arXiv:1706.02556v1 [cs.NE] 8 Jun 2017

Surprise Search for Evolutionary Divergence

Daniele Gravina, Antonios Liapis, and Georgios N. Yannakakis

Abstract—Inspired by the notion of surprise for unconventional
discovery we introduce a general search algorithm we name
surprise search as a new method of evolutionary divergent search.
Surprise search is grounded in the divergent search paradigm and
is fabricated within the principles of evolutionary search. The
algorithm mimics the self-surprise cognitive process and equips
evolutionary search with the ability to seek for solutions that
deviate from the algorithm’s expected behaviour. The predictive
model of expected solutions is based on historical trails of where
the search has been and local information about the search space.
Surprise search is tested extensively in a robot maze navigation
task: experiments are held in four authored deceptive mazes and
in 60 generated mazes and compared against objective-based
evolutionary search and novelty search. The key findings of this
study reveal that surprise search is advantageous compared to
the other two search processes. In particular, it outperforms
objective search and it is as efficient as novelty search in all
tasks examined. Most importantly, surprise search is faster, on
average, and more robust in solving the navigation problem
compared to any other algorithm examined. Finally, our analysis
reveals that surprise search explores the behavioural space more
extensively and yields higher population diversity compared to
novelty search. What distinguishes surprise search from other
forms of divergent search, such as the search for novelty, is its
ability to diverge not from earlier and seen solutions but rather
from predicted and unseen points in the domain considered.

Index Terms—Surprise search, novelty search, divergent
search, deception, fitness-based evolution, maze navigation,
NEAT.

I. INTRODUCTION

VER the last 50 years, evolutionary computation (EC)

has shown vast potential in numerical and behavioural
optimization. The most common approach to optimization in
artificial evolution is via an objective function, which rewards
solutions based on their ‘goodness’ [[1]], i.e. how close they
are to an optimal behaviour (if such a behaviour is known
beforehand) or how much they improve a performance metric.
The objective function (or fitness function) encapsulates the
principle of evolutionary pressure for fitting (adapting) within
the environment. Despite the success of such approaches in a
multitude of tasks [1]], [2]], they are challenged in deceptive fit-
ness landscapes [3] where the global optimum is neighboured
by low-quality solutions. In such cases, the local search of an
objective-based evolutionary algorithm can guide search away
from a global optimum and towards local optima. As a general
principle, more deceptive problems challenge the design of a
corresponding objective function; this paper follows [4] and
views deception as the intuitive definition of problem hardness.
Many algorithms have been proposed to tackle the problem

All authors are with the Institute of Digital Games, University of
Malta, Msida 2080, Malta (e-mail: daniele.gravina@um.edu.mt; anto-
nios.liapis@um.edu.mt; georgios.yannakakis @um.edu.mt)

of deception, primarily revolving around diversity preserva-
tion [S]-[7], which deters premature convergence while still
rewarding proximity to the objective and divergent search [{§]
which abandons objectives in favour of rewarding diversity in
the population.

There are, however, problems which lack an easily defined
objective — or a gradient to reaching it. For instance, open-
ended evolution studies within artificial life [9] do not have
a goal state and instead prioritize e.g. survival [10]], [11]]. In
evolutionary art, music or design, a large body of research
in computational creativity and generative systems [|12[|—[|14]]
focuses on the creative capacity of search rather than on the
objectives. In [[13]], computational creativity is considered on
two core properties of a produced solution: value and novelty
[13]. Value is the degree to which a solution is of high quality,
whereas novelty is the degree to which a solution (or output)
is dissimilar to existing examples. While objective-based EC
can be seen as a metaphor of searching for value, a divergent
EC strategy as novelty search [8|, [[15] can be considered as
a metaphor of searching for novelty. An effective use of both
in EC can lead to highly novel and valuable at the same time
outcomes [16]], thus realizing quality diversity [17]. However,
according to [18]], novelty and value are not sufficient for
the discovery of highly creative and unconventional solutions
to problems. While novelty can be considered as a static
property, surprise considers the temporal properties of the
discovery, an important dimension to assess the creativity of
the generated solution [18]], [19]]. Further studies in general
intelligence and decision making [20] support the importance
of unexpectedness for problem-solving.

Driven by the notion of computational surprise for the
purpose of creatively traversing the search space towards unex-
pected or serendipitous solutions, this paper proposes surprise
search for the purposes of divergent evolutionary search. The
hypothesis is that searching for unexpected — not merely
unseen — solutions is beneficial to EC as it complements our
search capacities with highly efficient and robust algorithms
beyond the search for objectives or mere novelty. Surprise
search is built upon the novelty search [8] paradigm that
rewards individuals which differ from other solutions in the
same population and a historical archive. Surprise is assumed
to arise from a violation of expectations [21]: as such, it
is different than novelty which rewards deviation from past
and current behaviours. A computational, quantifiable model
of surprise must build expectations based on trends in past
behaviours, and predict future behaviours from which it must
diverge from. In order to create expected behaviours, the
algorithm maintains a lineage of where evolutionary search has
been. These groups of evolutionary lineages require the right
level of locality in the behavioural space — surprise can be
inclusive of all behaviours (globally) or merely consider part

of all possible behaviours (locally). Any deviation from these
stepping stones of search would elicit surprise; alternatively,
they can be viewed as serendipitous discovery if the deviation
leads to a surprisingly good point in the behavioural space.
The findings of this paper suggest that surprise constitutes a
powerful drive for computational discovery as it incorporates
predictions of an expected behaviour that it attempts to deviate
from; these predictions may be based on behavioural relation-
ships in the solution space as well as historical trends derived
from the algorithm’s sampling of the domain.

This paper builds upon and extends significantly our earlier
work which introduced the notion of surprise search [22]]
and compared its performance against novelty search and
objective-based search [23]] in the maze navigation testbed of
[8[l. The current paper extends the preliminary study of [23]] by
introducing two new maze navigation problems of increased
complexity, and analysing the impact of several parameters
to the behaviour of surprise search. This paper also includes
an extensive comparison between novelty search and surprise
search both in the behavioural and the genotypic space. Fi-
nally, to further examine how surprise search performs across
a wide range of problems, we test how it scales in sixty
randomly generated mazes of varying degrees of complexity.
The key findings of the paper suggest that surprise search is as
efficient as novelty search and both algorithms, unsurprisingly,
outperform fitness-based search. Furthermore, surprise search
appears to be the most robust algorithm in the four testbed
tasks and to be the most successful and fastest algorithm in the
60 randomly generated mazes. While both novelty and surprise
search converge to the solution significantly faster than fitness-
based search, surprise search solves the navigation problem
faster, on average, and more often than novelty search. The
experiments of this paper validate our hypothesis that surprise
can be beneficial as a divergent search approach and provide
evidence for its supremacy over novelty search in the tasks
examined.

II. DECEPTION, DIVERGENT SEARCH AND QUALITY
DIVERSITY

This section motivates surprise search by providing a brief
overview of the challenges faced by fitness-based approaches
when handling deceptive problems and how divergent search
has been used to address such challenges. The section con-
cludes with a discussion on the relationship between surprise
search and quality diversity algorithms.

A. Deception in Evolutionary Computation

The term deception in the context of EC was introduced
by [3] to describe instances where highly-fit building blocks,
when recombined, may guide search away from the global
optimum. Since that first mention, the notion of deception (in-
cluding deceptive problems and deceptive search spaces) has
been refined and expanded to describe several problems that
challenge evolutionary search for a solution. [4]] argues that
“the only challenging problems are deceptive”. EC-hardness is
often attributed to deception, as well as sampling error [[24] and
a rugged fitness landscape [25]]. In combinatorial optimisation

problems, the fitness landscape can affect optimisation when
performing local search. Such a search process assumes that
there is a high correlation between the fitness of neighbouring
points in the search space, and that genes in the chromosome
are independent of each other. The latter assumption refers
to epistasis [26] which is a factor of GA-hardness: when
epistasis is high (i.e. where too many genes are dependent
on other genes in the chromosome), the algorithm searches
for a unique optimal combination of genes but no substantial
fitness improvements are noticed [26].

As noted, epistasis is evaluated from the perspective of the
fitness function and thus is susceptible to deception; [27] argue
that deceptive functions can not have low epistasis, although
fitness functions with high epistasis are not necessarily de-
ceptive. Such approaches are often based on the concepts of
correlation, i.e. the degree to which an individual’s fitness
score is well correlated to its neighbours’ in the search space,
or epistasis, i.e. the degree of interaction among genes’ effects.
As noted by [8]], most of the factors of EC-hardness originate
from the fitness function itself; however, poorly designed
genetic operators and poorly chosen evolutionary parameters
can exacerbate the problem.

B. Divergent Search

By definition, the biggest issue of a deceptive problem
is premature convergence to local optima, while the global
optimum is difficult to reach as the deceptive fitness landscape
lead the search away from it. Several approaches have been
proposed to counter this behaviour, surveyed by [15]]. For
instance, speciation [28]] and niching [29] are popular diver-
sity maintenance techniques, which enforce local competition
among similar solutions. Similarity can be measured on the
genotypical level [5]], on the fitness scores [6], or on the age of
the individuals [7]]. Multiple promising directions are favoured
by this localised competition, making premature convergence
less likely. Alternatives such as coevolution [|30]] can lead to
an arms race that finds a better gradient for search, but can
suffer when individuals’ performance is poor or one individual
vastly outperforms others [31]]. Finally, techniques from multi-
objective optimisation can, at least in theory, explore the search
space more effectively by evaluating individuals in more than
one measures of quality [32] and thus avoid local optima in
one fitness function by attempting to improve other objectives;
however, multi-objective optimisation can not guarantee to
circumvent deception [33]].

