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Abstract

Players perceive information about game environments
through a virtual camera. While a significant discussion in the
industry and in academic research circles has centered around
effective camera control, it is focused mainly on occlusion
free placement and smooth movement. The relationship be-
tween information communicated by the camera about game
state and the selection of camera parameters has not been in-
vestigated. In this paper, we systematically investigate the ef-
fect of different camera profiles on player experience in a 3D
prey/predator test-bed game. We describe a constraint-based
dynamic camera system that maintains the position and ori-
entation of the camera based on the constraints imposed by
given camera profiles. The impact of different profiles on the
amount of game information provided to the player and the
player’s game challenge preferences is investigated through a
user experiment. An artificial neural network model of chal-
lenge constructed using artificial evolution reveals the non-
linear mapping between challenge and information features.

Introduction

Camera control is an important component of player expe-
rience in games (Pinelle and Wong 2008). A camera in
games provides the player with a means for exploring the
game world, getting feedback on her actions, and updating
the state of the game. Previous research on camera con-
trol techniques have centered around efficient placement of
the camera and determination of viewpoint (Christie et al.
2005). Such techniques have mainly focused on efficiency
in computing the camera position and view, and ease of use
for game players. In the industry, designers have, over the
years, settled on specific camera profiles for particular game
genres. For example, Real-Time Strategy games have a top-
down (bird’s eye) camera that can be controlled by the player
by moving the mouse around the edges of the screen. First-
Person Shooting games give players an option of using an
overhead camera just over the shoulder of the player, or a
point of view of the player from eye-height of their avatar.
The camera settings for games are pre-defined by designers
and are maintained the same throughout the game. As the
industry moves towards procedurally generated content in-
cluding levels, characters, dialogues, and game rules, there
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is an increasing need for dynamic camera systems that can
adapt to procedural content by switching between different
camera configurations.

In this paper, we systematically investigate the impact of
different camera profiles on the amount of information com-
municated to the player. For this purpose, we implement a
constraint-based camera system and identify variants of the
camera based on different values of the distance, height, and
coherence camera parameters. The constraint-based camera
system maintains the camera at a specified distance, height,
and coherence in real time. We present a user study carried
out on different camera variants of a 3D prey/predator game
called Maze-Ball. In Maze-Ball players control a ball and
navigate inside a maze to collect gold tokens while avoiding
enemies. Users report pairwise challenge preferences for 8
camera variants of the Maze-Ball game. Information about
the game state that is provided to the player is recorded and
quantified through three measures: visible grid, visible to-
kens, and visible enemies.

Our analysis shows that camera profiles affect statisti-
cal features of game information and that there is no linear
correlation between those features and reported challenge.
A perceptron is trained using artificial evolution to learn
the mapping between features of information and challenge
preferences. The highest performing neural network ob-
tained achieves a validation accuracy of 75% on unseen data.
This performance is satisfactory given the complexity of the
problem — deriving from the subjectivity of human notion
of challenge — and the simplicity of the learning mecha-
nism. Analysis of the obtained perceptron model reveals that
information about enemies and tokens contribute more to
perceived challenge than information about the maze. More-
over, while less information about enemies and the maze
lead to higher challenge, less information about tokens avail-
able leads to lower challenge.

This work is a step towards developing adaptive camera
systems that can modulate the viewpoint to tailor challenge
for individual players. The promising results derived from
the perceptron model motivate further work on more com-
plex preference models and the design of adaptive mecha-
nisms for automatically selecting appropriate camera pro-
files to enhance player experience.
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Constraint-based Camera Control
Research on camera control that is relevant to our work is
research on constraint-based camera systems. For a com-
prehensive survey of different autonomous camera systems
the reader is encouraged to read (Christie et al. 2005). Our
work derives from the system developed by Bourne and Sat-
tar (Bourne, Sattar, and Goodwin 2008). Their system uses
a constraint solver which exploits the spatial structure of the
problem and thereby enables it to be used in real-time en-
vironments. It uses a weighted constraint satisfaction prob-
lem (CSP) framework. This allows the camera to be used in
highly dynamic and interactive environments. The follow-
ing three constraints are used to control the camera:
• Height. Maintains a relative height relationship with the

target.
• Distance. Maintains a relative distance relationship with

the target.
• Orientation. Maintains a relative angular alignment be-

tween the camera view vector and the target facing vector.
Bourne uses the idea of frame-coherence similar to Halper’s
system (Nicholas, Ralf, and Thomas 2001) to maintain
smooth camera movements, but instead of using an algebraic
incremental constraint solver Bourne introduces a frame-
coherence constraint. This constraint evaluates the differ-
ence between the distance the camera is planned to move
in the current frame and the distance moved in the previous
frame.

