
Trajectory Tracking in the Presence of Obstacles
using the Limit Cycle Navigation Method

Raphael Grech and Simon G. Fabri†

Department of Electrical Power and Control Engineering
University of Malta

Msida MSD 06, Malta
† E-mail: sgfabr@eng.um.edu.mt

Abstract— This paper proposes a system for effecting trajec-
tory tracking in combination with obstacle avoidance in mobile
robotic systems. In robotics research, these two situations
are typically considered as separate problems. This work
approaches the problem by integrating classical trajectory-
following control schemes with Kim et al.’s Limit Cycle
Navigation method for obstacle avoidance. The use of Ar-
tificial Potential Function methods for obstacle avoidance is
purposely avoided so as to prevent the well-known problems
of local minima associated with such schemes. The paper
also addresses the problem of non-global obstacle sensing and
proposes modifications to Kim et al.’s method for handling
multiple, overlapping obstacles under local sensing conditions.

I. INTRODUCTION

An important problem in mobile robotics deals with the
design of a suitable control system for making a robot fol-
low some desired trajectory in time, whilst simultaneously
avoiding obstacles that might be located on the path defined
by this trajectory. Classically, these two requirements have
been solved as separate problems: obstacle-free tracking
of a trajectory in one instance [1], or obstacle avoidance
without trajectory constraints in the second instance [2],
[3].

Control algorithms for handling situations that integrate
these two sub-problems have been proposed by Grech
and Fabri in [4], where the trajectory tracking algorithm
proposed by Oriolo et al. [1] was combined with a modified
version of the classical Artificial Potential Function (APF)
method [2] for obstacle avoidance. In the presence of
obstacles blocking the desired trajectory, the three methods
proposed in [4] generate a new local path around the
obstacle. The robot will therefore temporarily depart from
the target trajectory so as to avoid an obstacle. Once
the obstacle is circumvented, the robot will follow the
desired trajectory until another obstacle is detected and the
avoidance mechanism is repeated.

The APF method for obstacle avoidance suffers from
the well-known problem of local minima. Given certain
obstacle configurations, the robot could get stuck in a so-
called potential well and the robot stops moving, thereby
failing to circumvent the obstacle. An example of this
problem is shown in Figure 1 where the robot is faced with

a particularly challenging U-shaped obstacle configuration.
The robot fails to circumvent the obstacle and is unable
to catch up with the desired circular trajectory from that
instant onwards.

In this paper, instead of relying on APF techniques
for obstacle avoidance, we make use of the Limit Cycle
Navigation method originally proposed by Kim et al. in
[5]. This method overcomes the local minima problem
associated with APF techniques by generating a new local
trajectory based upon the limit cycle dynamics of a second
order system. The circular trajectory of the proposed limit
cycle helps in providing a smooth trajectory for the robot
to follow. The Limit Cycle Navigation method has been
adopted in this paper because it is a simple, yet effective
way of producing an alternative trajectory around an obsta-
cle. Also, it is not computationally intensive for real time
processing.

Whereas the work of Kim et al. [5] addressed only the
problem of obstacle avoidance, our main contribution in
this paper is to combine the Limit Cycle Navigation method
with trajectory tracking so that the robot continues to follow
the desired trajectory after an obstacle is bypassed. This
way we are able to avoid situations of the type shown in
Figure 1.

Another important contribution of this paper is motivated
by its application. This research is ultimately aimed towards
the development of a mobile robotic system based in a fac-
tory shop floor to transport material to and from automated
assembly machines by following some predefined desired

Fig. 1. APF-based obstacle avoidance: (a) robot trajectory stuck in a
potential well (b) Euclidean norm of positional error
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trajectory. In this kind of scenario, a global view of the
whole shop floor to detect obstacles would be a costly
implementation. Hence, in our system we are assuming
that the robot can only sense obstacles located within a
limited range in its vicinity. In addition, the environment
in which the robot is operating is highly unstructured.
This means that maps indicating obstacle locations are not
really relevant because most obstacles are changing position
continuously. Hence the robot has to circumvent obstacles in
a reactive manner, i.e. it must have the capacity of avoiding
an obstacle or a set of obstacles based only upon local
information sensed in the robot’s vicinity.