Divergent search methods differ from previous approaches
as they explicitly ignore the objective of the problem they are
trying to solve. While the approaches described above provide
control mechanisms, modifiers or alternate objectives which
complement the gradient search towards a better solution,
divergent algorithms such as novelty search [8] motivates
exploration of the search space by rewarding individuals
that are phenotypically (or behaviourally) different without
considering whether they are objectively “better” than others.
Novelty search is neither random walk nor exhaustive search,
however, as it gives higher rewards to solutions that are
different from others in the current and past populations

by maintaining a memory of the areas of the search space
it has explored via a novelty archive. The archive contains
previously found novel individuals, and the highest-scoring
individuals in terms of novelty are continuously added to it
as evolution carries on. The distance measure which assesses
“difference” is based on a behaviour characterization, which
is problem-dependent: for a maze navigation task, distance
may be calculated on the agents’ final positions or directions
[8], [[17], for robot locomotion it may be on the position of
a robot’s centre of mass [8], for evolutionary art it may be
on properties of the images such as brightness and symmetry
[34].

C. Quality Diversity

A recent trend in evolutionary computation is inspired by
a species’ tendency to face a strong competition for survival
within its own niche [17]. EC algorithms of this type seek
for the discovery of both quality and diversity at the same
time, following the traditional approach within computational
creativity of seeking outcomes characterized by both quality
(or value) and novelty [[13]]. Such evolutionary algorithms
have been named quality diversity algorithms [17] and aim
to find a maximally diverse population of highly performing
individuals. Examples of such algorithms include novelty
search with local competition [35] and MAP-Elites [36] as
well as algorithms that constrain the feasible space of solutions
— thereby forcing high quality solutions — while searching
for divergence such as constrained novelty search |16, [|37].

Surprise search can complement the search for diversity and
replace other divergent search algorithms commonly used for
quality diversity. It can, for instance, be used in combination
with local competition instead of novelty search as in [35].
Towards that goal, a recent study employed surprise search
for game weapon generation in a constrained fashion [38]]. The
constrained surprise search algorithm rewarded the generation
of surprising weapons — thereby maintaining diversity — with
guaranteed high quality imposed by constraints on weapon
balance and effectiveness.

III. THE NOTION OF SURPRISE SEARCH

This section examines the notion of surprise as a driver
of evolutionary search. To this end, we first describe the
concept of surprise, we then highlight the differences between
surprise and novelty and, finally, we frame surprise search in
the context of divergent search.

A. What is Surprise?

The study of surprise has been central in neuroscience, psy-
chology, cognitive science, and to a lesser degree in computa-
tional creativity and computational search. In psychology and
emotive modelling studies, surprise defines one of Ekman’s
six basic emotions [39]]. Within cognitive science, surprise
has been defined as a temporal-based cognitive process of
the unexpected [21]], [40], a violation of a belief [41]], a
reaction to a mismatch [21]], or a response to novelty [14].
In computational creativity, surprise has been attributed to the
creative output of a computational process [[14], [18].

While variant types and taxonomies of surprise have been
suggested in the literature — such as aggressive versus passive
surprise [18] — we can safely derive a definition of surprise
that is general across all disciplines that study surprise as
a phenomenon. For the purposes of this paper we define
surprise as the deviation from the expected and we use the
notions surprise and unexpectedness interchangeably due to
their highly interwoven nature.

B. Novelty vs. Surprise

Novelty and surprise are different notions by definition as
it is possible for a solution to be both novel and/or expected
to variant degrees. Following the core principles of Lehman
and Stanley [[8]] and Grace et al. [18]], novelty is defined as the
degree to which a solution is different from prior solutions to
a particular problem. On the other hand, surprise is the degree
to which a solution is different from the expected solution to
a particular problem.

Expectations are naturally based on inference from past
experiences; analogously surprise is built on the temporal
model of past behaviours. To exemplify the difference between
the notions of novelty and surprise, [22] uses a card memory
game where cards are revealed, one at a time, to the player who
has to predict which card will be revealed next. The novelty of
game outcome (i.e. next card) is the highest if all past revealed
cards are different. The surprise value of the game outcome
in that case is low as the player has grown to expect a new,
unseen, card every time. On the other hand, if seen cards are
revealed after a while then the novelty of the game outcome
decreases, but surprise increases as the game deviates from
the expected behaviour which calls for a new card every time.

Surprise is a temporal notion as expectations are by nature
temporal. Prior information is required to predict what is
expected; hence a prediction of the expected [19] is a necessary
component for modelling surprise computationally. By that
logic, surprise can be viewed as a temporal novelty process
or as novelty on the prediction (rather than the behavioural)
space. Surprise search maintains a prediction (a gradient) of
where novelty has been on the prediction space, which is
derived from the behavioural space. In that sense surprise
resembles a time derivative of novelty.

C. Novelty Search vs. Surprise Search

According to Grace et al. [18], novelty and value (i.e.
objective in the context of EC) are not sufficient for the
discovery of unconventional solutions to problems (or creative
outputs) as novelty does not cater for the temporal aspects
of discovery. Novelty search rewards divergence from current
behaviours (i.e. other individuals of the population) and prior
behaviours (i.e. an archive of previously novel solutions) [8];
in this way it provides the necessary stepping stones toward
achieving an objective (i.e. value). Surprise, on the other hand,
complements the search for novelty as it rewards divergence
from the expected behaviour. In other words while novelty
search attempts to deviate from previously seen solutions,
surprise search attempts to deviate from solutions that are
expected to be seen in the future.

. 7 expected
* I behaviors of
. -_ | generation
— t

surprise score
of individual /

_|
|
|
|
|
|
|
|
|
1
|

a

behavior of
individual

populations C> QQ Q
evolution

generanon generanon genemtlon actual
generation

t

Fig. 1: High-level overview of the surprise search algorithm
when evaluating an individual ¢ in a population at generation
t. The h previous generations are considered, with respect
to k behavioural characteristics per generation, to predict the
expected k behaviours of generation ¢. The surprise score of
individual ¢ is the deviation of the behaviour of ¢ from a subset
of these k expected behaviours.

Highly relevant to this study is the work on computational
models of surprise for artificial agents [42]], which however
does not consider using such a model of surprise for search.
Other aspects of unexpectedness such as intrinsic motivation
[43] and artificial curiosity [44] have also been modelled. The
concepts of novelty within reinforcement learning research
are also interlinked to the idea of surprise search [43]], [45].
Artificial curiosity and intrinsic motivation differ from surprise
search as the latter is based on evolutionary divergent search
and motivated by open-ended evolution, similarly to novelty
search. Specifically, surprise search does not keep a persistent
world model as [44] does; instead it focuses on the current
trajectory of search using the latest points of the search space
it has explored (and ordering them temporally). Additionally,
it rewards deviations from expected behaviours agnostically
rather than based on how those deviations improve a world
model. This allows surprise search to backtrack and re-visit
areas of the search space it has already visited, which is
discouraged in both novelty search and curiosity.

Inspired by the above arguments and findings in computa-
tional creativity, we view surprise for computational search
as the degree to which expectations about a solution are
violated through observation [18]]. Our hypothesis is that if
modelled appropriately, surprise may enhance divergent search
and complement or even surpass the performance of traditional
forms of divergent search such as novelty. The main findings
of this paper validate our hypothesis.

IV. THE SURPRISE SEARCH ALGORITHM

This section discusses the principles of designing a surprise
search algorithm for any task or search space. To realise
surprise as a search mechanism, an individual should be
rewarded when it deviates from the expected behaviour, i.e. the
evaluation of a population in evolutionary search is adapted.
This means that surprise search can be applied to any EC
method, such as NEAT [28]] in the case study of this paper.

As discussed above, surprise search must reward an individ-
ual’s deviation from the expected behaviour. This goal can be
decomposed into two tasks: prediction and deviation. At the
highest descriptive level, surprise search uses local information
from past generations to predict behaviour(s) of the population
in the current generation; observing the behaviours of each
individual in the actual population, it rewards individuals that
deviate from predicted behaviour(s): this is summarized in
Fig. The following sections will describe the models of
prediction and deviation, and the parameters which can affect
their behaviour.

A. Model of Prediction

As shown in Fig. [1} the predictive model uses local infor-
mation from previous generations to estimate (in a quantitative
way) the expected behaviour(s) in the current population.
Formally, predicted behaviours (p) are created via eq. (I)),
where m is the predictive model that uses a degree of local
(or global) behavioural information (expressed by k) from h
previous generations. Each parameter (m, h, k) may influence
the scope and impact of predictions, and are problem-specific
both from a theoretical (as they can affect performance of
surprise search) and a practical (as certain domains may limit
the possible choice of parameters) perspective.

p =m(h, k) (D

How much history of prior behaviours (h) should sur-
prise search consider?: In order to predict behaviours in
the current population, the predictive model must consider
previous generations. In order to estimate behaviours of a
population at generation ¢, the predictive model must find
trends in the populations of generations t —1,t—2,--- ,t—h.
The minimum number of generations to consider in order
to observe an evolutionary trend, therefore, is h = 2 (the
two prior generations to the one being evaluated). However,
behaviours that have performed well in the past could also be
included in a surprise archive, similar to the novelty archive of
novelty search [§]], and subsequently used to make predictions
of interesting future behaviours. Such a surprise archive would
serve as a more persistent history (h > 2) but considering
only the interesting historical behaviours rather than all past
behaviours.

