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Abstract: Sigmoidal multilayer perceptron neural networks are proposed totdéfactional adaptive control for hand-
ling the trajectory tracking problem in a nonholonomic wheeled mobile robbe stheme is developed in
discrete time and the multilayer perceptron neural networks are usttfestimation of the robot’s nonlinear
kinematic functions, which are assumed to be unknown. On-line weightgisiachieved by employing the
extended Kalman filter algorithm based on a specifically formulated multipletimultiple-output, stochas-
tic model for the trajectory error dynamics of the mobile base. The estihfatestions are then used on a
certainty equivalence basis in the control law proposed in (Corradali,e2003) for trajectory tracking. The
performance of the system is analyzed and compared by simulation.

1 INTRODUCTION In particular, the trajectory tracking problem for
nonholonomic wheeled mobile robots has become
The last fifteen years have witnessed extensive re-2Ne of the main challenges within the automatic
search activity on the use of artificial neural net- co_ntrol research' community over the Iast decade
(Fierro and Lewis, 1995; Fierro and Lewis, 1998;

works for adaptivga estimation apd co'ntrol O.f nonli- Corradini and Orlando, 2001; Asensio and Montano,
near systems. Since the classical pioneering PapPernno- Oriolo et al., 2002: Corradini et al., 2003:

e oot C1ech and Fabr, 2000). This esearch acty s no
gorithms a{nd stability proofs have been published or}Iy JUSt-med by the theoretical challenges posed by
covering different types of neural networks and va—’ t-hls partlpular tas.k, b-Ut a[so by a vast array.of poten-
rious system conditions (Fabri and Kadirkamanathan tial practical applications in the field of mobile robo-
2001 Lewis et al., 1999: Ge et al., 1999). tzlgzéc)lorradml and Orlando, 2001; Ding and Cooper,
Robotic systems, being inherently nonlinear and ' . .
subject to a relatively high degree of uncertainty, owever, algorithms employing neural networks
represent an important area where neural networks'ith an on-line weight tuning facility, underpinning
hold much promise for effecting adaptive control. In the adaptation feature, are more sparse (Fierro and
fact, artificial neural networks have been used exten- LeWiS, 1997; Fierro and Lewis, 1998). Moreover, the
sively for the nonlinear estimation problem in mo- FoPot models commonly encountered in related lite-
tion control of mobile robots (Fierro and Lewis, 1997; 'ature are considered to be deterministic and process
Fierro and Lewis, 1998; Corradini et al., 2003). Mo- N0ise and external disturbances are often ignored.
bile robots are non-linear, multiple-input, multiple- In order to address these issues, this paper pro-
output (MIMO) systems. In practical environments poses the use of on-line function estimation, taking
they exhibit a high degree of uncertainty in the model into account process noise and external disturbances,
parameters and are subject to unmeasurable externaby using a specifically formulated MIMO, stochastic
disturbances. These characteristics necessitate the useodel for the trajectory error dynamics of a mobile
of robust adaptive controllers, possibly incorporating robot. A multilayer percpetron (MLP) neural network
on-line estimation of the nonlinear functions in the is used to learn these nonlinear dynamics. The propo-
process model. sed stochastic estimation technique used for parame-



ter adjustment of the MLP network is an extension  Discretizing the error dynamics in (3) by using a
of Fabri and Kadirkamanathan’s (Fabri and Kadirka- first order explicit forward Euler approximation with
manathan, 1998) method for a general nonlinear classsampling intervall’ seconds and assuming that the
of single-input, single-output (SISO) systems, to un- control input vectoru remains constant over each
deractuated MIMO robotic systems. The estimated sampling interval, the following discrete time dyna-
functions are used in the trajectory tracking control mic model for the trajectory error vector is obtained:
law in (Corradini et al., 2003), to make the robot fol- er —f 1 LG iu 4)
low a given reference trajectory. b kel k=1Th=1
The paper is organized as follows. The stochas- where the subscript integérdenotes that the corres-
tic discrete-time error dynamic model for the robot is ponding variable is evaluated at time instafit se-
developed in Section 2. This is then utilized in deve- conds, and assuming that the sampling interval is cho-
loping an on-line, stochastic estimator based on MLP sen low enough for the Euler approximation to hold.
neural networks in Section 3. The control law in (Cor- Vectorf;_; and matrixG_, are defined as:
radini et al., 2003) is revisited and incorporated with

