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Abstract: Sigmoidal multilayer perceptron neural networks are proposed to effect functional adaptive control for hand-
ling the trajectory tracking problem in a nonholonomic wheeled mobile robot. The scheme is developed in
discrete time and the multilayer perceptron neural networks are used forthe estimation of the robot’s nonlinear
kinematic functions, which are assumed to be unknown. On-line weight tuning is achieved by employing the
extended Kalman filter algorithm based on a specifically formulated multiple-input, multiple-output, stochas-
tic model for the trajectory error dynamics of the mobile base. The estimated functions are then used on a
certainty equivalence basis in the control law proposed in (Corradini etal., 2003) for trajectory tracking. The
performance of the system is analyzed and compared by simulation.

1 INTRODUCTION

The last fifteen years have witnessed extensive re-
search activity on the use of artificial neural net-
works for adaptive estimation and control of nonli-
near systems. Since the classical pioneering paper
by Narendra and Parthasarathy (Narendra and Par-
thasarathy, 1990), numerous neural network-based al-
gorithms and stability proofs have been published,
covering different types of neural networks and va-
rious system conditions (Fabri and Kadirkamanathan,
2001; Lewis et al., 1999; Ge et al., 1999).

Robotic systems, being inherently nonlinear and
subject to a relatively high degree of uncertainty,
represent an important area where neural networks
hold much promise for effecting adaptive control. In
fact, artificial neural networks have been used exten-
sively for the nonlinear estimation problem in mo-
tion control of mobile robots (Fierro and Lewis, 1997;
Fierro and Lewis, 1998; Corradini et al., 2003). Mo-
bile robots are non-linear, multiple-input, multiple-
output (MIMO) systems. In practical environments
they exhibit a high degree of uncertainty in the model
parameters and are subject to unmeasurable external
disturbances. These characteristics necessitate the use
of robust adaptive controllers, possibly incorporating
on-line estimation of the nonlinear functions in the
process model.

In particular, the trajectory tracking problem for
nonholonomic wheeled mobile robots has become
one of the main challenges within the automatic
control research community over the last decade
(Fierro and Lewis, 1995; Fierro and Lewis, 1998;
Corradini and Orlando, 2001; Asensio and Montano,
2002; Oriolo et al., 2002; Corradini et al., 2003;
Grech and Fabri, 2004). This research activity is not
only justified by the theoretical challenges posed by
this particular task, but also by a vast array of poten-
tial practical applications in the field of mobile robo-
tics (Corradini and Orlando, 2001; Ding and Cooper,
2005).

However, algorithms employing neural networks
with an on-line weight tuning facility, underpinning
the adaptation feature, are more sparse (Fierro and
Lewis, 1997; Fierro and Lewis, 1998). Moreover, the
robot models commonly encountered in related lite-
rature are considered to be deterministic and process
noise and external disturbances are often ignored.

In order to address these issues, this paper pro-
poses the use of on-line function estimation, taking
into account process noise and external disturbances,
by using a specifically formulated MIMO, stochastic
model for the trajectory error dynamics of a mobile
robot. A multilayer percpetron (MLP) neural network
is used to learn these nonlinear dynamics. The propo-
sed stochastic estimation technique used for parame-



ter adjustment of the MLP network is an extension
of Fabri and Kadirkamanathan’s (Fabri and Kadirka-
manathan, 1998) method for a general nonlinear class
of single-input, single-output (SISO) systems, to un-
deractuated MIMO robotic systems. The estimated
functions are used in the trajectory tracking control
law in (Corradini et al., 2003), to make the robot fol-
low a given reference trajectory.

The paper is organized as follows. The stochas-
tic discrete-time error dynamic model for the robot is
developed in Section 2. This is then utilized in deve-
loping an on-line, stochastic estimator based on MLP
neural networks in Section 3. The control law in (Cor-
radini et al., 2003) is revisited and incorporated with
the proposed recursive weight tuning algorithm, ba-
sed on extended Kalman filtering in Section 4. Sec-
tion 5 presents simulation results and is followed by a
conclusion in Section 6.