Due to the issues mentioned above, the integrated tra-
jectory tracking and obstacle avoidance system being pro-
posed in this paper is designed on the principles of local
navigation. The restriction of having only local data about
the environment poses an additional challenge for the robot
to be able to circumvent obstacles without getting stuck in
loops or local minima. Hence, the Limit Cycle Navigation
method proposed in [5] is modified to cater not only for
trajectory tracking, but also for the localized sensing of
obstacles. These two features, which were not addressed in
[5], are essential considerations for our application. In this
paper we will show how the robot can navigate in cluttered
environments and how it is capable of handling obstacle
configurations where an APF approach would fail due to
potential wells.

The paper is organised as follows: Section II gives some
background on Trajectory Tracking Control and Kim et al.’s
Limit Cycle Navigation method. Section III describes how
we have modified the Limit Cycle Navigation method for
the case of local sensing and Section IV describes how the
Limit Cycle Navigation method for obstacle avoidance has
been combined with Trajectory Tracking control. Section
V shows some simulation results and finally, in Section VI,
conclusions are drawn and future developments discussed.

II. BACKGROUND

The robot considered in this report is a differentially
driven, wheeled mobile robot (WMR). This type of robot
is driven using two independently controlled wheels. The
kinematic structure of the vehicle prohibits certain vehicle
motions and imposes nonholonomic constraints [6]. The
control inputs are the robot linear velocity (V ) and the
angular velocity (ω). The kinematic state of the robot
is given by vector [x y θ]T , where (x, y) represent the
Cartesian position of the robot on a plane with respect to
some reference frame and θ is the robot orientation. The
triplet (x, y, θ) is often referred to as the pose of the robot.
Using the kinematic model for a differentially driven WMR,
the pose of the robot is given by Equation (1). The control
inputs VL and VR represent the linear velocities of the
left and right wheel respectively. 2r denotes the distance
between the wheels.
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V and ω are related to the left and right wheel velocities
VL and VR by the equations:

V =
VL + VR

2
; ω =

VR − VL

2r

In this paper, the following assumptions are considered:

• Obstacles are assumed to be circular.
• The positions of the robot and the obstacles can be

measured accurately.
• The robot’s desired position, orientation and velocity

are known; with the velocity not exceeding the robot’s
maximum velocity.

• The robot initial position is not within an obstacle.
• The ideal target trajectory is smooth and continuous.

A. Trajectory tracking

De Luca et al.’s [7] trajectory tracking controller will
be used for tracking the desired target trajectory. This
consists in the introduction of a virtual reference vehicle
to be tracked by the robot. The virtual reference vehicle
defines the desired target trajectory. The controller should
asymptotically reduce down to zero the coordinate error
[e1 e2 e3]T , detailed in Figure 2, between the real robot
and the virtual vehicle. In the following, all terms with
a subscript r will have the same definition mentioned
previously, but referred to the virtual (reference) vehicle
rather than the mobile robot.

Fig. 2. Virtual vehicle following error

The desired reference co-ordinates xr(t) and yr(t) of
the path traced by the virtual vehicle at any given time
t are provided to the controller. The calculation of the
linear velocity Vr and angular velocity ωr of the virtual
reference vehicle from xr(t) and yr(t) is called feedforward
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command generation. Using the kinematic model Equation
(1), the virtual reference vehicle orientation is given by

θr = atan2 (ẏr/ẋr) (2)

where atan2 is the four-quadrant inverse tangent function
of (ẏr/ẋr), and the linear velocity is

Vr = ±
√

ẋ2
r + ẏ2

r (3)

The angular velocity ωr is obtained by differentiating Equa-
tion (2) with respect to time yielding,

ωr =
ÿrẋr − ẍr ẏr

ẋ2
r + ẏ2

r

(4)

By applying Lyapunov stability analysis, the following
control law ensuring that the robot will asymptotically track
the reference vehicle was derived in [7]:

V = Vr cos (θr − θ) + k1 [cos θ (xr − x) + sin θ (yr − y)]
(5)

ω = ωr +

k2Vr

sin (θr − θ)
θr − θ

[cos θ (yr − y) − sin θ (xr − x)] +

k3 (θr − θ) (6)

where

k1 = k3 = 2ζ
√

ω2
r + βV 2

r

k2 = β

with β > 0 and ζ ∈ (0, 1) being design parameters.