Maze-Ball Game
Maze-Ball (see Figure 1) is a 3D game developed on the
Unity game engine. The player controls a ball and moves it
inside a maze. The maze contains a number of golden to-
kens that the player can pick up to get a reward of 50 points.
There are also 10 red colored enemies moving in the maze.
Touching an enemy costs the player 25 points. The goal of
the player is to maximize her score by gathering as many
gold tokens as possible while avoiding being touched by the
red colored enemies within a pre-defined time window of 90
seconds.

Figure 1: Mazeball game top-down view

The purpose of choosing Maze-Ball for our experiments
is two-fold. First, it consists of a minimal interface for an
enjoyable game (arrow keys for controlling the character)
and a simple visual environment. Second, there is a direct
effect of the amount of information available to the player
via the camera viewpoint on their movement strategy.

Camera Control in Maze-Ball

A dynamic camera controller maintains the position, ori-
entation, and the field-of-view (FOV) of the camera in a
graphical world. Maintaining the camera position and ori-
entation amounts to finding and maintaining the 3D coordi-
nates (x, y, z) for the location and rotation angles for orien-
tation (pitch, yaw, roll) to satisfy viewing constraints im-
posed on the camera by the game design and the environ-
ment. Constraint-based techniques have been extensively
used in virtual camera control systems (Christie et al. 2005).

The camera system implemented for our experiments is
based on a weighted Constraint Satisfaction Problem (CSP)
solver framework for satisfying view constraints at each
frame (Bourne, Sattar, and Goodwin 2008). The CSP rep-
resentation used in this framework contains fewer variables
in order to make it interactive and efficient. The constraints
used are: distance, height and frame coherence. Distance
constraint maintains a relative distance relationship with the
target (Eq. 1, where d is the current distance, dd is the de-
sired distance, and Δd is the difference between distance
between last position and desired position). Height con-
straint maintains a fixed height relative to the target(Eq. 2,
where h is the current height, hd is the desired height, and
Δh is the difference between last height and desired height).
Frame coherence constraint maintains smooth motion across
frames and avoids erratic camera movements. Unlike spa-
tial constraints, frame coherence only has a weight that in-
dicates the importance of smooth transitions for the camera.
In equation (3) Cc is the coherence value, dl is the distance
traveled in the previous frame, dp is the distance the cam-
era has to move in the next frame using the current potential
solution, f is the frame interval, and Cw is the weight of
the constraint. We define a camera profile in the context of
our game as a triple of distance, height, and frame coherence
values. Orientation, which is one of the constraints normally
included in constraint-based systems, is not constrained as
the default orientation is determined by the position of the
player’s ball. The camera is always constrained to maintain
the player’s ball in the center of the screen from a behind
view.

h = (hd − Δh) (1)
d = (dd − Δd) (2)

Cc =
|dl − dp|

f
∗ Cw (3)

To geometrically solve the constraints provided by the de-
signer or automatically generated by the system, the con-
straint solver searches through the 3D space for potential
solutions. The algorithm (Algorithm 1) used in our ex-
periments is based on the sliding octree solver proposed by
Bourne and Sattar (Bourne, Sattar, and Goodwin 2008). The
search starts by generating an octree spatial data structure
for the entire domain. The mid-point of each node is then
evaluated as the potential camera solution. The solver pro-
gressively scales the octree down at each iteration and the
octree is slid down to the best evaluated solution that satis-
fies the given constraints. A collection of desired values for
distance, height, coherence, and importance weight of each
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(a) Variant 1: (6.0, 2.5, 0.01) (b) Variant 2: (15.0, 2.5, 0.01) (c) Variant 3: (6.0, 5.5, 0.01) (d) Variant 4: (15.0, 5.5, 0.01)

(e) Variant 5: (6.0, 2.5, 0.35) (f) Variant 6: (15.0, 2.5, 0.35) (g) Variant 7: (6.0, 5.5, 0.35) (h) Variant 8: (15.0, 5.5, 0.35)

Figure 2: Different camera profile variants used in the user study for the Maze-Ball game. Camera profiles are expressed as
value triples of (distance, height, coherence).

of these values is termed as a camera profile. By selecting
particular values of constraints different camera profiles can
be obtained.