2 PROBLEM STATEMENT

This paper considers a unicycle wheeled mobile ro-
bot. The robot state is expressed as a three di-
mensional vectorq, known asthe pose, such that
q = [x y θ]

T where(x, y) is the axle midpoint co-
ordinate andθ is the robot orientation referred to a
fixed frame (Corradini et al., 2003). Similarly, a gi-
ven reference trajectory can be described by a refe-
rence derivative vectoṙqr, composed of the reference
pose velocitieṡxr, ẏr andθ̇r such that

q̇r =





ẋr

ẏr

θ̇r



 =





vr cos(θr)

vr sin(θr)

ωr



 , (1)

wherevr andωr are the linear and angular reference
velocities respectively. Commonly, the tracking error
vectore = [e1 e2 e3]

T is defined as

e :=





cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1









xr − x

yr − y

θr − θ



 . (2)

The aim is to makee converge to zero so thatq
converges toqr. The resulting tracking error equa-
tion modelled in continuous time is given by

ė =





vr cos(e3)

vr sin(e3)

ωr



 +





−1 e2

0 −e1

0 −1



u, (3)

whereu is the velocity control input vector, given by
u = [v ω]

T , wherev andω are the linear and angular
input velocities of the robot, respectively. These are
related to the velocities of the robot wheels.

Discretizing the error dynamics in (3) by using a
first order explicit forward Euler approximation with
sampling intervalT seconds and assuming that the
control input vectoru remains constant over each
sampling interval, the following discrete time dyna-
mic model for the trajectory error vector is obtained:

ek = fk−1 + Gk−1uk−1, (4)

where the subscript integerk denotes that the corres-
ponding variable is evaluated at time instantkT se-
conds, and assuming that the sampling interval is cho-
sen low enough for the Euler approximation to hold.
Vectorfk−1 and matrixGk−1 are defined as:

fk−1 :=





e1k−1
+ Tvrk−1

cos(e3k−1
)

e2k−1
+ Tvrk−1

sin(e3k−1
)

e3k−1
+ Tωrk−1



 (5)

Gk−1 :=





−T Te2k−1

0 −Te1k−1

0 −T



 . (6)

Notation-wise we will occasionally drop the time in-
dex subscript where this is obvious. Introducing a
vector of discrete random variablesεk, the error dy-
namic model in (4) is converted to the following non-
linear, stochastic, MIMO, error dynamic model:

ek = fk−1 + Gk−1uk−1 + εk, (7)

where εk is assumed to be an independent, zero-
mean, white, Gaussian-distributed process, with co-
variance matrixR. This stochastic term represents
the process noise and external disturbances.

The error models in (3) and (7) are based only
on the kinematic model of the mobile base. Control
schemes based on a full dynamic model would cap-
ture better the behaviour of the robot (Fierro and Le-
wis, 1997; Corradini et al., 2003) because these take
into account dynamic terms such as mass, viscous
damping and inertia. However, such controllers will
have more complex control laws when compared with
those based upon kinematic modelling only. Moreo-
ver this complexity is increased when considering that
in practice, the values of the dynamic process parame-
ters are uncertain or unknown and may even be time
varying. Such complexity might hinder the practical
implementation of these dynamic control schemes.
However, the experimental results presented in (Cor-
radini et al., 2003) indicate that by combining neural
networks for estimation of uncertainty in thekinema-
tic model and a kinematic controller, one gets super-
ior performance in comparison to the stand-alone ki-
nematic control case. The estimation of uncertainty
introduced in the simpler kinematic model will com-
pensate somewhat for the ignored dynamic parame-
ters, that would have otherwise been included in a full
dynamic model control scheme with all its associated
complexity.