B. Limit cycles

Nonlinear systems can display oscillations of fixed am-
plitude and fixed period without external excitation. These
oscillations are called limit cycles [8], [9]. The amplitude
of a limit cycle is independent of the initial conditions
and these are not easily affected by parameter changes.
Depending on the evolution of the state trajectories in the
vicinity of a limit cycle, one can distinguish three kinds of
limit cycles:

1) Stable Limit Cycles: all trajectories in the vicinity
of the limit cycle converge to it as t → ∞

2) Unstable Limit Cycles: all trajectories in the vicinity
of the limit cycle diverge from it as t → ∞

3) Semi-Stable Limit Cycles: some of the trajectories
in the vicinity converge to it, while others diverge
from it as t → ∞

The 2nd order nonlinear system of equations given by
Equation (7) was proposed for the Limit Cycle Navigation
system by Kim et al. [5]. These dynamic equations result in
a stable limit cycle shown in the phase portraits of Figure
3.

ẋ1 = x2 + x1(1 − x2
1 − x2

2)
ẋ2 = −x1 + x2(1 − x2

1 − x2
2) (7)

Figure 3(a) shows that trajectories from all initial points

Fig. 3. (a) clockwise limit cycle, (b) counterclockwise limit cycle

(x1, x2) in space move towards a circular limit cycle
trajectory of radius 1, in a clockwise direction. A counter
clockwise field can be easily obtained by changing the signs
in Equation (7) as follows:

ẋ1 = −x2 + x1(1 − x2
1 − x2

2)
ẋ2 = x1 + x2(1 − x2

1 − x2
2) (8)

This yields the phase portrait of Figure 3(b). A more general
form of Equation (7) will follow by introducing parameters
r and α as follows:

ẋ1 = αx2 + x1(r2 − x2
1 − x2

2)
ẋ2 = −αx1 + x2(r2 − x2

1 − x2
2) (9)

Parameter r determines the radius of the limit cycle,
whereas α = ±1 determines the direction.

C. The Limit Cycle Navigation Method

Kim et al.’s method for Limit Cycle Navigation [5],
[10] will be briefly described next. The Limit Cycle Nav-
igation system is based on the use of the stable limit
cycle dynamics defined in Equation (9) to generate a local,
circular trajectory around an obstacle that needs to be
avoided. This method results in an efficient solution for
avoiding obstacles, which contrasts with the approach of
APF methods where the robot is directed to stay as far
away from obstacles as possible. Hence the Limit Cycle
Navigation method does not suffer from the problem of
local minima.

Consider the robot shown in Figure 4 which is asked to
depart from a starting point (6, 5) and head towards the
goal at point(18, 15). An obstacle is present in the direct
line of sight between the starting point and the goal at
point (15, 12). Since we are considering a local, rather
than a global sensing approach, the robot does not detect
the obstacle immediately. This leads the robot to head
directly towards the goal. As soon as the obstacle is sensed
(approximately around point (12, 10)) the Limit Cycle Nav-
igation system takes over. Essentially, an imaginary line l is
drawn between the current robot position and the goal. The
perpendicular distance d between l and the nearest obstacle
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Fig. 4. Avoiding an obstacle

is then calculated using

d =
aQx + bQy + c

√
a2 + b2

(10)

where(Qx, Qy),(Gx, Gy) and(Rx, Ry) are the x, y co-
ordinates of the obstacle, the target and the robot, respec-
tively. a, b and c are values obtained from the straight line
equation ax + by + c = 0 of line l.

The local trajectory that the robot must follow to circum-
vent the obstacle is then given by the following equations,
based upon the limit cycle dynamics of Equation (9):

ẋ =
d

| d |
y + x(r2

v − x2 − y2)

ẏ = −
d

| d |
x + y(r2

v − x2 − y2) (11)

x and y are now interpreted as being the co-ordinates
relative to the centre of the nearest obstacle considered as
origin. If d is positive, the robot avoids the obstacle in
a clockwise manner, and vice-versa if d is negative. The
radius of the local trajectory, rv , depends upon the size of
the robot and the obstacle. Effectively,

rv = rr + ro + δ, (12)

where rr denotes the radius of the robot and ro is the
radius of the obstacle. ro takes a value of r (the radius
of a region surrounding an obstacle, called an orbit, which
denotes a no-go area for the robot) when the obstacle’s orbit
lies on the imaginary line l, hence blocking the robot’s
path. Alternatively, ro = 0 when the obstacle’s orbit is
not obstructing the robot motion. δ represents a safety
margin introduced as a buffer to avoid collisions. This whole
process of obstacle avoidance is repeated as the robot moves
and line l changes with robot motion. In the example shown
in Figure 4, d is positive and the robot avoids the obstacle
in a clockwise rotation. Once the obstacle is circumvented,
the robot leaves the limit cycle orbit at a tangent and heads
directly towards the goal.