calculate camera front and right vectors;
calcualte initial domain size;
while current pass less than maximum passes do

foreach octree node do
evaluate octree node as potential solution;
if octree node cost less than best solution cost
then

keep octree node as best solution;
end

end
reduce domain size by scaling factor;
slide direction = (best solution - octree center);
new octree center += slide direction * domain size;
increment pass count;

end
return best solution as new camera position;

Algorithm 1: Sliding Octree Solver based on Bourne et
al. (Bourne, Sattar, and Goodwin 2008)

Choice of camera profile variables

We are interested in evaluating the effect of camera view-
points resulting from different camera profiles on the per-
ceived challenge for players. For that purpose, given the
same virtual setting of the game, we vary camera profiles
while keeping the game design, level design, and game me-
chanics unaltered. Eight game variants are implemented in
Maze-Ball by varying distance, height and frame coherence.
For each of the three camera control variables, two states
(‘High’ and ‘Low’) were selected leading to the aforemen-
tioned 8 different variants of the game. The range of val-
ues for distance and height were determined to cover dif-
ferent well-known camera profiles. Minimum distance is
0 (camera on top of the ball looking down) and minimum
height equals to the radius of the ball. Maximum distance

equals half of the edge size of the maze grid and maximum
height is determined by the height at which the whole grid is
visible when the camera is fixed at the center of the grid.
These ranges for distance and height cover several well-
known camera profiles in games. For instance, minimum
distance combined with maximum height yield a top-down
view shown in Figure 1 similar to the pac-man game. Max-
imum distance combined with minimum height give a 2.5
dimensional view as seen in 3D chess, mini-golf, and bil-
liard games. Minimum values of both distance and height
give a first-person view while increasing the distance and
height values by a small amount gives a behind-view of the
player; a popular camera viewpoint in shooting games. Fi-
nally, minimum distance combined with low height values
give a top-down restricted view of the world similar to real-
time strategy games.

For the purpose of our experiments, we chose two inter-
mediate values for distance and height within the aforemen-
tioned ranges. The exact values for distance, height, and
coherence for each of the eight variants are illustrated in Fig-
ure 2.

Information in Maze-Ball

The Maze-Ball environment consists of a two dimensional
grid. Each grid location can either be open or blocked if
there is a wall on it. Any open grid location can be occu-
pied by a gold token. The player’s ball and enemies can
move along contiguous open grid locations. If the player’s
ball moves over the grid location on which a gold token is
present, then the gold token is removed and the player is
awarded points for collecting the token. If the player and the
enemy collide in the same open grid location then the player
loses points for touching the enemy. Three information mea-
sures are recorded by the game for each playing session

• Visible Maze IM : The number of grid cells that are visi-
ble to the player at any time during the game.
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• Visible Tokens IT : The number of tokens visible to the
player at any time during the game.

• Visible Enemies IE : The number of enemies visible to
the player at any time during the game.
We assume that these information measures are directly

affected by the choice of camera profiles. Camera profiles
with low height values will lead to a smaller part of the
maze being visible at any time during the game. Similarly,
low distance values will restrict the visibility for grid cells
behind the player and further out in front of the player. Co-
herence values determine how fast the camera sweeps across
when the player changes directions or speed. This affects the
visibility of the maze during the interval between the succes-
sive camera transitions. The analysis presented in Section
below verifies these assumptions.

The player’s movement strategy in Maze-Ball is also af-
fected by these three measures of information about the
game at any time. The measures can also be efficiently com-
puted and recorded in real-time which makes them appro-
priate for any adaptive camera controller constructed.

User Study
We conducted a user study to solicit pairwise preferences for
challenge perceived by players in different variants of Maze-
Ball by following the experimental protocol proposed in
(Yannakakis, Hallam, and Lund 2008). Thirty-six subjects
(males: 20%, females: 80%) aged 21 to 47 years (mean:
27.2 and standard deviation: 5.84) participated in the exper-
iment. Each subject played a predefined set of eight games
for 90 seconds each. For each of the four pairs of games A
and B, subjects reported their preference for challenge using
a 4-alternative forced choice (4-AFC) protocol:
• game A[B] was more challenging than B[A]
• both games were equally challenging
• neither of the two games was challenging

The number of participants is determined by C9
2 = 36,

which is the number of all combinations of 2 of 9 variants.
The 9th variant has only been used for testing purposes and
it is not investigated in this paper. Four preference instances
(2 for each order) are obtained for each of the C8

2 = 28
game pairs resulting to 4 · 28 = 112 pairwise preferences.
A clear 2-AFC preference (A ≺ B or A � B) was ob-
tained for challenge in 97 out of 112 game pair preference
instances showing that the variants, in the vast majority of
instances, generated a dissimilar playing experience with re-
spect to challenge. Data for each information measure (IM ,
IT and IE) is collected at a sampling rate of two per second
during each game played by the subjects. The mean E{·}
and standard deviation σ{·} of those recorded values are cal-
culated. More statistical features of those measures could be
investigated; however, E{·} and σ{·} provide adequate in-
formation for the distribution of those measures required for
the aims of this paper.