The work proposed in this paper supports the same
philosophy, but differs from the work presented in
(Corradini et al., 2003) in two main aspects. Prima-
rily, the estimation process developed in this paper is
on-line, enriching the controller with the adaptive fea-
ture. On-line weight tuning algorithms do not require
any preliminary off-line training (Fierro and Lewis,
1998). Consequently, on-line estimators are superior
in handling real-time applications with possible unfo-
reseen variations in the process parameters; a typical
scenario in mobile robotics. Secondly, we consider
process noise and external disturbances in our mo-
del. These disturbances are modelled as random pro-
cesses, as shown in (7). In this manner the resulting
control scheme is more robust in the presence of va-
rying process parameters, noise and external distur-
bances.

3 SIGMOIDAL MLP ESTIMATOR

Theoretically speaking, the vector of discrete func-
tionsfk−1 and the matrix of discrete functionsGk−1,
composing the trajectory error model in (7) are both
known, assuming that the pose vectorq is available
at each sampling interval. However, as proposed in
Section 2, neural networks will be employed for the
estimation of these functions recursively, as if they
were totally unknown. This approach is justified since
in a real robot these functions depend on the robot’s
unmodelled dynamics, time-varying parameters and
unmeasurable disturbances.

In this paper two sigmoidal MLP networks, deno-
ted byNNf andNNG, for the estimation offk−1 and
Gk−1 respectively, are employed. Unlike Gaussian
radial basis function (RBF) neural networks (Poggio
and Girosi, 1990; Haykin, 1999), which are also po-
pular in the field of neuro-adaptive control, MLPs
do not posses the possible advantage of linearity in
the parameters being estimated. For this reason tu-
ning algorithms for MLPs tend to be more complex
and usually result in sub-optimal estimation. On
the other hand, unlike the Gaussian basis functions
in RBFs, the sigmoidal activation functions used in
MLPs are not localized, implying that typically MLP
networks require less neurons than RBF networks for
the same degree of accuracy. This in turn means that
MLP weight tuning algorithms need to handle rela-
tively less parameters, reducing computational inten-
sity, which ultimately speeds up the overall control
loop. Naturally this is imperative in real time digi-
tal control systems. These details become more pro-
nounced when dealing with high dimensional order
systems, as in the case of WMRs, where the number
of neurons increases exponentially with the number of
systems states. This is often referred to asthe curse

of dimensionality(Bellman, 1961).
Since the MLP parameters do not appear linearly

in the output equation, as will become clearer
later in the section, nonlinear stochastic estimation
techniques have to be employed. In this paper the
extended Kalman filter (EKF) (Maybeck, 1979),
is used for the recursive estimation of the MLP
networks parameters. This, along with a set of
mathematical operations, is the heart of the stochastic
online weight tuning algorithm proposed next in the
following paragraphs.

Consider the following:

• xfk−1
and xGk−1

denote the two neural network
input vectors ofNNf andNNG respectively. A
constant, serving as a neuron bias input, is included
in each of these two input vectors complete defined
as

xfk−1
:=

[

eT
k−1 vrk−1

ωrk−1
1
]T

(8)

xGk−1
:=

[

e1k−1
e2k−1

1
]T

. (9)

• φf and φG are the sigmoidal activation function
vectors, representing the outputs of the correspon-
ding hidden layer, whoseith element is given by

φfi = 1/
{

1 + exp(−sT
fi
xf )

}

(10)

φGi
= 1/

{

1 + exp(−sT
Gi

xG)
}

, (11)

wheresfi andsGi
are the parameter vectors of the

ith neuron in the hidden layer, characterizing the
shape of that particular sigmoidal activation func-
tion. These sigmoidal parameter vectors form part
of the overall weight vector to be estimated, mea-
ning that each activation function is shaped recur-
sively as part of the tuning process. This detail is
responsible for the undesired nonlinear appearance
of the final weight vector in the output equation.

• Lf andLG denote the number of sigmoidal activa-
tion functions inNNf andNNG respectively.