the proposed recursive weight tuning algorithm, ba- €1 + T, cos(es, )

sed on extended Kalman filtering in Section 4. Sec- fi1:= | eay +Tuvpy sin(es, ) ()
tion 5 presents simulation results and is followed by a €3, + Twr,_,
conclusion in Section 6.
-T T€2k71
Gr1:=| 0 —Tey,, |- (6)
=T
2 PROBLEM STATEMENT 0

Notation-wise we will occasionally drop the time in-
dex subscript where this is obvious. Introducing a
vector of discrete random variableg, the error dy-
namic model in (4) is converted to the following non-
linear, stochastic, MIMO, error dynamic model:

This paper considers a unicycle wheeled mobile ro-
bot. The robot state is expressed as a three di-
mensional vectoky, known asthe pose such that
a=[z y 60" where(z,y) is the axle midpoint co-
ordinate and) is the robot orientation referred to a e =1+ Gr1up1 +ep, (7)
fixed frame (Corradini et al., 2003). Similarly, a gi- \here ¢, is assumed to be an independent, zero-
ven reference trajectory can be described by a refe-mean, white, Gaussian-distributed process, with co-
rence derivative vectai,, composed of the reference  yarjance matrixR. This stochastic term represents

pose velocities:,., - andd,. such that the process noise and external disturbances.
. The error models in (3) and (7) are based only
Ly vy cos(6r) on the kinematic model of the mobile base. Control
Q= | g | = | vesin@.) |, 1) schemes based on a full dynamic model would cap-
0, Wy ture better the behaviour of the robot (Fierro and Le-

_ wis, 1997; Corradini et al., 2003) because these take
wherev, andw, are the linear and angular reference into account dynamic terms such as mass, viscous
velocities respectively. Commonly, the tracking error damping and inertia. However, such controllers will

vectore = [e; ey e3]” is defined as have more complex control laws when compared with
. those based upon kinematic modelling only. Moreo-
cos(0) sin(d) 0 Tr — X ver this complexity is increased when considering that
e:= | —sin(f) cos(0) 0| |y —y |. (2 in practice, the values of the dynamic process parame-
0 0 1 0, —0 ters are uncertain or unknown and may even be time
varying. Such complexity might hinder the practical
The aim is to makee converge to zero so thaj implementation of these dynamic control schemes.
converges tay,. The resulting tracking error equa- However, the experimental results presented in (Cor-
tion modelled in continuous time is given by radini et al., 2003) indicate that by combining neural
networks for estimation of uncertainty in thkesnema-
vy cos(e3) -1 e tic model and a kinematic controller, one gets super-
é=| uysin(ez) | + 0 —er |u, (3 ior performance in comparison to the stand-alone ki-
Wy 0o -1 nematic control case. The estimation of uncertainty

introduced in the simpler kinematic model will com-
whereu is the velocity control input vector, given by  pensate somewhat for the ignored dynamic parame-
u=[v w]", wherev andw are the linear and angular  ters, that would have otherwise been included in a full
input velocities of the robot, respectively. These are dynamic model control scheme with all its associated
related to the velocities of the robot wheels. complexity.



The work proposed in this paper supports the same of dimensionalitfBellman, 1961).

philosophy, but differs from the work presented in Since the MLP parameters do not appear linearly
(Corradini et al., 2003) in two main aspects. Prima- in the output equation, as will become clearer
rily, the estimation process developed in this paper is later in the section, nonlinear stochastic estimation
on-line, enriching the controller with the adaptive fea- techniques have to be employed. In this paper the
ture. On-line weight tuning algorithms do not require extended Kalman filter (EKF) (Maybeck, 1979),
any preliminary off-line training (Fierro and Lewis, is used for the recursive estimation of the MLP
1998). Consequently, on-line estimators are superior networks parameters. This, along with a set of
in handling real-time applications with possible unfo- mathematical operations, is the heart of the stochastic
reseen variations in the process parameters; a typicalonline weight tuning algorithm proposed next in the
scenario in mobile robotics. Secondly, we consider following paragraphs.

process noise and external disturbances in our mo-
del. These disturbances are modelled as random pro-
cesses, as shown in (7). In this manner the resulting 4

Consider the following:
xf,_, andxg, , denote the two neural network

control scheme is more robust in the presence of va-
rying process parameters, noise and external distur-
bances.