How local (k) are the behaviours surprise search needs to
consider to make a prediction?: Surprise search can consider
behavioural trends of the entire population when creating a
prediction (global information). In that case, £ = 1 and all
behaviours are aggregated into a meaningful average metric
for each prior generation. The current generation’s expected
behaviours are similarly expressed as a single (average) metric;
deviation of individuals in the actual population is derived
from that single metric. At the other extreme, surprise search
can consider each individual in the population and derive an
estimated behaviour based on the behaviours of its ancestors in
the genotypic sense (parents, grandparents etc.) or behavioural
sense (past individuals with the closest behaviour). In this case
k = P where P is the size of the population, and the number
of predictions to deviate from will similarly be P. Therefore,

the parameter k determines the level of prediction locality
which can vary from 1 to P; intermediate values of k split
prior populations into a number of population groups using
problem-specific criteria and clustering methods.

What predictive model (m) should surprise search use?:
Any predictive modelling approach can be used to predict a fu-
ture behaviour, such as a simple linear regression of a number
of points in the behavioural space, non-linear extrapolations,
or machine learned models. Again, we consider the predictive
model, m, to be problem-dependent and contingent on the h
and k parameters.

B. Model of Deviation

To put pressure on unexpected behaviours, we need an
estimate of the deviation of an observed behaviour from the
expected behaviour (if k¥ = 1) or behaviours. Following the
principles of novelty search [§]], this estimate is derived from
the behaviour space as the average distance to the n-nearest
expected behaviours (prediction points). The surprise score s
for an individual ¢ in the population is calculated as:

Z ds(iapi,j)
7=0

where d, is the domain-dependent measure of behavioural
difference between an individual and its expected behaviour,
p;,; is the j-closest prediction point (expected behaviour)
to individual ¢ and n is the number of prediction points
considered; n is a problem-dependent parameter determined
empirically (n<k).

s(i) =)

S|

C. Important notes

The evolutionary dynamics of surprise search are similar
to those achieved via novelty search. A temporal window of
where the search has been is maintained by looking at the prior
behaviours (expressed by h and k), which are used to make
a prediction of the expected behaviours. However, surprise
search works on a different search space (the prediction space)
which is orthogonal to the behavioural space used by novelty,
as it deviates from the expected and not from the actual be-
haviours. Therefore, a new form of divergent search emerges,
which looks at previous behaviours only in an implicit way
in order to derive the prediction space. A concern could be if
surprise search is merely a version of random walk, especially
considering that it deviates from predictions which can differ
from actual behaviours. Several comparative experiments in
section show that surprise search is different and far more
effective compared to various random benchmark algorithms.
The source code of the surprise search algorithm is publicly
available herd]

V. MAZE NAVIGATION TEST BED

Inspired by the work of Lehman and Stanley for testing
novelty search [8|], we use a maze navigation problem as a
testbed for surprise search, as it particularly suits the definition

Ihttp://www.autogamedesign.eu/mazesurprisesearch

Left /
Right

Forward /
Back

Evolved Topology

Rangefinder
Sensors

Radar
Sensors

Bias

(a) Neural Network (b) Sensors

Fig. 2: Robot controller for the maze navigation task. Fig.
shows the network’s inputs and outputs. Fig. [2b] shows the
layout of the sensors: the six black arrows are rangefinder
sensors, and the four blue pie-slice sensors act as a compass
towards the goal.

of deceptive problem. The maze navigation task is made of a
closed two-dimensional maze, which contains a start position
and a goal position: the navigation task has a deceptive
landscape—which is directly visible to a human observer—
due to the several local optima present in the search space
of the problem. Cul-de-sacs added in the shortest path to
the goal makes the problem more deceptive, as EC must
visiting positions with lower fitness scores before reaching
the goal, making the problem harder and more deceptive. In
this case, navigation is performed by virtual robot controllers
with sensors and mechanisms for controlling their direction
and speed: the mapping between the two is provided is via an
artificial neural network (ANN) evolved via neuroevolution of
augmenting topologies [28]]. Starting from the mazes intro-
duced in [§]], we designed two additional mazes of enhanced
complexity and deceptiveness. This section briefly describes
the maze navigation problem, the four mazes adopted, and the
parameters for the experiment of Section

A. The Maze Navigation Task

The maze navigation task consists of finding the path from
a starting point to a goal in a two-dimensional maze, in a
fixed number of simulation steps. The problem becomes harder
when mazes include dead-ends and the goal is far away from
the starting point. As in [8], the robot has six range sensors
to measure its distance from the closest obstacle, plus four
range radars that fire if the goal is in their arc (see Fig.
[2b). Therefore, the robot’s ANN receives 10 inputs from the
sensors and it controls two actuators, i.e. whether to turn or
change the speed (see Fig. [2a). Evolving a controller able to
successfully navigate a maze is a challenging problem, as EC
needs to evolve a complex mapping between the input (sen-
sors) and the output (movement) in an unknown environment.
Even if it can be considered a toy problem, it is an interesting
testbed as it stands for a general deceptive search space. Two
properties have made this environment a canonical test for
divergent search (e.g. [8]], [17]): the ease of manually designing
deceptive mazes and the low computational burden, which
enables researchers to run multiple comparative tests among

o

NS

(a) Medium (b) Hard (c) Very hard (d) Extremely hard

Fig. 3: The maze testbeds that appear in [8|] (Fig.|3a and
and new mazes introduced in [46] and this paper (Fig.
and [3d] respectively). The filled circle is the robot’s starting
position and the empty circle is the goal. The maze size is
300 % 150 units for medium and 200 x 200 for the other mazes.

algorithms. Furthermore, the generality of the findings can be
tested with automatically generated mazes, as in Section

B. Mazes

This paper tests the performance of surprise search on four
mazes (see Fig. , two of which (medium and hard) have
been used in [8]]. The medium maze (see Fig. @) is somewhat
challenging as an algorithm should evolve a robot that avoids
dead-ends placed alongside the path to the goal. The hard
maze (see Fig. [3b) is more deceptive, due to the dead-end at
the leftmost part of the maze; an algorithm must search in
less promising (less fit) areas of the maze to find the global
optimum. For these two mazes we follow the experimental
parameters set in [8] and consider a robot successful if it
manages to reach the goal within a radius of five units at
the end of an evaluation of 400 simulation steps.

Beyond the two mazes of [8], two additional mazes (very
hard and extremely hard) were designed to test an algorithm’s
performance in even more deceptive environments. The very
hard maze (see Fig. is a modification of the hard maze
introduced in [46] with more dead ends and winding passages.
The extremely hard maze is a new maze (see Fig. that
features a longer and more complex path from start to goal,
thereby increasing the deceptive nature of the problem.

If we define a maze’s complexity as the shortest path
between the start and the goal, complexity increases substan-
tially from medium (240 units), to hard (360 units), to very
hard (442 units) and finally to the extremely hard maze (552
units); note that the last three mazes are of equal size. The
high problem complexity of the very hard and the extremely
hard mazes led us to empirically increase the number of
simulation steps for the evaluation of a robot to 500 and 1000
simulation steps, respectively. By increasing the simulation
time in the more deceptive mazes we manage to achieve
reasonable performances for at least one algorithm examined
which allows for a better analysis and comparison.

VI. ALGORITHM PARAMETERS FOR MAZE NAVIGATION

This section provides details about the general and specific
parameters for all the algorithms compared. We primarily test
the performance of three algorithms: objective search, novelty
search and surprise search, and include three baseline algo-
rithms for comparative purposes. All algorithms use NEAT
to evolve a robot controller with the same parameters as in

[8]l, where the maze navigation task and the mazes of Fig. 3|
were introduced. Evolution is carried on a population of 250
individuals for a maximum of 300 generations in the medium
and hard maze for a fair comparison to results obtained in [8§]].
However, the number of generations is increased to 1000 for
the more deceptive mazes (very hard and extremely hard) to
allow us to analyse the algorithms’ behaviour over a longer
evolutionary period. The NEAT algorithm uses speciation and
recombination, as described in [28]]. The specific parameters
of all compared algorithms are detailed below.

A. Objective search

Objective search uses the agent’s proximity to the goal as
a measure of its fitness. Following [8]], proximity is measured
as the Euclidean distance between the goal and the position
of the robot at the end of the simulation. This distance does
not account for the maze’s topology and walls, and can be
deceptive in the presence of dead-ends.

B. Novelty Search

Novelty search uses the same novelty metric and parameter
values as presented in [8]]. In particular, the novelty metric
is the average distance of the robot from the nearest neigh-
bouring robots among those in the current population and in a
novelty archive. Distance in this case is the Euclidean distance
between two robot positions at the end of the simulation; this
rewards robots ending in positions that no other robot has
explored yet. The parameter for the novelty archive (e.g. the
initial novelty threshold for inserting individuals to the archive
is 6) is as given in [S§].

Sensitivity Analysis: While in [8] novelty is calculated
as the average distance from the 15 nearest neighbours, the
introduction of new mazes in this paper mandates that the
n parameter of novelty search is tested empirically. For that
purpose we vary n from 5 to 30 in increments of 5 across
all mazes and select the n values that yield the highest
number of maze solutions (successes) in 50 independent runs
of 300 generations for the medium and hard maze, and 1000
generations for the other mazes. If there is more than one
n value that yields the highest number of successes then the
lowest average evaluations to solve the maze is taken into
account as a selection criterion. Figure [5a] shows the results
obtained by this analysis across all mazes.

The best results are indeed obtained with 15 nearest neigh-
bours for the medium and hard maze, as in [8]] (49 and 48
successes, respectively). In the very hard maze there is no
difference between 10 and 15 in terms of successes (39) but
n = 15 yields less evaluations, while in the extremely hard
maze n = 10 yields less evaluations and more successes (24)
than any other value tested. In summary, reported results in
Section use n = 15 for the medium, hard and very hard
maze, and n = 10 for the extremely hard maze.