• Let the activation function parameter vectors for
NNf andNNG be grouped in two individual vec-
torsâf andâG respectively, such that

âf :=
[

ŝT
f1

· · · ŝT
fLf

]T

(12)

âG :=
[

ŝT
G1

· · · ŝT
GLG

]T

, (13)

where the symbol̂ indicates that the particular pa-
rameter vector is undergoing estimation.

• The employed multilayer feedforward neural net-
work structure yields the following input-output re-
lations for the two neural networks:

f̂k−1 =







ŵT
1k

φfk−1

ŵT
2k

φfk−1

ŵT
3k

φfk−1






, (14)



Ĝk−1 =







ŵT
11k

φGk−1
ŵT

12k
φGk−1

ŵT
21k

φGk−1
ŵT

22k
φGk−1

ŵT
31k

φGk−1
ŵT

32k
φGk−1






, (15)

where f̂k−1 andĜk−1 denote the output approxi-
mates ofNNf andNNG respectively. Moreover,
ŵik represents the weight vector of the connection
between the sigmoidal activation functions and the
ith output element ofNNf and similarlyŵij

k
re-

presents the weight vector of the connection bet-
ween the sigmoidal activation functions and the
output element ofNNG that corresponds to the
(ij)th term ofĜk−1. Notation-wiseφfk−1

implies
that the activation function is evaluated forxfk−1

andâfk . The same notation applies forφGk−1
.

• Let us group all the parameters requiring estimation
in two vectorŝvfk andv̂Gk

, corresponding toNNf

andNNG respectively, such that

v̂fk :=
[

ŵT
1k

ŵT
2k

ŵT
3k

âT
fk

]T
(16)

v̂Gk
:=

[

ŵT
11k

ŵT
12k

· · · ŵT
31k

ŵT
32k

âT
Gk

]T
. (17)

• Let zk be the complete overall weight vector defi-
ned as

ẑk :=

[

v̂T
fk

... v̂T
Gk

]T

. (18)

• Differentiatinĝfk−1 andĜk−1uk−1 with respect to
ẑk, yields the following closed form expressions:

∇fk :=
∂(f̂k−1)

∂(ẑk)
=

[

∇f1k

... ∇f2k

]

(19)

∇Γk
:=

∂(Ĝk−1uk−1)

∂(ẑk)
=

[

∇Γ1k

... ∇Γ2k

]

(20)

where∇f1k
,∇f2k

,∇Γ1k
and∇Γ2k

are defined as
follows:

∇f1k
:=







φT
fk−1

0T
f 0T

f

0T
f φT

fk−1
0T
f

0T
f 0T

f φT
fk−1






, (21)

where0f denotes a zero vector having the same
length asφfk−1

.

∇f2k
:=







· · · ŵ1,i(φfi − φfi
2)xT

f · · ·

· · · ŵ2,i(φfi − φfi
2)xT

f · · ·

· · · ŵ3,i(φfi − φfi
2)xT

f · · ·






, (22)

wherei = 1, . . . , Lf andŵj,i denotes theith ele-
ment of thejth output weight vector,̂wjk . Note
also that in this equation, bothφfi andxf corres-
pond to time instant(k − 1).

∇Γ1k
:=







γv γω 0T
G 0T

G 0T
G 0T

G

0T
G 0T

G γv γω 0T
G 0T

G

0T
G 0T

G 0T
G 0T

G γv γω






, (23)

whereγv andγω are defined asφT
Gk−1

vk−1 and

φT
Gk−1

ωk−1 respectively and0G denotes a zero
vector having the same length asφGk−1

.

∇Γ2k
:=







· · ·σ1,i(φGi
−φGi

2)xT
G · · ·

· · ·σ2,i(φGi
−φGi

2)xT
G · · ·

· · ·σ3,i(φGi
−φGi

2)xT
G · · ·






(24)

where i = 1, . . . , LG and σj,i is defined as
ŵj1,ivk−1 + ŵj2,iωk−1 where ŵjn,i denotes the
ith element of the(jn)th output weight vector,
ŵjn

k
. Note also that in this equation, bothφGi

and
xG correspond to time instant(k − 1).