Order of Play Effects

We check for order of play effects on player’s reported
preferences by following the procedure described in (Yan-

(a) Average

(b) Standard deviation

Figure 3: Statistical features of the three information mea-
sures over game variants. Values illustrated are averaged
across all subjects played the corresponding variant. Feature
values for IM are divided by 20 for illustration purposes

nakakis, Hallam, and Lund 2008). This testing approach is
based on the times that the subject prefers the first or the
second game of pairs played in both orders. Our statistical
analysis shows that the order of play correlation coefficient
for challenge equals −0.222 with a corresponding p-value
of 0.121. This shows that order of play does not affect re-
ported challenge preferences. These values also suggest that
a user’s preference for the first game played and the inter-
play between reported preferences and familiarity with the
game in later preferences are statistically insignificant.

Results and Discussion

A statistical analysis on the relationship between camera
profiles and game state information is presented in the first
part of this section. Then, the impact of information on re-
ported challenge is investigated by constructing and analyz-
ing a computational model of challenge preferences built on
information statistical features; a perceptron is evolved to
map features of information to challenge preferences.

Camera Profiles versus Game State Information

We first investigate the relationship between camera profiles
and game state information measures. Our assumption is
that camera variants with higher distance and height values
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provide more information about the world (maze/grid lay-
out, tokens, and enemies).

Figure 3(a) shows the mean (across all subjects) of the av-
erage (E{·}) and standard deviation (σ{·}) values of of all
three information measures during each of the 8 game vari-
ants. It can be seen from the figure that information about
the maze is high in variants where distance and height are
higher. Odd numbered variants (1, 3, 5, and 7) have lower
distance values and generate a correspondingly lower num-
ber of grid cells visible. Among these, 5 and 7 have a higher
height value resulting to more visible maze cells. As ex-
pected, average numbers of visible tokens and enemies (just
like E{IM}) increase with higher values of distance and
height. For both features, information increases for variants
with higher frame coherence due to the time taken by the
camera to sweep across the maze.

Frame coherence mainly contributes to standard deviation
observed in the variants (see Figure 3(b)). The first four vari-
ants, with low frame coherence value, have a lower standard
deviation because the camera immediately switches to the
new orientation and misses the intermediate grid cells. In
the last four variants, where coherence is high, the camera
slowly adjusts to the desired change in orientation thereby
sweeping across the maze landscape providing more infor-
mation.

Challenge versus Game State Information

Given the average and standard deviation values for all three
information measures the first step in the investigation be-
tween reported challenge and information provided by the
game is the observation of significant linear correlations be-
tween challenge and game state information. For this pur-
pose we follow the test statistic proposed in (Yannakakis,
Hallam, and Lund 2008) which checks whether preferences
are consistent to a higher value of the statistical feature ex-
amined (e.g. average visible number of enemies).

Statistically significant effects were not observed between
challenge and any of the six statistical features indicating
that challenge does not vary linearly with respect to infor-
mation provided by the game. This generates the assumption
that there is an unknown non-linear function between game
state information and challenge generated by the game. Ma-
chine learning can be used to automatically approximate this
function; the procedure followed is described below.

Perceptron Model of Challenge Given the high level of
subjectivity of human preferences and the noisy nature of in-
put data (information features), we believe that a non-linear
function such as an artificial neural network (ANN) might
approximate well the mapping between reported challenge
and input data. Thus, a simple single-neuron (perceptron) is
utilized for learning the relation between the six statistical
features (ANN inputs) and the challenge value c (ANN out-
put) of a game. Function expressiveness is the main motiva-
tion for using a single-neuron instead of a multi-layered per-
ceptron (MLP) in this study. While an MLP can potentially
approximate the function investigated with a higher accu-
racy, speculation of the obtained function is a much simpler
task in a single-neuron ANN.

