims to
strike a compromise between the dual control aims of caution
and probing, leading to an improved overall response. The
performance of the proposed system is evaluated through ex-
tensive Monte Carlo analysis of a MIMO nonlinear stochastic
example plant. It is shown that the performance of the
UKF-based dual adaptive controller is not only consistently
superior to HCE and cautious control, but also surpasses the
performance of similar controllers which are based on EKF
estimation. This reflects the enhanced accuracy of the UKF
over the EKF estimator, despite both being local estimation
methods. Use of the UKF also avoids the computation of
complex Jacobian matrices as part of the design and their
evaluation in real-time. These features make the proposed
controller very feasible and attractive from a practical im-
plementation point of view. Future work may include an
analysis of the convergence and stability properties of the
control system. Stability analysis of dual adaptive nonlinear
control is an open research challenge for the future [5].
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