Assuming that, within the space of interest, the neu-
ral network approximation errors are negligibly small
when the complete weight vectorẑk is equal to some
unknown optimal weight vectorz∗k. This is justified
in the light of theUniversal Approximation Theorem
of neural networks (Haykin, 1999). It follows that the
trajectory error model in (7) can be rewritten, using
the formulated neural networks as approximations for
fk−1 andGk−1. The resulting model is given by

ek = h
(

xfk−1
,xGk−1

,uk−1, z
∗

k

)

+ εk, (25)
where
h

(

xfk−1
,xGk−1

,uk−1, z
∗

k

)

:= f̂k−1

(

xfk−1
,v∗

fk

)

+Ĝk−1

(

xGk−1
,v∗

Gk

)

uk−1, (26)
with v∗

fk
andv∗

Gk
representing the optimal versions of

v̂fk andv̂Gk
respectively. Finally, let∇hk

denote the
Jacobian matrix ofh

(

xfk−1
,xGk−1

,uk−1, z
∗

k

)

with
respect to the weight vectorz∗k evaluated atz∗k = ẑk,
then it is clear that

∇hk
:=

∂
(

h
(

xfk−1
,xGk−1

,uk−1, z
∗

k

))

∂(z∗k)

∣

∣

∣

∣

∣

z∗k = ẑk

=

[

∇fk

... ∇Γk

]

, (27)

where∇fk and∇Γk
are defined in (19) and (20) res-

pectively. Equation (26) indicates that the unknown
weight vectorz∗k, does not appear linearly in the out-
put equation in (25). For this reason a nonlinear sto-
chastic estimator is employed in the recursive weight
tuning process detailed in the next section.

4 ADAPTIVE CONTROL
SCHEME

Having derived the stochastic model (25) for the tra-
jectory error dynamics that is dependent on the MLPs



through f̂k−1, Ĝk−1 and the optimal weight vec-
tor z∗k, it is straightforward to write down the follo-
wing nonlinear state-space equations which are used
next within the EKF algorithm (predictive mode) to
enable the recursive estimation of the neural networks
weights:

z∗k+1 = z∗k

ek = h
(

xfk−1
,xGk−1

,uk−1, z
∗

k

)

+ εk, (28)

It is assumed that:

• The initial parameter vectorz∗0 has a Gaussian dis-
tribution with some mean̄z and covarianceV.

• The process noise vectorεk is Gaussian, zero-mean
and uncorrelated in time (i.e. white).

• εk andz∗0 are independent, implying that they are
also uncorrelated.

• The conditional density of the parameter vector
z∗k+1

is approximately Gaussian. However, it
should be emphasized that the latter is only an ap-
proximation introduced by the EKF, since the non-
linearity of the stochastic model will not conserve
the Gaussian nature inz∗k+1

.

From EKF theory (Maybeck, 1979), it follows that
the following recursive weight adjustment rules can
be employed for the estimation of the weight vector:

Pk+1 = Pk − Kk∇hk
Pk (29)

ẑk+1 = ẑk + Kkik, (30)

whereKk is the Kalman gain matrix given by

Kk = Pk∇
T
hk

[

∇hk
Pk∇

T
hk

+ R
]

−1
(31)

andik is the innovations vector given by

ik = ek − h
(

xfk−1
,xGk−1

,uk−1, ẑk

)

. (32)

Pk+1 denotes the prediction covariance matrix and
represents a measure of the accuracy of the estimate
ẑk+1. The initial conditions for the weight vector and
the prediction covariance are set to some desired va-
luesz̄ andV respectively.