The sigmoid function is employed at the neuron, connec-
tion weights take values from -10 to 10 and input values are
normalized into [0, 1]. Since there are no prescribed target
outputs for the learning problem (i.e. no differentiable out-
put error function), ANN training algorithms such as back-
propagation are inapplicable. Learning is achieved through
artificial evolution by following the preference learning ap-
proach presented in (Yannakakis and Hallam 2007). A gen-
erational genetic algorithm (GA) (Holland 1975) is imple-
mented, which uses a fitness function that measures the dif-

(a) Challenge with respect to average IE and IM

(b) Challenge with respect to average IE and IT

(c) Challenge with respect to average IT and IM

Figure 4: The function between the challenge value c (ANN
output) and three information features (ANN input) derived
from the highest performing perceptron.
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ference between the subject’s reported challenge preferences
and the relative magnitude of the corresponding model out-
put values c. Further details on the neuro-evolution mecha-
nism can be found in (Yannakakis, Hallam, and Lund 2008).

To permit evaluation of the performance of a constructed
ANN model, the available data is randomly divided into
three subsets which are combined to give three training and
three, independent, validation data sets each consisting of
2/3 and 1/3 of the data respectively. The performance of
an ANN model is measured through the average classifica-
tion accuracy of the ANN in three independent runs using
3-fold cross-validation on these training and validation data
sets. The highest-performing perceptron achieves a cross-
validation accuracy of 71.88% (average of 75%, 71.87% and
68.75%) on unseen data while the corresponding average
performance of 10 random ANNs is 48.85%. The obtained
performance is satisfactory given the high level of subjectiv-
ity of challenge preferences and suggests that additional in-
dividual playing characteristics (e.g. average distance from
enemies) may be required for higher accuracy approxima-
tions. Note that the binomially distributed probability of the
71.88% accuracy to occur at random is 0.01 which demon-
strates the robustness of the obtained solution.

The weight values of the highest performing perceptron
(75%) connecting the input values of EIE

, EIT
and EIM

to
the perceptron are, respectively, -6.465, 6.739 and -3.643.
These values show the relative importance of each of the
three information measures for reported challenge. On that
basis, the average numbers of enemies and tokens visible
contribute more to challenge than the average number of
maze cells visible. Moreover, it appears that visible enemies
and maze cells have a negative contribution to challenge
whereas visible tokens contribute positively to the level of
challenge. These effects are better illustrated in Figure . As
can be seen in that figure, more information about the maze
of the game leads to decrease of the challenge value. Simi-
larly more information about the enemy leads to a decrease
in reported challenge. More information about the number
of tokens, however, results in increased challenge value.

While the interplay between maze and enemy information
and challenge is obvious, the positive impact of token infor-
mation on challenge is unexpected at first glance. This effect
generates the assumption that challenge perceived by the
player is increased through more visible tokens due to the
restricted gameplay time window. Observation of game ses-
sions reveals characteristics of the aforementioned playing
behavior; however, further statistical features of gameplay
data (e.g. spatial diversity of player position in the maze)
will be required to further validate this assumption.

Conclusions and Future Work
This paper presents a first systematic empirical study of
the relationships between camera profiles, game state in-
formation, and perceived challenge. We presented an im-
plementation of a constraint-based camera system capable
of maintaining different camera profiles defined as con-
strained distance, height, and frame coherence values in a
3D prey/predator game called Maze-Ball. We also designed
three heuristics for quantifying the information provided to

the player of Maze-Ball: visible maze, visible enemies, and
visible tokens.

An efficient experimental setup was designed and the im-
pact of game information statistical measures was examined
against challenge preferences. Our observations show a pos-
itive correlation between the amount of information given to
the player through a dynamic camera and perceived chal-
lenge for the player. As expected, the amount of informa-
tion determined by the three measures is directly related to
camera profiles. Higher distance, height, and coherence set-
tings lead to increase in the amount of information presented
on the screen. More information is not, however, linearly
related to player’s reported challenge values. The percep-
tron model of challenge constructed on game information
and preference data reveals that more information about en-
emies and maze leads to a decreased challenge value while
more information about tokens leads to an increase of game
challenge in the test-bed game.

This work is the first step towards finding the link be-
tween game state information and adaptive camera control
and their interplay with player experience. We believe that
this link will be vital for developing intelligent camera con-
trol systems that will adapt to game play across game gen-
res. One direct step in the future is to use preference learning
algorithms to design ANN player models of reported experi-
ence built on statistical features of play and camera control-
lable parameters. Such models can then be used to control
the selected camera parameters for tailoring the game expe-
rience.
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