C. Surprise search

Surprise search uses the surprise metric of eq. to reward
unexpected behaviours. As with the other algorithms com-
pared, behaviour in the maze navigation domain is expressed

(b) Generation t — 1 (¢) Generation t

(a) Generation t — 2

Fig. 4: The key phases of the surprise search algorithm as
applied to the maze navigation domain. Surprise search uses a
history of two generations (h = 2) and 10 behavioural clusters
(k = 10) in this example. Cluster centroids and prediction
points are depicted as empty red (light gray in grayscale) and
solid blue (dark gray in grayscale) circles, respectively.

as the position of the robot at the end of a simulation. The
behavioural difference ds in eq. () is the Euclidean distance
between the robots’ final position and a considered prediction
point, p.

Following the general formulation of surprise in Section
the prediction points are a function of a model m that
considers k local behaviours of h prior generations. In this
comparative study we use the simplest possible prediction
model (m) which is a one-step linear regression of two points
(h = 2) in the behavioural space. Thus, only the two previous
generations are considered when creating prediction points to
deviate from in the current generation (see Fig. d). In the first
two generations the algorithm performs mere random search
due to a lack of prediction points.

The locality (k) of behaviours is determined by the number
of behavioural clusters in the population that is obtained by
running k-means on the final robot positions. The surprise
search algorithm applies k-means clustering at each generation
by seeding the initial configuration of the %k centroids with
the centroids obtained in the previous generation; this seeding
process is omitted only in the first generation due to the lack of
earlier clusters. This way the algorithm is able to pair centroids
in subsequent generations and track their behavioural history.
Using the k pairs of centroids of the last two generations, the
algorithm creates k prediction points for the current generation
through a simple linear projection. Surprise search rewards the
behaviour that obtains a surprising outcome given the temporal
sequence of the final points of the robot across generations.
Surprise search is thus orthogonal to objective and novelty
search as it rewards robots that visit areas outside the predicted
space(s), without any explicit knowledge of the final goal.

It should be noted that for high values of k£ the k-means
algorithm might end up not assigning any data point to a
particular cluster; the chance of this happening increases with
k and the sparseness of data (in particular in datasets contain-
ing outliers) [47]]. Further, the seeding initialization procedure
we follow for k-means in this domain aims to behaviourally
connect centroids across generations so as to enable us to
predict and deviate from the expected behaviour in the next
generation. The adopted initialization procedure (i.e. inheriting
from centroids of the previous generation) does not guarantee

Normalized Evaluations
COOooooo0oR
e SRR NS, Ro N Ro R iR

5 10 15 20 25 30

n

|AA Medium n -1
IAA\ Medium 7 =2
OO Hardn=1

Hard n =2

[l Very Hard n=1 I
[BH] Very Hard n=2 ‘

Extremely Hard n =1 ‘
Extremely Hard n=2 |

(b) Surprise search parameters

AA Medium [BHE Very Hard
OO Hard “ Extremely Hard

(a) Novelty search parameters

Fig. 5: Sensitivity Analysis: selecting n for novelty search
(Fig.[5b), k& and n for surprise search (Fig. [5a). Figures depict
the average number of evaluations (normalized by the total
number of evaluations) obtained out of 50 runs . Error bars
represent the 95% confidence interval.

that all seeded centroids will be allocated a robot position
during the assignment step of k-means, as robot positions (data
points) might change drastically from one generation to the
next. In the case of surprise search, when an empty cluster
appears in the current generation (i.e. in positions where a
cluster existed in a past generation but not currently), then
its prediction is not updated (i.e. moved) until a final robot
position gets close to the empty cluster’s centroid. Predicted
centroids that have not been recently updated (due to empty
clusters) are still considered when calculating the surprise
score, and indirectly act as an archive of earlier predictions.
However, this archive is not persistent as the number of
‘archived’” prediction points can increase or decrease during
the course of evolution, and depends on k.

Sensitivity Analysis: To choose appropriate parameters for
k (information locality) and n (number of prediction points) in
the prediction and deviation models respectively, a sensitivity
analysis is conducted for all mazes. We obtain k empirically
by varying its value between 20 and P in increments of 20
for each maze. We also test all kK for n = 1 and n = 2 in
this paper. As in the sensitivity analysis for novelty search we
select the k and n values that yield the highest number of
successes in 50 independent runs. If there is more than one
k, n combination that yields the highest number of successes
we select the combination that solves the maze in the fewest
average evaluations.

Figure [5b| shows the average number of evaluations for all
k values tested, for n = 1 and n = 2. It is clear that higher
k values result to less evaluations on average. Moreover, it
seems that n = 2 leads to better performance in the two more
deceptive mazes. Based on the above selection criteria, we
pick £ = 200 and n = 1 for the medium maze, which gives
the highest number of successes (50) and the lowest number
of evaluations (16, 364 evaluations on average). For the hard
maze we select k = 100 and n = 1, as it is the most robust (49
success) and fastest (23,214 evaluations on average) among
tested values. Following the same procedure k£ = 200 and
n = 2 in the very hard maze, and k¥ = 220 and n = 2 in the
extremely hard maze (see Fig. [5b).

In this paper we started our investigations with the simplest
possible prediction model (m), which is a linear regression,
and the shortest possible time window of two generations for
the history parameter (h). The impact of the history parameter
and the prediction model on the algorithm’s performance is not
examined empirically in this paper and remains open to future
investigations. We get back to this discussion in Section

D. Other baseline algorithms

Three more baseline algorithms are included for compara-
tive purposes. Random search is a baseline proposed in [8]
that uses a uniformly-distributed random value as the fitness
function of an individual. The other two baselines are variants
of surprise search that test the impact of the predictive model.
Surprise search (random), SS,., selects k random prediction
points (p;; in eq. within the maze following a uniform
distribution, and tests how surprise search would perform
with a highly inaccurate predictive model. Surprise search (no
prediction), SS,,,, uses the current generation’s actual clusters
as its prediction points (p;; in eq. [2), thereby, omitting the
prediction phase of the surprise search algorithm. SS,,,, uses
real data (cluster centroids) from the current generation rather
than predicted data regarding the current generation, and tests
how the algorithm performs divergent search from real data.
Note that SS,,;, is reminiscent of novelty search, except that
it uses deviation from cluster centroids (not points) and does
not use a novelty archive. The same parameter values (k and
n) are used for these variants of surprise search.

VII. SURPRISE SEARCH IN AUTHORED DECEPTIVE MAZES

The robot maze navigation problem is used to compare
the performance of surprise, novelty and objective search.
To test the algorithms’ performance, we follow the approach
proposed in [48] and compare their efficiency and robustness
in all four test bed mazes. We finally analyse some typical
examples on both the behavioural and the genotypical space
of the generated solutions. All results reported are obtained
from 100 independent evolutionary runs; reported significance
and corresponding p values are obtained via two-tailed Mann-
Whitney U-test, with a significance level of 5%.

A. Efficiency

Efficiency is defined as the maximum fitness over time,
where fitness is calculated as 300 — d(i); d(i) the Euclidean
distance between the final position of robot ¢ and the goal,
as in [§8]]. Figure [6] shows the average maximum fitness across
evaluations for each approach for the four mazes.

In the medium maze, we can observe that both surprise
and novelty search converge after approximately 35,000 eval-
uations. Even if novelty seems to yield a higher average
maximum fitness values than surprise search, the difference
is insignificant. Novelty search, on average, obtains a final
maximum fitness of 295.84 (¢ = 1.47), while surprise
search obtains a fitness of 295.93 (¢ = 0.72); p > 0.05.
By looking at the 95% confidence intervals, it seems that
novelty search yields higher average maximum fitness between

w
=3

N oW
® o
)
@

[N}
=3
N}
=3

N
[N}

n
(=
Average Maximum Fitness
N
>

Average Maximum Fitness
n
>

-
53

5 1015202530 354045 50 55 60 65 70 75
Evaluations (x10°)

(b) Hard maze

5 101520 253035404550 55‘ 606570 75
Evaluations (x10°)

(a) Medium maze

2 30 2 30
(o) (]
=P g

i i 28
g £

E 260 E 26
£ £
%24 & 24
© ©

= 9o 222
(o) [
[=2 =

© 20 © 20
o [0
Z18 Z 18
< q 25 50 75 100 125 150 175 200 225 250 < 25 50 75 100 125 150 175 200 225 250

Evaluations (x10°) Evaluations (x10°)

(c) Very hard maze (d) Extremely hard maze

A—A Surprise Search
©-©® Novelty Search
'l Objective Search

4—4 Surprise Search (Random)
@@ Surprise Search (No prediction)
@@ Random

Fig. 6: Efficiency (average maximum fitness) comparison for
the four mazes in Fig. 3] The graphs depict the evolution of
fitness over the number of evaluations. Values are averaged
across 100 runs of each algorithm and the error bars represent
the 95% confidence interval of the average.

7500 and 25,000 evaluations. This difference is due to the
predictions that surprise search tries to deviate from. Early
during evolution, two consecutive generations may have robots
far from each other, lead to distant and erratic predictions.
Eventually, we have a convergence and the predictions become
more consistent, allowing surprise search to solve the maze.
Both objective search and SS,,,, seem fairly efficient to solve
the maze; however, they are not able to find the goal in all the
runs. The random baselines, instead, perform poorly and show
very little improvement as evolution progresses. The baselines’
performance proves that surprise search is different from a
random walk and that the prediction model positively affects
the performance of the algorithm.

In a more deceptive test, the hard maze, we can see from
Fig. [6b] that novelty and surprise perform much better than all
other algorithms; differences in efficiency between novelty and
surprise search are not significant. Surprise search and novelty
search find the goal in 99 and 93 out of 100 runs respectively,
SS,,p finds the solution in 61 runs, while for the rest of the
baselines the success rate is far below. It is interesting to note
that objective search reaches a high fitness score around 260
at the very beginning of the evolutionary process, and then it
stops to improve. This is due to the dead-end at the upper right
corner of the maze (Fig. [3b), which prevents the algorithm
from discovering the global optimum. In order to discover the
global optimum, in fact, the algorithm needs to explore the
least fit areas of the search space, such as the bottom-right
corner of the maze.