3 SIGMOIDAL MLP ESTIMATOR

Theoretically speaking, the vector of discrete func-
tionsf,_; and the matrix of discrete functios;, _1,
composing the trajectory error model in (7) are both
known, assuming that the pose vectpis available

at each sampling interval. However, as proposed in
Section 2, neural networks will be employed for the
estimation of these functions recursively, as if they
were totally unknown. This approach is justified since
in a real robot these functions depend on the robot’s
unmodelled dynamics, time-varying parameters and
unmeasurable disturbances.

In this paper two sigmoidal MLP networks, deno-
ted byNN¢ andNN g, for the estimation of;,_; and
G_ respectively, are employed. Unlike Gaussian
radial basis function (RBF) neural networks (Poggio
and Girosi, 1990; Haykin, 1999), which are also po-
pular in the field of neuro-adaptive control, MLPs
do not posses the possible advantage of linearity in

the parameters being estimated. For this reason tu-*

ning algorithms for MLPs tend to be more complex
and usually result in sub-optimal estimation. On
the other hand, unlike the Gaussian basis functions
in RBFs, the sigmoidal activation functions used in
MLPs are not localized, implying that typically MLP
networks require less neurons than RBF networks for

the same degree of accuracy. This in turn means that

MLP weight tuning algorithms need to handle rela-
tively less parameters, reducing computational inten-

sity, which ultimately speeds up the overall control e

loop. Naturally this is imperative in real time digi-
tal control systems. These details become more pro-
nounced when dealing with high dimensional order
systems, as in the case of WMRs, where the number
of neurons increases exponentially with the number of
systems states. This is often referred tdles curse

input vectors ofNN¢ and NINg respectively. A
constant, serving as a neuron bias input, is included
in each of these two input vectors complete defined

as
(8)
9)

Xy = [9571 Upp_q Wry_q I]T
XGpo1 = [61k71 €2;,_4 1}T

e ¢¢ and ¢g are the sigmoidal activation function

vectors, representing the outputs of the correspon-
ding hidden layer, whosgh element is given by

¢, =1/ {1+ exp(—sf x¢)} (10)

o, =1/ {1 + exp(—sgix(;)} , (11)
wheress, andsg, are the parameter vectors of the
ith neuron in the hidden layer, characterizing the
shape of that particular sigmoidal activation func-
tion. These sigmoidal parameter vectors form part
of the overall weight vector to be estimated, mea-
ning that each activation function is shaped recur-
sively as part of the tuning process. This detail is
responsible for the undesired nonlinear appearance
of the final weight vector in the output equation.

L¢ and Lg denote the number of sigmoidal activa-
tion functions iNNN¢ andNN g respectively.

Let the activation function parameter vectors for
NN¢ andNNg be grouped in two individual vec-
torsay andag respectively, such that

T

ari=[sh o 8| (12)
T

agi=[s&, 8L, . @

where the symbdlindicates that the particular pa-
rameter vector is undergoing estimation.

The employed multilayer feedforward neural net-
work structure yields the following input-output re-
lations for the two neural networks:
W’%—‘k ¢fk—1
ng ¢fk—1 )
ng (o

fi1 = (14)



~ T
W12k¢’Gk—1
~ T
W22k¢Gk—1
~ T
W32, bG,_,

~ T
W11,§¢Gk71
~ T
W21, d)Gk—l
- T
W31k¢Gk—1

Gk—l = ) (15)

wheref,_; andG,_; denote the output approxi-
mates ofNN¢ andINN¢ respectively. Moreover,
Wi, represents the weight vector of the connection
between the sigmoidal activation functions and the
ith output element oNN¢ and similarlyvr;, re-
presents the weight vector of the connection bet-
ween the sigmoidal activation functions and the
output element ofNN that corresponds to the
(ij)th term ofGr_1. Notation-wisegy, , implies
that the activation function is evaluated fef,_,
andag, . The same notation applies o, ;.