For each estimate of̂zk, the corresponding esti-
matesf̂k−1 and Ĝk−1 are computed using the for-
mulated relations given by (8) to (18). These esti-
mates are then used recursively in the control law
adopted from (Corradini et al., 2003), making the ove-
rall control scheme adaptive, since the process model
used for control is now being estimated in real-time
and requires no preliminary off-line training.

Note that the extra computational burden that
comes along with the EKF, in comparison to other
non-stochastic techniques such as back-propagation,
pays off in several ways. Primarily, it renders the re-
cursive weight tuning algorithm stochastic, since the
uncertainty in the process model is taken into account

by the EKF algorithm. Secondly, the conditional pro-
bability density of the error vectorek is being upda-
ted in real time. The resulting information, most im-
portantly the covariance matrixPk, is essential in the
design of stochastic control laws (Fabri and Kadirka-
manathan, 2001), which are part of our plan for fu-
ture work. On the other hand, it is widely known that
the assumption of local linearity inherent in the EKF,
may lead to convergence problems in highly nonli-
near applications. For this reason future investigation
of other nonlinear estimation techniques, such as the
Unscented Kalman Filter (UKF) (Julier and Uhlmann,
1997) is desirable.

The discrete error model utilized in (Corradini
et al., 2003) is effectively given by

ek =





e1k−1
+ h2(e3k−1

, vrk−1
)

e2k−1
+ h4(e3k−1

, vrk−1
)

e3k−1
+ h5(ωrk−1

)





+





−T h1(e2k−1
)

0 h3(e1k−1
)

0 −T



uk−1, (33)

whereh1 to h5 represent nonlinear functions, appro-
priately defined in (Corradini et al., 2003). Compa-
ring (33) with the stochastic model in (7) and igno-
ring the stochastic term, the following relations be-
come evident:

h1(e2k−1
) = g12k−1

h2(e3k−1
, vrk−1

) = f1k−1
− e1k−1

(34)

h5(ωrk−1
) = f3k−1

− e3k−1
,

wherefi and gij denote theith and(ij)th element
in fk−1 andGk−1 respectively. Hence the estimates
f̂k−1 andĜk−1 provided by the neural networks, can
be used to estimateh1, h2 andh5 recursively accor-
ding to (34). These are then used in the control law
proposed in (Corradini et al., 2003), given by

vk =
1

T
{k1e1k

+ h1(e2k
)ωk + h2(e3k

, vrk
)}

ωk =
1

T
{h5(ωrk

) + k2e2k
+ k3e3k

}. (35)

The design parametersk1, k2 andk3 can be selected
according to the following set of relations:

k1 = 1 − λ1

k2 = 2 − λ2 − λ3 (36)

k3 =
1

Tvrk

(1 − λ2 − λ3 + λ2λ3),

with λ1, λ2 andλ3 being the eigenvalues of the re-
sulting closed loop error discrete dynamics, that must
be placed inside the unity circle to guarantee local
asymptotic stability as suggested in (Corradini et al.,
2003).



5 SIMULATION RESULTS

The proposed on-line adaptive control scheme was
verified and compared to the non-adaptive scheme
proposed in (Corradini et al., 2003) by simulations.
The mobile robot was simulated through a discrete-
time model whose error dynamics were given in (7).
The covarianceR of the noise vectorεk was set to
1 × 10−6I3, whereIi denotes an(i × i) identity ma-
trix. Neural network pre-training is not used and, to
demonstrate further the adaptive feature of the pro-
posed controller, the model used for simulations is
abruptly modified by replacingT by 1.5T in (7) in
the middle of the simulation, specifically at12.5 se-
conds. This has the effect of modifying the robot mo-
del considerably without altering its kinematic struc-
ture. The selected reference trajectory was generated
recursively (one time step ahead) using:

xr(t) = 2 cos(0.25t),

yr(t) = 2 sin(0.5t), (37)

θr(t) = arctan (ẏr/ẋr) ,

which define a figure-of-eight path in thex-y plane.
Neural networksNNf andNNG were structured

with 18 and1 hidden unit neurons respectively. The
EKF initial covarianceP0 was set to5Iα, whereα is
the total number of weights. The initial weight values
were randomly generated from a normal distribution
with zero mean. The controller design parameters
were set according to (36) with the eigenvalues pla-
ced inside the unity circle. Several simulation trials
were conducted, each indicating good tracking and re-
peatable performance for the proposed algorithm. A
number of results from a particular25 second dura-
tion simulation, with a time step of10 ms, are depic-
ted in Figure 1.