In the very hard maze, objective search never finds the

solution in 100 runs; Fig. shows that this algorithm is
not able to reach the goal because, as in the hard maze, it
reaches the left-most dead end and is unable to bypass that
local optimum. Unsurprisingly, the random and S'SR baselines
also perform poorly. On the other hand, novelty search finds
the solution in 85 out of 100 runs, while surprise search finds
a solution in 99 runs. Interestingly, SS,,, finds 88 solutions out
of 100 runs, similar to novelty search. This can be explained
by looking at how SS,,, is implemented. Its behaviour is
quite similar to novelty search as it merely uses the local
behaviours of the current generation; the key difference is that
these behaviours are clustered in SS,,. In such a complex
maze surprise search seems to handle maze deceptiveness in
a better way; it obtains a final maximum fitness of 295.77
(o = 3.59) which is higher (but not significantly) than that
of novelty search (292.15; ¢ = 9.85); p > 0.05. From the
confidence intervals of Fig. it appears that surprise search
is performing better or significantly better than novelty search
after 50, 000 evaluations until the end of the run.

In the most deceptive (extremely hard) maze, objective
search, random and SS,. do not find any solution in 100 runs,
performing poorly in terms of efficiency. This is not surprising
as all of these algorithms perform consistently poorly in all but
the simplest mazes. Novelty search and surprise search find the
solution 48 and 67 times, respectively, while the SS,,;, obtains
39 solutions. As can be seen in Fig. [6d] surprise search yields
a higher maximum fitness after 150,000 evaluations, with a
final maximum fitness of 287.68 (o = 12.16).

Another way of estimating efficiency is the effort it takes
an algorithm to find a solution. In this case, surprise clearly
manages to be more advantageous. In the medium maze
surprise search manages to find the goal, on average, in
16,084 evaluations (o = 11,588) which is faster than nov-
elty (19,814; ¢ = 15,441) and significantly faster than
objective search (48,186; ¢ = 23,590) and SS,, (26,452;
o = 21, 249). We observe the same comparative advantage in
the hard maze as surprise search solves the problem in 23, 566
evaluations on average (o = 15,925) whereas novelty search,
SS,p, and objective search solve it in 28,493 (o = 19,939),
47,550 (0 = 25,524) and 73,643 (0 = 7,542) evaluations,
respectively. Most importantly surprise search is significantly
faster (p < 0.05) than novelty search in the more deceptive
problems: on average surprise search finds the solution in
76,261 evaluations (o = 52, 385) in the very hard maze and
in 154,794 evaluations (o = 84,733) in the extremely hard
maze, whereas novelty search requires 115,600 evaluations
(c = 81,091) and 178,045 evaluations (¢ = 86,410),
respectively. Furthermore surprise search is significantly faster
(p < 0.01) than SS,,;,, which requires 117,560 (o = 74, 430)
and 200,190 (o = 75, 569) evaluations in the very hard and
the extremely hard maze, respectively.

The findings from the above experiments indicate that, in
terms of maximum fitness obtained, surprise search is compa-
rable to novelty search and far more efficient than objective
search in deceptive domains. We can further argue that the
deviation from the predictions (which are neither random
nor omitted) is beneficial for surprise search as indicated by
the performances of SS, and SS,,,. The performance of this

o] 3=
g

8 8
[} w0
s @
0 6 > »n 6
)] Q
8 41 8 4
& &

20 P 2

Wl] “VV"'. K655 i e e JEN-E I 8 8 L1 m
q) 5 101520 253035404550 SE} 60657075 101520 25 30 3540 45 50 55 60 65 70 75
Evaluations (x10°) Evaluations (x10%)
(a) Medium maze (b) Hard maze

10 10
o otf ~
Q
26 ° 2
Q O]
3 49 $ 3t
3 (‘8 =1
w /" wn

0 Lo

0 25 50 75 100 125 150 175‘200 225 250 25 50 75 100 125 150 175 200 225 250

Evaluations (x10°)

Evaluations (x10°)

(c) Very hard maze (d) Extremely hard maze

A—A Surprise Search
©-©® Novelty Search
'l Objective Search

4—4 Surprise Search (Random)
@@ Surprise Search (No prediction)
@@ Random

Fig. 7: Robustness comparison for the four mazes in Fig.
The graphs depict the evolution of algorithm successes in
solving the maze problem over the number of evaluations.

baseline appears to be similar to novelty search, especially in
harder mazes; this is not surprising as SS,,;, is conceptually
similar to novelty search, as noted in Section It is also
clear that, on average, surprise search finds the solution faster
than any other algorithm in all mazes.

B. Robustness

Robustness is defined as the number of successes obtained
by the algorithm across time (i.e. evaluations). In Figure
we compare the robustness of each approach across the four
mazes, collected from 100 runs. In the medium maze (Fig.
[7d), surprise search is more successful than novelty search in
the first 20,000 evaluations; moreover, surprise search finds,
on average, the 100 solutions in fewer evaluations compared
to the other approaches. As noticed in the previous section, in
the first 20,000 evaluations novelty search has a comparable
or higher efficiency in Fig. [6a} this points to the fact that
while some individuals in surprise search manage to reach the
goal, others do not get as close to it as in novelty search.
On the other hand, objective search fails to find the goal
in 29 runs, because of the several dead-ends present in this
maze. The control algorithm SS,,, finds the goal 93 times
out of 100, but it’s slower compared to novelty and surprise
search. Few solutions are found by the baseline random search
and SS,, and they are significantly slower than the other
approaches. Fig. shows that, in the hard maze, novelty
search attains more successes than surprise search in the first
10,000 evaluations but the opposite is true for the remainder
of the evolutionary progress. As in the previous maze, this
behaviour is not reflected in the efficiency graph (Fig. [6b): this

can be explained by how surprise search evolves individuals,
as they change their distance to the goal more abruptly, while
novelty search evolves behaviours in smooth incremental steps.
On the other hand, SS,,, finds fewer solutions in this maze,
62 out of 100. Finally, the deceptive properties of this maze
are exemplified by the poor performance of objective search
and the two random baselines.

The capacity of surprise search is more evident in the very
hard maze (see Fig. where the difference in terms of
robustness becomes even larger between surprise and novelty
search. While in the first 50,000 evaluations novelty and
surprise search attain a comparable number of successes, the
performance of surprise search is boosted for the remainder
of the evolutionary run. Ultimately, surprise search solves
the very hard maze in 99 out of 100 times in just 160,000
evaluations whereas novelty search manages to obtain 85
solutions by the end of the 250,000 evaluations. With 88
solutions out of 100, SS,,,, performs similarly to novelty search
in this maze but is generally slower compared to surprise
search. Objective search and the two random baselines, as
expected, do not succeed in solving the maze.

Similarly, in the extremely hard maze (see Fig. the
benefits of surprise search over the other algorithms are quite
apparent. While surprise and novelty obtain a similar number
of successes in the first 100,000 evaluations, surprise search
obtains more successes in the remaining evaluations of the run.
At the end of 250,000 evaluations in the most deceptive map
examined, surprise search finds solutions in 67 runs versus
48 runs of novelty search. SS,,;, finds 39 solutions and it is
generally slower than novelty and surprise search. As in the
very hard maze, the remaining algorithms fail to find a single
solution to this maze.

C. Analysis

As an additional comparison between surprise and novelty
search, we study the behavioural and genotypical charac-
teristics of these two approaches. The behavioural space is
presented in a number of typical runs collected from the four
mazes, while the genotypical space is inspected through the
metrics computed from the final ANNs evolved by these two
algorithms. Objective search and the other baselines are not
further analysed in this section to emphasise on comparisons
between surprise and novelty search.

1) Behavioural Space: Typical Examples: Table [I] shows
pairs of typical surprise and novelty search runs for each
of the four mazes; in all examples illustrated the maze is
solved at different number of evaluations as indicated at the
captions of the images. The typical runs are shown as heatmaps
which represent the aggregated distribution of the robots’ final
positions throughout all evaluations. Moreover, we report the
entropy (H) of those positions as a measure of the populations’
spatial diversity in the maze. Surprise search seems to explore
more uniformly the space, as revealed by the final positions
depicted in the heatmaps. The corresponding H values further
support this claim, especially in the more deceptive mazes.

2) Genotypic Space: Table [l]| contains a set of metrics that
characterize the final ANNs evolved by surprise and novelty

search obtained from all four mazes, which quantify aspects
of genomic complexity and genomic diversity. For genomic
complexity we consider the number of connections and the
number of hidden nodes of the final ANNs evolved, while
genomic diversity is measured as the average pairwise distance
of the final ANNs evolved. This distance is computed with
the compatibility metric, a linear combination of disjoint and
excess genes and weight difference, as defined in [28]]. As
noted in [{8], novelty search tends to evolve simpler networks in
terms of connections when compared to objective search. Sur-
prise search, on the other hand, seems to generate significantly
more densely connected ANNs than novelty search (based on
the number of connections). It also evolves slightly larger
ANNs than novelty search (based on the number of hidden
nodes). Most importantly, surprise search yields population
diversity — as expressed by the compatibility metric [8] —
that is significantly higher than novelty search. This difference
seems to be mostly due to the disjoint factor, which counts
the number of mismatching genes between two genomes,
depending on whether their genes are within the innovation
numbers of the other genome [28]. This suggests that ANNs
evolved with surprise search are more diverse in terms of evo-
Iutionary history. In the more deceptive mazes, differences in
genomic complexity and diversity become significantly larger.
In the very hard maze the average number of connections for
surprise search grows to 101.94 (o = 52.45) while novelty
search evolves ANNs with 42.03 connections (o = 14.53),
on average; the number of hidden nodes used by surprise
search is significantly larger (6.94; o0 = 3.62) compared to
novelty search. Moreover the diversity metric (compatibility)
is around three times that of novelty search. A similar trend can
be noticed in the extremely hard maze, where again surprise
search evolves denser, larger and more diverse ANNs. As
mentioned earlier, handling more complex and larger ANNs
has a direct impact on the computational cost of surprise
search since it takes more time to simulate new networks
across generations. It should be noted that creating larger
networks does not imply that this behaviour is beneficial, it is
however an indication that surprise search operates differently
to novelty search.