Let us group all the parameters requiring estimation
in two vectorsvs, andv g, , corresponding ttNN¢
andNN¢ respectively, such that

A T T T aT17T

Ve, = [Wq, Wg, W3 ay | (16)
n . [aT &T ~T T AT 17
VG, = [WllkWIZk "'W31kW32kaGk] . (A7)

Let z, be the complete overall weight vector defi-
ned as

ik = (18)

T
5T 15T

Differentiatingfk,l andG_ju,_; with respectto
Zx, Yields the following closed form expressions:

Vs, = 88(?;5) = |:Vf1k Eszk} (19)
Vr, = W = |:Vrlk EVsz:| (20)

whereVyq, , Ve, . V1, andVr,, are defined as
follows:

ot of  of
Ve, = 0{ qb;{H 0{ ,  (21)
of of ¢f |

where 0y denotes a zero vector having the same
length aspy, .

by i(gg, — o7 )XE

Vg, = | - oi(os — g2 )xE -+ |, (22)
s i (B, — dg, 7 )xE

wherei =1, ... , L¢ andw; ; denotes théth ele-

ment of thejth output weight vectory#;,. Note
also that in this equation, bothy, andxy corres-
pond to time instantk — 1).

0¢ 0g 0%
0%, 0 7, v, 05 0F |
0% of oL of v, .
where~, and~,, are defined asb@kflvk_l and

¢(T3k_1wk—1 respectively anddg denotes a zero
vector having the same lengthag:, ;.

roLi(de, —da, )X

Yo Yo 0&

Vi, = (23)

Vre, = | -+ 02(¢g, —¢Gi2)x7(§ e (24)
03.i(Pa —0a,B)XG -
wherei = 1, ... ,Lg ando;; is defined as

wjl,ikal + ﬁ)jgyiwk,l where ’LlA)jn’i denotes the
ith element of the(jn)th output weight vector,
Win, - Note also that in this equation, bapl;, and
xg correspond to time instafk — 1).
Assuming that, within the space of interest, the neu-
ral network approximation errors are negligibly small
when the complete weight vectdy, is equal to some
unknown optimal weight vectaz;,. This is justified
in the light of theUniversal Approximation Theorem
of neural networks (Haykin, 1999). It follows that the
trajectory error model in (7) can be rewritten, using
the formulated neural networks as approximations for
fr_1 andGy_1. The resulting model is given by

er =h(xg ., Xq, ., Wk-1,2}) + €,  (25)
where
h (ka_17XGk_l7uk’717 Z;:;) = fk,l(ka_l,V;-kk)

+Gr_1(XG,_ 1 VG, ) Uk—1, (26)
with v¢ andvg, representing the optimal versions of
V¢, andvg, respectively. Finally, lewy,, denote the
Jacobian matrix oh (x¢, ,,XG,_,,Uk—1,2}) With
respect to the weight vectaj;, evaluated at; = 7y,
then it is clear that

0 (h (ka_l » XGpo15 Uk—1, th))

e 00z7)

VA :ik

> %

(27)

{ka Evrk] ,

whereVy, andVr, are defined in (19) and (20) res-
pectively. Equation (26) indicates that the unknown
weight vectorz;, does not appear linearly in the out-
put equation in (25). For this reason a nonlinear sto-
chastic estimator is employed in the recursive weight
tuning process detailed in the next section.