Referring to Figure 1, plots (a) to (g) were genera-
ted using the proposed adaptive controller while plot
(h) corresponds to the non-adaptive controller propo-
sed in (Corradini et al., 2003) under the same speci-
fied simulation conditions and assuming that the ori-
ginal robot functions are known. Primarily one should
note that the pose errors shown in plots (a), (b) and (c)
remain well bounded about zero during the whole tra-
jectory, indicating that the proposed scheme has lear-
ned the nonlinear functions and yields stable control
throughout the simulation, including the period fol-
lowing the previously mentioned model variation at
time12.5 seconds. This variation is overcome with no
more than a slight error transient visible in (b). This
transient dies out quickly once the controller adapts to
the recently modified model. By contrast, plot (h) re-
veals that the non-adaptive method proposed in (Cor-
radini et al., 2003) goes unstable just after this model
variation.

The complete trajectory path in thex − y plane is
superimposed on the reference trajectory in plot (e).

The two are hardly distinguishable due to the good
tracking performance obtained. The relatively high
deviation in the initial part of the trajectory, magnified
in plot (f), corresponds to the learning phase of the
neural networks, which require no preliminary off-
line training.

The neural network weights remain well bounded
at reasonable values. Plot (d) depicts time plots for
three particular weights, selected arbitrarily. For these
particular simulations, the absolute maximum and mi-
nimum weight values over the two trajectories were
8.2 and−9.4 respectively, with the majority of the
weights centred about zero. This indicates that the
proposed algorithm is also practically realizable as no
infinitely high neural network weights are required.
As a result, the control velocitiesv andω remained
well bounded with decent magnitudes.

Plot (g) depicts the mean of the diagonal of the co-
variance matrixPk in time. This is used to indicate
the uncertainty in the estimated weights, as generated
recursively by the EKF. As expected, the uncertainty
decreases with time, indicating that the EKF is stable
and the neural network estimations are continuously
improving. The slope of this curve is related to the
learning rate of the system.

6 CONCLUSIONS

In this paper a neural network adaptive control
scheme for the trajectory tracking problem of mo-
bile robots is proposed. The resulting algorithm re-
quires no preliminary information about the process
non-linear functions and uses MLP neural networks,
trained online in consideration of the process uncer-
tainties and external disturbances by using the EKF.
The designed scheme was tested repeatedly by simu-
lation for several noise conditions and sudden model
variations, modeling the uncertainty and time-varying
parameters encountered in practical environments. In
contrast to the non-adaptive scheme proposed in (Cor-
radini et al., 2003), the robot exhibited good tracking
performance in each case.

Future research will include the development of
stochastic non-linear control laws (Fabri and Kadir-
kamanathan, 2001), which would take into account
the neural network approximation errors recursively
through the readily available covariance matrixPk.
Such a controller would then be amalgamated with
the estimation algorithm developed in this paper, re-
placing the current heuristic certainty equivalence
control law. This is anticipated to give better transient
performance due to its stochastic features. Stability
proofs in the ambience of stochastic control are very
rare due to the complexity of random processes, but
is still part of our agenda for future work.
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Figure 1: Proposed algorithm: (a) error inx, (b) in y, (c) in θ, (d) some weights, (e) complete reference (—) and actual (◦)
trajectories, (f) initial phase of (e), (g) diagonal mean ofPk. Non-adaptive algorithm: (h) error iny.
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