VIII. SURPRISE SEARCH IN GENERATED MAZES

In the previous sections we showed the power of surprise
search in four selected instances of deceptive problems. While
surprise search outperforms novelty and objective search both
in terms of efficiency and robustness in four human-designed
mazes, an important concern is whether these results are
general enough across a broader set of problems.

In order to assess how surprise search generalises in any
maze navigation task, we follow the methodology presented
in [49] and test the performance of surprise, novelty and
objective search as well as the baselines across numerous
mazes generated through an automated process. Moreover,
the parameters of k£ and n which were fine-tuned for the
problem at hand in each maze of Section [VII| are now kept the
same, enabling us to observe if a particular parameter setup
for surprise search can perform well in unseen problems of
varying complexity.

TABLE I: Behavioural Space. Typical successful runs solved after a number of evaluations () across the four mazes examined.
Heatmaps illustrate the aggregated numbers of final robot positions across all evaluations. Note that white space in the maze
indicates that no robot visited that position. The entropy (H € [0, 1]) of visited positions is also reported and is calculated as
follows: H = (1/logC) >, {(vi/V)log(v;/V')}; where v; is the number of robot visits in a position 4, V' is the total number
of visits and C' is the total number of discretized positions (cells) considered in the maze.

Medium Maze Hard Maze Very Hard Maze Extremely Hard Maze
(E = 25,000) (E = 25,000) (E = 75,000) (E = 75,000)
Novelty Surprise Novelty Surprise Novelty Surprise Novelty Surprise

200
H =0.67

H =0.63

l

110
H = 0.67

/

H =0.63

330
H =0.69

370
H =0.68

TABLE II: Genotypic Space. Metrics of genomic complexity and diversity of the final ANNs evolved using NEAT, averaged
across successful runs. Values in parentheses denote standard deviations.

Maze Algorithm Genomic Complexity Genomic Diversity
g Connections [Hidden Nodes Compatibility Disjoint | Weight Difference | Excess
Medium Surprise 33.76 (15.08) 2.46 (1.53) 42.52 (19.80) 27.40 (16.27) 1.22 (0.25) 11.44 (11.45)
Novelty 29.08 (6.10) 2.2 (1.0) 32.55 (7.90) 24.97 (7.05) 1.09 (0.26) 4.28 (3.41)
Hard Surprise 52.34 (28.57) 3.84 (2.66) 73.24 (36.82) 51.60 (27.76) 1.25 (0.24) 17.86 (20.99)
Novelty 32.55 (9.84) 2.48 (1.29) 39.35 (12.05) 31.06 (11.32) 1.19 (0.28) 4.71 (4.66)
Very Hard Surprise 101.94 (52.45) 6.94 (3.62) 160.31 (67.01) 121.56 (57.11) 1.26 (0.22) 34.96 (37.34)
y Novelty 42.03 (14.53) 3.27 (1.90) 56.53 (19.66) 46.65 (19.25) 1.16 (0.27) 6.38 (7.71)
Extremely Hard Surprise 158.16 (89.65) 10.63 (5.85) 260.52 (113.08) | 207.97 (107.2) 1.31 (0.23) 48.62 (54.20)
y Novelty 41.79 (11.77) 3.25 (1.53) 54.05 (14.44) 45.30 (14.55) 1.15 (0.24) 5.28 (4.93)
A. Experiment Description
| o [o l O I I I o
. 'I - _I_ |_|. —_
' — N

To compare the capabilities in navigation policies of sur-
prise, novelty and objective search in increasingly complex
maze problems, we test their performance against 60 randomly
generated mazes. These mazes are created by a recursive
division algorithm [50], which starts from an empty maze and
divides it into two areas by adding a vertical or a horizontal
wall with a randomly located hole in it. This process is
repeated until no areas can be further subdivided, because
doing so would make the maze untraversable or because a
maximum number of subdivisions is reached. In this exper-
iment, the starting position and the ending position of the
maze have been fixed in the lower left and upper right corner
respectively, while the generated mazes have a number of
subdivisions chosen randomly between 2 and 6. These values
have been chosen empirically to avoid generating mazes that
are too easy (solvable by all three methods in few generations)
or impossible to solve (because of too many subdivisions).
Examples of the mazes generated are shown in Fig. [§] The
parameters of surprise search and novelty search are fixed
based on well-performing setups with mazes of Section
surprise search uses k¥ = 200 and n = 2 (used in the very
hard maze) and novelty uses n = 15 (used in medium, hard
and very hard mazes). Each generated maze was tested 50
times for each of three methods, measuring the number of
successes (i.e. once the agent reaches the goal) in each maze.
The number of simulation timesteps is set to 200 and the
number of generations to 600.

2 subdivisions 3 subdivisions 4 subdivisions 5 subdivisions 6 subdivisions

Fig. 8: Maze generator: Sample generated mazes (200x200
units) created via recursive division, showing the starting
location (black circle) and the goal location (white circle).

B. Results

As a first analysis on the results obtained on the 60 mazes,
we focus on which of the evolutionary approaches finds strictly
more successes. Table [l1I| shows that surprise search has more
successes than novelty search in 40% of mazes, while novelty
achieves more successes than surprise search in 8% of the
generated mazes. Comparing the results of these two ap-
proaches against objective search, surprise search outperforms
objective search in more mazes (56%) than novelty search
(40%). If we look at the baselines, SS),, reaches comparable
performance to novelty search, but surprise search remains the
most successful algorithm, as it outperforms 5SS, in 45%
of the considered mazes. Finally, 5SS, and random search
evidently perform poorly compared to the other approaches.

An important question to put to the test is how novelty
search and surprise search perform with respect to maze
deceptiveness. Intuitively, we can say that the deceptiveness
(or difficulty) of the maze can be determined by the number
of successes obtained by objective search: the more deceptive

A Surprise Search A
Novelty Search 1
% 10 20 30 40 50
Obiective failures

Fig. 9: Linear regression:
relation between the failures
of objective search and suc-
cesses of surprise and nov-

2000

Successes
®» b o
(=] (=3 (=1
o (=] o

N
o
=]

(] A25 50 75 100 125 150
Evaluations (x103)
Fig. 10: Robustness: algo-
rithm successes in solving
all the generated mazes over
the number of evaluations

elty search. for each considered method.

the maze, the more often objective search would fail to find
a solution. Figure [9] shows the number of successes obtained
by novelty and surprise search against the number of failures
obtained by objective search. Unsurprisingly, surprise search
and novelty search find mazes where objective search failed
more difficult as well, since their successes are highly corre-
lated with the failures of objective search (adjusted R? > 0.85
for each method, p < 0.001). Looking at the trends of the
linear regression lines, surprise search constantly achieves a
greater number of successes, based on the intercept values of
the linear regression models which are significantly different
according to an ANCOVA test (p < 0.05). Based on the angle
of the linear regression line, it also seems that surprise search
scales better for more deceptive mazes.

As a final analysis, we report the robustness obtained by
aggregating all the runs of the 60 generated mazes for each
approach, i.e. a total of 3000 runs. From Fig. we can
observe that surprise search is faster, on average, than novelty
and objective search in reaching the goal from 112,500
evaluations onward (p < 0.05). Surprise, novelty and objective
search require on average 71,865 (¢ = 63,007), 76,225
(0 = 64,961) and 84,398 (o = 65,081) evaluations for each
success, respectively. As Fig. [10[shows, some maze problems
are easy to solve as all three methods fare similarly in the
first 20,000 evaluations but as the problems become more
complex, surprise and novelty search become faster than ob-
jective search and eventually surprise search surpasses novelty
search in terms of successes. Furthermore, surprise search
shows a significant improvement compared to its baseline
variants. Respectively, SS,,, S, and random search obtain
75,531 (o = 63,820), 118,668 (¢ = 53934) and 123,558
(o = 50, 568) evaluations; all results are significantly different
from the performance of surprise search (p < 0.05).

IX. DISCUSSION

This paper identified the notion of surprise, i.e. deviation
from expectations, as an alternative measure of divergence to
the notion of novelty and presented a general framework for
incorporating surprise in evolutionary search in Section [[V] In
order to highlight the differences between surprise search and
other divergent search techniques (such as novelty search) or
baselines (such as random search or search with inaccurate
predictions), an experiment in the robot maze navigation
testbed was carried out and comparisons between algorithms

were made on several dimensions. The key findings of these
experiments suggest that surprise search yields comparable
efficiency to novelty search and it outperforms objective
search. Moreover it finds solutions faster and more often than
any other algorithm considered. In a broader range of mazes,
generated via recursive subdivision, surprise search was also
shown to be more robust and generalise well, as it had more
successes than novelty search in 40% of generated mazes.

The comparative advantages of surprise search over novelty
search are inherent to the way the algorithm searches, attempt-
ing to deviate from predicted unseen behaviours instead of
prior seen behaviours. Compared to novelty search, surprise
search may also deviate from expected behaviours that exist
in areas that have been visited in the past by the algorithm.
The novelty archive operates in a similar fashion; however
it contains positions (instead of prediction points) and these
positions are always considered for the calculation of the nov-
elty score. In surprise search, instead, the prediction points are
derived from clusters that characterise areas in the behavioural
space.