The above system was also extended in [5] for obstacles
having overlapping orbits. Consider the situation shown in
Figure 5. The Limit Cycle Navigation method will instruct
the robot to avoid obstacle A by following a clockwise

Fig. 5. Stuck between two obstacles

circle. However, the same navigation method will instruct
the robot to circumvent obstacle B in a counter clockwise
direction. Hence, the robot will get stuck between obstacles
A and B, in a manner similar to local minima problems in
APF-based methods. To overcome this problem, Kim et al.
modified the former navigation rule in the following way:
If several obstacle orbits overlap, they can be regarded as
one obstacle with a new equivalent central position defined
by

Qx =
1
n

n∑
k=0

Qxk , Qy =
1
n

n∑
k=0

Qyk (13)

where Qxk and Qyk are the x, y co-ordinates of the centres
of overlapping orbits. With this equivalent centre (Qx, Qy),
distance d for all overlapped disturbing obstacles is calcu-
lated using Equation (10). The local trajectory of the robot
at each position is calculated by Equation (11) with respect
to the nearest obstacle, as before.

III. ADAPTATION OF THE LIMIT CYCLE NAVIGATION

METHOD FOR LOCAL SENSING

The system developed by Kim et al. in [5], [10] was
designed for robot soccer. In this kind of scenario, a global
view of the environment is available from an overhead
camera. Hence it was relatively easy to detect all the
overlapping obstacles and orbits in advance, and considering
these as one equivalent obstacle. Since in our case we do
not have a global view of the obstacles present in the whole
area of navigation, the robot navigation is based only upon
local sensory information. Thus, conditions could still exist
where the robot might get stuck in a loop.

Consider the situation depicted in Figure 6. Here, it is
expected that the robot goes from the starting point (6, 5)
to the target (18, 15) and the robot sensing range is limited
to 3 distance units. The robot successfully circumvents the
solitary obstacle A. Then obstacles B and C are sensed.
Using the previously described method due to Kim et al.
[5], a new centre is calculated and d is set to a negative
value since the new centre will be between B and C.
Since C would be the nearest obstacle, the robot will try
to avoid the obstacles in a counter clockwise direction.
However, as the robot moves down towards D, obstacles
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Fig. 6. Stuck in loop

C and D would both be detected by the local sensor. A
new centre is therefore calculated and this time d is set
positively. This would make the robot avoid obstacle C in
a clockwise direction. Hence the robot would subsequently
sense obstacles B and C, forcing the robot to rotate counter
clockwise. This would lead the robot to get stuck in an
undesired endless loop.

In order to avoid such situations, brought about by the
constraints of local sensing, we propose to modify the nav-
igation system of [5] by keeping the orientation of rotation
fixed whilst the robot is avoiding obstacles that overlap. This
would force the robot to avoid obstacles by rotating in the
same direction, thus preventing the robot from getting stuck
in undesired endless loops. The initial direction of rotation
is chosen to be either clockwise or counter clockwise in the
same way described above. However this direction is not
changed until the robot has circumvented the obstacle that
is nearest to the goal in an overlapping set. Before the robot
stops using this modified Limit Cycle Navigation method
to head directly towards the goal, it is to be ascertained
that the distance error between the robot and the goal is
reducing whilst avoiding an obstacle. Once the obstacle
nearest to the goal is surpassed and the distance in error is
still diminishing, the robot is allowed to leave the modified
Limit Cycle Navigation system and head towards the goal.
Unfortunately, it is not possible to guarantee that obstacles
are avoided in the shortest possible path because of the local
characteristics of the robot’s obstacle sensing mechanism.

IV. LIMIT CYCLE NAVIGATION COMBINED WITH

TRAJECTORY FOLLOWING

In our scenario the robot is required to track a desired
trajectory and avoid obstacles, both static and dynamic,
which might obstruct its path. This requires a combination
of trajectory tracking control with obstacle avoidance navi-
gation. When no obstacles are sensed, the robot is requested
to track directly the desired trajectory by utilising control
laws (5) and (6). When an obstacle or multiple obstacles
are sensed, the control law is changed and the robot is
asked to track the trajectory generated by the modified

Limit Cycle Navigation method described in the previous
section. As soon as the obstacle is circumvented, the robot
switches back to the tracking control law. The algorithm
being proposed in order to combine trajectory tracking with
Limit Cycle obstacle avoidance is the following:

1) Specify the values of the desired trajectory to be
followed i.e. desired position and velocities of the
virtual vehicle.