4 ADAPTIVE CONTROL
SCHEME

Having derived the stochastic model (25) for the tra-
jectory error dynamics that is dependent on the MLPs



through f,_;, Gj_1 and the optimal weight vec- by the EKF algorithm. Secondly, the conditional pro-
tor zj, itis straightforward to write down the follo-  bability density of the error vectas, is being upda-
wing nonlinear state-space equations which are usedted in real time. The resulting information, most im-
next within the EKF algorithm (predictive mode) to portantly the covariance matrRRy, is essential in the
enable the recursive estimation of the neural networks design of stochastic control laws (Fabri and Kadirka-

weights: manathan, 2001), which are part of our plan for fu-
N . ture work. On the other hand, it is widely known that
Zk+1 = Zg the assumption of local linearity inherent in the EKF,

e, = h(xg_,,XG, 1, Wk-1,2)) + €, (28) may lead to convergence problems in highly nonli-
near applications. For this reason future investigation

Itis assumed that: of other nonlinear estimation techniques, such as the
e The initial parameter vectofj has a Gaussian dis-  Unscented Kalman Filter (UKF) (Julier and Uhimann,
tribution with some meam and covarianc&’. 1997) is desirable.

The discrete error model utilized in (Corradini

e The process noise vectey is Gaussian, zero-mean et al., 2003) is effectively given by

and uncorrelated in time (i.e. white).

e ¢, andz; are independent, implying that they are ety , +hales, ,,vr )
also uncorrelated. ey = €2,y + hales,_yvr, )
e The conditional density of the parameter vector €3y + hs(wr, )
z;,., IS approximately Gaussian. However, it ~T hy(es,_,)
should be emphasized that the latter is only an ap- +1 0 hs(er,,) | uk—1, (33)
proximation introduced by the EKF, since the non- 0 T
linearity of the stochastic model will not conserve
the Gaussian nature #f , ;. whereh; to hs represent nonlinear functions, appro-

From EKF theory (Maybeck, 1979), it follows that Priately defined in (Corradini et al., 2003). Compa-
the following recursive weight adjustment rules can N9 (33) with the stochastic model in (7) and igno-
be employed for the estimation of the weight vector: N9 the stochastic term, the following relations be-

come evident:
Pk+1 = Pk - KthkPk (29)

hi(ea, ) = g2,
Zi1 = 2 + Ky, (30) ha(es,_svry) = fro, — ey (34)
whereKy is the Kalman gain matrix given by hs(Wro_y) = fau_y — €34_1s

K, = kagk [thPkVEk + R]’l (31) where f; and g;; denote theith and(ij)th element

in f,_; andGj_; respectively. Hence the estimates
f._1 andG,_, provided by the neural networks, can
be used to estimatk,, ho andhs recursively accor-
ding to (34). These are then used in the control law
P41 denotes the prediction covariance matrix and proposed in (Corradini et al., 2003), given by
represents a measure of the accuracy of the estimate

andiy, is the innovations vector given by

ir =er—h(xg_,,Xg, ,, Wk—1,2c). (32)

Zt1- Th_e i_nitial con_ditions for the weight vector and v = l{/ﬁeu + hy(ez, )wr + ha(es, v, )}
the prediction covariance are set to some desired va- {
luesz andV respectively. _ h
! . . ;. = = re) + ke, + kses, }. 35
For each estimate df;, the corresponding esti- Wk T{ s(wre) + kaea, + kses, ) (35)

matesf;,_; and G;_, are computed using the for- The design parametets, k, andk; can be selected

mulated relations given by (8) to (18). These esti- according to the following set of relations:
mates are then used recursively in the control law

adopted from (Corradini et al., 2003), making the ove- ki = 1=\
rall control scheme adaptive, since the process model ke = 2—X— X3 (36)
used for control is now being estimated in real-time 1
and requires no preliminary off-line training. ks = To (1= A2 = A3 + A2A3),
Tk

Note that the extra computational burden that
comes along with the EKF, in comparison to other with Ay, A2 and A3 being the eigenvalues of the re-
non-stochastic techniques such as back-propagationsulting closed loop error discrete dynamics, that must
pays off in several ways. Primarily, it renders the re- be placed inside the unity circle to guarantee local
cursive weight tuning algorithm stochastic, since the asymptotic stability as suggested in (Corradini et al.,
uncertainty in the process model is taken into account 2003).