The findings in the maze navigation experiments show
a clear difference between novelty and surprise, both be-
haviourally and genotypically. Surprise search has greater
exploratory capabilities, which are more obvious in later
generations. Surprise search also creates genotypically diverse
populations, with larger and denser ANNSs. It is likely this
combination of diverse populations, larger and denser net-
works and a higher spatial diversity that gives surprise search
its advantage over novelty search.

Finally, the comparative analysis of surprise search against
random search suggests that surprise search is not random
search. Clearly it outperforms random search in efficiency
and robustness. Furthermore, the poor performance of the
two surprise search variants — employing random predictions
and omitting predictions — suggests that the prediction of
expected behaviour is beneficial for divergent search.

By now we have enough evidence for the benefits of surprise
search and enough findings suggesting that surprise search is
a different and more robust algorithm compared to novelty
search in this domain. Furthermore, through our analysis, we
have identified qualitative characteristics of the algorithm that
gave us critical insights on the way the algorithm operates.
However, we still lack empirical evidence on the reasons the
algorithm manages to perform that well compared to other
divergent search algorithms. An intuition by the anonymous
reviewers of a previous paper about the comparative benefits
of surprise search is that the algorithm allows search to revisit
areas in the behavioural space. Such a behaviour, in contrast,
is penalised in novelty search. This difference in how the two
algorithms operate leads to the assumption that surprise search
is more willing to revisit points in the behaviour space —
in a form of backtracking or cyclical manner. As a result
of this shifting selection pressure in the behavioural space
a different strategy is adopted every time a particular area
is revisited as each time the ANN controller is different and
potentially larger. Such an algorithmic behaviour appears to
be beneficial for search and might explain why ANNs get
significantly larger in surprise search.

TABLE III: Successes: Percentage of generated mazes for which the algorithm in the row has a strictly greater number of
successes than the algorithm in the column. The last row and the last column are respectively the average of each column and

the average of each row.

[[[Objective [Novelty [Surprise | SSnp [SSr [Random [Total |

Objective - 15 5 6 71 78 35
Novelty 40 - 8 20 75 81 44.8
Surprise 56 40 - 45 78 85 60.8
SSnp 51 35 11 - 78 85 52
SSr 1 1 1 1 - 36 8
Random 0 0 0 0 20 - 4
Total 29.6 19 5 16.5 62.8 71.8 -

More importantly than a performance comparison between
algorithms, however, is the introduction of surprise as a drive
for divergent search. As will be discussed in Section [X] the
general framework of surprise search can be used with other
behaviour characterizations and in other domains. Moreover,
while some properties such as the model of prediction are
inherent to surprise search, properties such as the clustering
of behaviours as well as findings regarding the ability of
surprise search to backtrack can be re-used in other divergent
search algorithms; examples include a variant of novelty
search which considers neighboring cluster centroids rather
than neighboring individuals in the behavioural space, or a
novelty archive which is pruned (and reduces in size) over time
to allow backtracking. We can only hypothesise that the way
surprise search operates may result in increased evolvability
[51], which is an individual’s capacity to generate future
phenotypic variation, or alternatively, the potential for further
evolution. Naturally, all these hypotheses need to be tested
empirically in future studies as outlined in the next section.

X. EXTENSIONS AND FUTURE WORK

While this study already offers evidence for the advantages
of surprise as a form of divergent search, further work on
several directions needs to be performed.

Behaviour Characterization: The surprise search algo-
rithm currently characterises a behaviour merely as a point (i.e.
the final robot position on the maze after the simulation time
elapses). While such a decision was made in order to compare
our findings against the initial results of [8], we currently have
no evidence suggesting that surprise search would be able to
generalise well in behaviours that are characterised by higher
dimensions (e.g. a robot trail). To envision the behaviour of
surprise search in a high dimensional space, Fig. shows a
possible implementation for surprise search with robot trails,
sampled over time. Following the implementation described in
Section we show the three key phases of the algorithm:
the robots’ trails are clustered at generation ¢t — 2 via k-
means (see Fig. [[1a), then at generation ¢ — 1 we seed the
clustering algorithm with the ones computed in the previous
generation and we find the new trajectories’ centroids (Fig.
[I1b). Finally the prediction at generation ¢ is computed via
linear interpolation of each point on the computed (centroid)
trajectories at generations t—2 and t—1 (Fig.[T1c). Preliminary
experiments have shown that predictions of robot trails do
not affect the performance of surprise search compared to
results in this paper; future studies, however, should investigate

Generation t — 2 Generation t — 1 Generation ¢t

Fig. 11: Behaviour Characterization: The key phases of
the surprise search algorithm on the maze navigation task,
characterizing behaviour via 200 samples of robot positions
over time. Surprise search uses a history of two generations
(h = 2) and 10 clusters (k = 10) in this example (for the sake
of visualization, only one cluster is shown). Robot trails are
depicted as green lines. Cluster centroids in generations ¢ — 2
and ¢ —1 as well as their predictions are depicted, respectively,
as red, dark red and blue lines.

SN

H;_o at generation t—2 H;_ 7 at generation t—1 H; at generation t

Fig. 12: Deviation: Surprise search using heatmaps, at gener-
ation ¢. The first two heatmaps are computed in the last two
generations by using the final robot positions, H;_o and H;_;.
Using linear interpolation, the difference Hy;_ 1 — H;_o is
computed and applied to H;_; to derive the predicted current
population’s H;. The surprise score penalizes a robot if its
position (green point) is on a high concentration cell on the
predicted heatmap H;.

the impact of higher dimensional behaviours across several
domains, especially on how they affect the predictive model
of the algorithm.

Deviation: The current algorithm allows for any degree and
type of deviation from the expected behaviour. Inspired by
novelty search, this paper only investigated a linear deviation
from expectations — i.e. the further a behaviour is from the
prediction the better. There exist, however, several ways of
computing deviation in a non-linear or probabilistic fashion,
e.g. as per [18]. In a maze navigation environment for instance,

we can alternatively consider a non-distance-based deviation
by using heatmaps of the chosen behaviour characterization.
Figure shows the key phases of this implementation: in
generation ¢ — 2 and ¢ — 1 we compute the heatmaps H;_o
and H;_; which map the final positions of all robots (k = 1),
and we use a linear interpolation to compute the predicted
heatmap at generation ¢. The surprise score is then computed
by mapping the individual’s position on the predicted heatmap:
1 — Hy(x,y), where x,y is the final position of the robot
mapped onto the heatmap.

Complexity and generality: To a degree, the experiment
with 60 generated mazes tests how generalizable surprise
search is without explicit parameter tuning. Since results from
that experiment indicated that surprise search scales better to
more deceptive problems, we need to further test the algo-
rithm’s potential within the maze navigation domain through
more deceptive and complex environments. The capacity of
surprise search will then need to be tested in other domains
such as robot locomotion or procedural content generation. As
an example, the potential of surprise search has been explored
for the generation of unexpected weapons in a first person
shooter game [38]]. In that work, the considered behaviour
characterization is a weapon tester agent’s death location:
as we have described above, we can employ a heatmap as
a probability distribution of the population’s behaviour and
predict the next generation’s heatmap by means of linear
interpolation of each singular cell. Surprise search has shown
its capacity to generate feasible and diverse content, thereby
achieving quality diversity.

Surprise search has also been successfully implemented to
evolve soft robot morphologies [52] constrained by a fixed
lattice. The goal of this experiment is to create robots able
to travel as far as possible from a starting position, within a
number of simulation steps. In this task, surprise search was
shown to be as efficient as novelty search; moreover, it evolved
more diverse morphologies. When computing behavioural
distance for this problem, the surprise score is computed
by predicting an entire robot trace in all simulation steps,
based on past behaviours (traces). This further supports the
claim that surprise is unaffected by the dimensionality of the
behaviour characterization. The experiments presented in this
paper, in [38] and [52] already demonstrate the generalizability
of surprise search across three rather diverse domains: maze
navigation, game content generation and robot design.

Model of expected behaviour: When it comes to designing
a model of expected behaviour there are two key aspects
that need to be considered: how much prior information the
model requires and how is that information used to make
a prediction. In this paper the prediction of behaviour is
based on the simplest form of 1-step predictions via a linear
regression. This simple predictive model shows the capacity of
surprise search given its performance advantages over novelty
search. However we can envision that better results can be
achieved if machine learned or non-linear predicted models
are built on more prior information (h > 2). A possible
way of considering more extensive history is to apply linear
interpolation of past centroids over time. It is thus possible
to compute a 3-dimensional line over the three dimensions

considered (z,y,t) and compute the next predicted position
over the line by taking the interpolated position at generation
t. Linear regression can be easily replaced by a quadratic or
cubic regression or even an artificial neural network model or
a support vector machine.

Prediction locality of surprise search: The algorithm
presented in this paper allows for various degrees of prediction
locality. We define prediction locality as the amount of local
information considered by surprise search to make a predic-
tion. This is expressed by k which is left as a variable for the
algorithm designer. Prediction locality can be derived from the
behavioural space (as in this paper) but also on the genotypic
space. Future investigations should investigate the effect of
locality for surprise search. Experiments in this paper (see
Fig. [5b) already showcase that algorithm performance is not
sensitive with respect to k (as long as k is sufficiently high
for the problem at hand).

Clustering: Surprise search, in the form presented here,
requires some form of behavioural clustering. While k-means
was investigated in the experiments of this paper for its
simplicity and popularity, any clustering algorithm is appli-
cable. Comparative studies between approaches need to be
investigated, including different ways of dealing with (or
taking advantage of) empty clusters.