2) If there are no obstacles obstructing the robot along
the desired trajectory, follow it by using directly
Equations (5) and (6).

3) Else, if there are obstructing obstacles

a) Calculate distance between robot and goal
b) Find nearest obstacle to robot
c) Check if obstacles have overlapping orbits
d) If yes,

i) Calculate new centre
ii) From the set of overlapping obstacles, find

the obstacle nearest to goal
iii) Calculate perpendicular distance d between

the line l joining the robot and the goal, and
the new obstacle centre.

e) Else, if just one obstacle

i) Calculate the perpendicular distance between
line l and the obstacle centre

f) Use the modified Limit Cycle Navigation.
g) Once all obstructing obstacles are surpassed,

head directly towards the desired point on the
desired trajectory.

The following design parameters are also required in this
scheme:

1) Sensing range: This would represent the sensing range
of the obstacle detection sensors being used. In our
simulations, the range was set to 3 units.

2) Delay before leaving Limit cycle: The delay consists
of a counter which increments each time the robot
is following the limit cycle trajectory and heading
towards the goal, and reset if not. If the counter value
reaches some preset delay value, then the robot is
heading towards the goal and is thus free to leave the
limit cycle trajectory and follow the target directly.

3) Gain factor on the velocities produced by the limit
cycle: The velocity determined by the limit cycle
should allow for the target to remain in a slightly
advanced position relative to the robot, thus giving the
robot ample time to surpass the obstacle before the
desired target returns to the obstacle location. This is
similar to human navigation. When we find a barrier
between ourselves and the goal, we allow for some
time to pass to update the new co-ordinates of the
goal and then devise a way to circumvent the obstacle
given the new co-ordinates. Velocity is also reduced
at this stage.
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V. SIMULATION RESULTS

Figure 7 shows the result of a simulation where the robot
needs to follow a circular trajectory. A U-shaped multiple
obstacle is obstructing part of this path. If the Modified
APF method, as proposed in [4], were to be used for this
situation, the robot gets stuck in a local minimum as shown
earlier in Figure 1. The success of the approach presented
in this paper is clearly shown in Figure 7 where the robot
manages to circumvent the obstacle and continues to follow
the virtual vehicle along the desired trajectory.

Fig. 7. Circle Trajectory: (a) robot trajectory (b) Euclidean norm of
positional error

Another simulation example, this time with a figure-of-
eight trajectory, is shown in Figure 8. There are two rather
complex obstacles blocking this trajectory at different
locations. Note that, once again, the robot successfully
circumvents both obstacles. When the obstacles are
surpassed, the robot tracks the desired trajectory and the
error between the desired and actual position asymptotically
converges down to zero over the obstacle-free regions of
the path.

Fig. 8. Figure of eight Trajectory: (a) robot trajectory (b) Euclidean norm
of positional error

VI. CONCLUSION AND FUTURE DIRECTIONS

The nonlinear trajectory tracking control law described in
Section II-A is guaranteed to drive the robot to the desired
co-ordinates in the absence of obstacles [1]. In this paper
we consider the case where the robot is required to follow
a trajectory in the presence of obstacles. In the previous

work, carried out in [4], the obstacle avoidance problem was
solved by using a modified APF method. This method can
suffer from problems of local minima, which is an inherent
limitation of APF navigation systems.

In this paper we make use of the Limit Cycle Nav-
igation method proposed in [5] for obstacle avoidance,
so that the robot will not get stuck in potential wells.
As soon as an obstacle is circumvented, the robot tracks
the desired trajectory once again until another obstacle is
met. Simulation results that show the effectiveness of the
scheme and comparisons with APF-based methods have
been presented. Additionally, the problematic implications
of the Limit Cycle Navigation method when using only
local obstacle sensing are discussed and modifications are
proposed.

This paper has considered only the positional error
between the robot and the desired trajectory. Since the
system is switching between two different trajectories when
obstacles are detected, a more detailed study of the robot’s
velocity response during a transition needs to be carried
out. In addition, the dynamics of the mobile robot were not
considered. If the system is to be implemented on a real
mobile robot, studies on the effects of acceleration limits
and the inertia of the robot will have to be considered.

The above-mentioned concerns are currently being stud-
ied and the following step would be that of implementing
the system on an actual laboratory mobile robotic system
to obtain experimental results and confirm the efficacy of
the proposed system for industrial applications.
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