5 SIMULATION RESULTS The two are hardly distinguishable due to the good
tracking performance obtained. The relatively high
The proposed on-line adaptive control scheme was deviation in the initial part of the trajectory, magnified
verified and compared to the non-adaptive schemein plot (f), corresponds to the learning phase of the
proposed in (Corradini et al., 2003) by simulations. neural networks, which require no preliminary off-
The mobile robot was simulated through a discrete- line training.
time model whose error dynamics were given in (7).  The neural network weights remain well bounded
The covariance&Rr of the noise vectoe; was set to at reasonable values. Plot (d) depicts time plots for
1 x 107513, wherel; denotes arti x i) identity ma- three particular weights, selected arbitrarily. For these
trix. Neural network pre-training is not used and, to particular simulations, the absolute maximum and mi-
demonstrate further the adaptive feature of the pro- nimum weight values over the two trajectories were
posed controller, the model used for simulations is 8.2 and —9.4 respectively, with the majority of the
abruptly modified by replacin@’ by 1.57 in (7) in weights centred about zero. This indicates that the
the middle of the simulation, specifically &2.5 se- proposed algorithm is also practically realizable as no
conds. This has the effect of modifying the robot mo- infinitely high neural network weights are required.
del considerably without altering its kinematic struc- As a result, the control velocities andw remained
ture. The selected reference trajectory was generatedvell bounded with decent magnitudes.

recursively (one time step ahead) using: Plot (g) depicts the mean of the diagonal of the co-
z.(t) = 2cos(0.25t), variance matrixP, in time. This is used to indicate
() = 2sin(0.50) 37) the uncertainty in the estimated weights, as gener_ated
Yr el recursively by the EKF. As expected, the uncertainty
0,(t) = arctan (y./2\), decreases with time, indicating that the EKF is stable
which define a figure-of-eight path in they plane. and the neural network estimations are continuously

Neural networkdN N and NN were structured — improving. The slope of this curve is related to the
with 18 and1 hidden unit neurons respectively. The learning rate of the system.
EKEF initial covarianceP, was set t&b1,,, wherea is
the total number of weights. The initial weight values
were randomly generated from a normal distribution
with zero mean. The controller design parameters 6 CONCLUSIONS
were set according to (36) with the eigenvalues pla-
ced inside the unity circle. Several simulation trials In this paper a neural network adaptive control
were conducted, each indicating good tracking and re- scheme for the trajectory tracking problem of mo-
peatable performance for the proposed algorithm. A bile robots is proposed. The resulting algorithm re-
number of results from a particul@b second dura-  quires no preliminary information about the process
tion simulation, with a time step dfd ms, are depic-  non-linear functions and uses MLP neural networks,
ted in Figure 1. trained online in consideration of the process uncer-
Referring to Figure 1, plots (a) to (g) were genera- tainties and external disturbances by using the EKF.
ted using the proposed adaptive controller while plot The designed scheme was tested repeatedly by simu-
(n) corresponds to the non-adaptive controller propo- lation for several noise conditions and sudden model
sed in (Corradini et al., 2003) under the same speci- variations, modeling the uncertainty and time-varying
fied simulation conditions and assuming that the ori- parameters encountered in practical environments. In
ginal robot functions are known. Primarily one should contrast to the non-adaptive scheme proposed in (Cor-
note that the pose errors shown in plots (a), (b) and (c) radini et al., 2003), the robot exhibited good tracking
remain well bounded about zero during the whole tra- performance in each case.
jectory, indicating that the proposed scheme has lear- Future research will include the development of
ned the nonlinear functions and yields stable control stochastic non-linear control laws (Fabri and Kadir-
throughout the simulation, including the period fol- kamanathan, 2001), which would take into account
lowing the previously mentioned model variation at the neural network approximation errors recursively
time 12.5 seconds. This variation is overcome with no through the readily available covariance matky.
more than a slight error transient visible in (b). This Such a controller would then be amalgamated with
transient dies out quickly once the controller adapts to the estimation algorithm developed in this paper, re-
the recently modified model. By contrast, plot (h) re- placing the current heuristic certainty equivalence
veals that the non-adaptive method proposed in (Cor- control law. This is anticipated to give better transient
radini et al., 2003) goes unstable just after this model performance due to its stochastic features. Stability
variation. proofs in the ambience of stochastic control are very
The complete trajectory path in the— y plane is rare due to the complexity of random processes, but
superimposed on the reference trajectory in plot (e). is still part of our agenda for future work.
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