XI. CONCLUSIONS

In this paper, we argue that surprise is a concept that can
be exploited for evolutionary divergent search, we provide a
general definition of the algorithm that follows the principles
of searching for surprise and we test the idea in a maze
navigation task. Results show that surprise search has clear ad-
vantages over other forms of evolutionary divergent search, i.
e. novelty search, and outperforms traditional fitness search in
deceptive problems. In particular, surprise search has shown a
comparable efficiency to novelty search and, most importantly,
to be more successful and faster in finding the goal. Moreover,
a detailed analysis of the behaviours and the genomes evolved
by surprise search has revealed a more diverse population
and a higher exploratory capacity. Finally, the capacity of
surprise search to generalize in tasks of increasing complexity
is evidently higher when surprise drives the search process,
as tested in randomly generated mazes of increasing deceptive
properties. These findings support the idea that deviation from
expected behaviours can be a powerful alternative to divergent
search with key benefits over novelty or objective search.

ACKNOWLEDGMENT

This work has been supported in part by the FP7 Marie
Curie CIG project AutoGameDesign (project no: 630665).

REFERENCES

[1] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine learning, vol. 3, no. 2, 1988.

[2] R.S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning:
An artificial intelligence approach. Springer Science & Business Media,
2013.

[3] D. E. Goldberg, “Simple genetic algorithms and the minimal deceptive
problem,” in Genetic Algorithms and Simulated Annealing, Research
Notes in Artificial Intelligence. Morgan Kaufmann, 1987.

[4]
[5]

[6]

[8]

[9]
[10]

(1]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

L. D. Whitley, “Fundamental principles of deception in genetic search,”
in Foundations of Genetic Algorithms. Morgan Kaufmann, 1991.

D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proceedings of the Second
International Conference on Genetic Algorithms, 1987.

J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg, “The hier-
archical fair competition (hfc) framework for sustainable evolutionary
algorithms,” Evolutionary Computation, vol. 13, no. 2, 2005.

G. S. Hornby, “Alps: the age-layered population structure for reducing
the problem of premature convergence,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2006.

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary computation, vol. 19, no. 2,
2011.

A. Channon, “Passing the alife test: Activity statistics classify evolution
in geb as unbounded,” in Advances in Artificial Life. Springer, 2001.
L. Yaeger, “Poly world: Life in a new context,” Proc. Artificial Life,
vol. 3, 1994.

C. Adami, C. Ofria, and T. C. Collier, “Evolution of biological complex-
ity,” Proceedings of the National Academy of Sciences, vol. 97, no. 9,
2000.

M. A. Boden, The Creative Mind: Myths and Mechanisms.
2004.

G. Ritchie, “Some empirical criteria for attributing creativity to a
computer program,” Minds and Machines, vol. 17, no. 1, 2007.

G. A. Wiggins, “A preliminary framework for description, analysis and
comparison of creative systems,” Knowledge-Based Systems, vol. 19,
no. 7, 2006.

J. Lehman, K. O. Stanley, and R. Miikkulainen, “Effective diversity
maintenance in deceptive domains,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2013.

A. Liapis, H. P. Martinez, J. Togelius, and G. N. Yannakakis, “Trans-
forming exploratory creativity with DeLeNoX,” in Proceedings of the
International Conference on Computational Creativity, 2013.

J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers in Robotics and Al,
vol. 3, p. 40, 2016.

K. Grace, M. L. Maher, D. Fisher, and K. Brady, “Modeling expectation
for evaluating surprise in design creativity,” in Design Computing and
Cognition, 2014.

M. L. Maher, “Evaluating creativity in humans, computers, and collec-
tively intelligent systems,” in Proceedings of the 1st DESIRE Network
Conference on Creativity and Innovation in Design, 2010.

A. Barto, M. Mirolli, and G. Baldassarre, “Novelty or surprise?”
Frontiers in Psychology, vol. 4, 2013.

E. Lorini and C. Castelfranchi, “The cognitive structure of surprise:
looking for basic principles,” Topoi, vol. 26, no. 1, 2007.

G. N. Yannakakis and A. Liapis, “Searching for surprise,” in Proceedings
of the International Conference on Computational Creativity, 2016.

D. Gravina, A. Liapis, and G. N. Yannakakis, “Surprise search: Beyond
objectives and novelty,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2016.

G. E. Liepins and M. D. Vose, “Representational issues in genetic
optimization,” Journal of Experimental and Theoretical Artificial Intel-
ligence, vol. 2, no. 101, 1990.

S. A. Kauffman, “Adaptation on rugged fitness landscapes,” in Lectures
in the Sciences of Complexity. Addison-Wesley, 1989.

Y. Davidor, “Epistasis variance: A viewpoint on ga-hardness,” in Foun-
dations of Genetic Algorithms. Morgan Kaufmann, 1991.

B. Naudts and A. Verschoren, “Epistasis and deceptivity,” Bulletin of
the Belgian Mathematical Society, vol. 6, no. 1, 1999.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, 2002.
S. Wessing, M. Preuss, and G. Rudolph, “Niching by multiobjectiviza-
tion with neighbor information: Trade-offs and benefits,” in Proceedings
of the Evolutionary Computation Congress, 2013.

P. J. Angeline and J. B. Pollack, “Competitive environments evolve
better solutions for complex tasks,” in Proceedings of the International
Conference on Genetic Algorithms, 1994.

S. Ficici and J. B. Pollack, “Challenges in coevolutionary learning:
Arms-race dynamics, open-endedness, and mediocre stable states,” in
Proceedings of the International Conference on Artificial Life, 1998.

J. D. Knowles, R. A. Watson, and D. W. Corne, “Reducing local optima
in single-objective problems by multi-objectivization,” in International
Conference on Evolutionary Multi-Criterion Optimization. Springer,
2001, pp. 269-283.

Routledge,

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

K. Deb, “Multi-objective genetic algorithms: Problem difficulties and
construction of test problems,” Evolutionary Computation, vol. 7, 1999.
J. Lehman and K. O. Stanley, “Beyond open-endedness: Quantifying
impressiveness,” in Proceedings of the International Conference on
Artificial Life, 2012.

——, “Evolving a diversity of virtual creatures through novelty search
and local competition,” in Proceedings of the 13th annual conference
on Genetic and evolutionary computation. ACM, 2011, pp. 211-218.
J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty
search: A study on game content generation,” Evolutionary Computation,
vol. 23, no. 1, 2015.

D. Gravina, A. Liapis, and G. N. Yannakakis, “Constrained surprise
search for content generation,” in Proceedings of the IEEE Computa-
tional Intelligence and Games Conference. 1EEE, 2016.

P. Ekman, “An argument for basic emotions,” Cognition & emotion,
vol. 6, no. 3-4, 1992.

W.-U. Meyer, R. Reisenzein, and A. Schiitzwohl, “Toward a process
analysis of emotions: The case of surprise,” Motivation and Emotion,
vol. 21, no. 3, 1997.

A. Ortony and D. Partridge, “Surprisingness and expectation failure:
what’s the difference?” in Proceedings of the Joint conference on
Artificial intelligence, 1987.

L. Macedo and A. Cardoso, “Modeling forms of surprise in an artificial
agent,” in Proceedings of the nnual Conference of the Cognitive Science
Society, 2001.

P-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 2, 2007.

J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motiva-
tion (1990-2010),” IEEE Transactions on Autonomous Mental Develop-
ment, vol. 2, no. 3, 2010.

F. Kaplan and V. V. Hafner, “Information-theoretic framework for
unsupervised activity classification,” Advanced Robotics, vol. 20, no. 10,
2006.

D. Gravina, A. Liapis, and G. N. Yannakakis, “Coupling novelty and
surprise for evolutionary divergence,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2017.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979.

G. N. Yannakakis, J. Levine, J. Hallam, and M. Papageorgiou, “Per-
formance, robustness and effort cost comparison of machine learning
mechanisms in flatland,” in Proceedings of the Mediterranean Confer-
ence on Control and Automation, 2003.

J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic Programming Theory and Practice IX. Springer,
2011, pp. 37-56.

A. Reynolds, “Maze-solving by chemotaxis,” Physical Review E, vol. 81,
no. 6, p. 062901, 2010.

J. Lehman and K. O. Stanley, “Improving evolvability through novelty
search and self-adaptation,” in 2011 IEEE Congress of Evolutionary
Computation (CEC). 1EEE, 2011, pp. 2693-2700.

D. Gravina, A. Liapis, and G. N. Yannakakis, “Exploring divergence in
soft robot evolution,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM, 2017.

	I Introduction
	II Deception, Divergent Search and Quality Diversity
	II-A Deception in Evolutionary Computation
	II-B Divergent Search
	II-C Quality Diversity

	III The Notion of Surprise Search
	III-A What is Surprise?
	III-B Novelty vs. Surprise
	III-C Novelty Search vs. Surprise Search

	IV The Surprise Search Algorithm
	IV-A Model of Prediction
	IV-B Model of Deviation
	IV-C Important notes

	V Maze Navigation Test Bed
	V-A The Maze Navigation Task
	V-B Mazes

	VI Algorithm Parameters for Maze Navigation
	VI-A Objective search
	VI-B Novelty Search
	VI-C Surprise search
	VI-D Other baseline algorithms

	VII Surprise Search in Authored Deceptive Mazes
	VII-A Efficiency
	VII-B Robustness
	VII-C Analysis
	VII-C1 Behavioural Space: Typical Examples
	VII-C2 Genotypic Space

	VIII Surprise Search in Generated Mazes
	VIII-A Experiment Description
	VIII-B Results

	IX Discussion
	X Extensions and Future Work
	XI Conclusions
	References

