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Abstract—We present a new evolutionary algorithm for com-
munity structure detection in both undirected and unweighted
(sparse) graphs and fully connected weighted digraphs (complete
networks). Previous investigations have found that, although
evolutionary computation can identify community structure in
complete networks, this approach seems to scale badly due to
solutions with the wrong number of communities dominating
the population. The new algorithm is based on a niching
model, where separate compartments of the population contain
candidate solutions with different numbers of communities. We
experimentally compare the new algorithm to the well-known
algorithms of Pizzuti and Tasgin, and find that we outperform
those algorithms for sparse graphs under some conditions, and
drastically outperform them on complete networks under all
tested conditions.

Keywords—Evolutionary Computation, Niching, Community
Structures, Complete Weighted Networks, Sparse Graphs.

I. INTRODUCTION

The problem of community structure detection (CSD) in
graphs consists in identifying groups of nodes that are similar,
based on the information held by the edges connecting them.
The most common approach for CSD consists into forming
partitions so that the edges connecting the nodes within the
communities are more numerous or heavier weighted than
the edges connecting the nodes between the communities.
Applications abound in areas where networks/graphs need to
analysed, e.g. nature [1], social networks [2], or even multi-
player games [3]. More formally, given a graph G = (V,E),
where V is the set of nodes vi ∈ V and E is the set of edges
connecting two different nodes, ei,j ∈ E, vi, vj ∈ V , the CSD
task consists in partitioning V into m subsets or communities,
based on the structure of E, in order to optimise a quantitative
measure function of E. CSD has been extensively studies in
various graph types, both directed and undirected [4]–[6], and
weighted and unweighted [7]–[9]. However, the task of optimal
graph partitioning into community structures is computation-
ally hard, known to be NP-complete over the set of all graphs
of a given size [5], [8], meaning that approximate solutions
to the problem are needed. Many are the techniques and algo-
rithms used, e.g. spectral graph partitioning [8], [10], greedy
approaches [11], or even Ant-Colony Optimisation [12].

In this paper we address the problem of CSD via evolution-
ary computation. We investigate two graph types: sparse undi-
rected and unweighted ones (sparse graphs), which are exten-
sively used to represent e.g. social and biological networks [1],
and fully connected, weighted and directed graphs (complete
networks), which constitutes a more complex problem, and
are used to represent e.g. geographic functional regions [8],

and the level of cooperation in artificial simulations [9] or
in computer games [3]. We use Pizzuti’s GaNet [13] and
Tasgin et al.’s algorithm [14] as benchmarks for sparse graphs,
being them developed and specially tuned for such condition.
For the complete network condition, on the other hand, the
benchmark is a genetic algorithm we had previously designed
for CSD in complete networks [9]. This monolithic algorithm
combines solutions of different community sizes in the same
population. The novel aspect of this paper comes from the
definition of a new algorithm, NicheShift, which divides the
population into shifting niches depending on the number
of community structures in individual solutions. As GaNet
and Tasgin’s algorithm are specialised for sparse graphs, we
convert the complete networks to this format before applying
them (reduced approach). As our own algorithms are devised
for complete networks, we can use them without any prepro-
cessing (direct approach). While the reduced approach entails
some information loss, it also leads to a smaller search space.
Three main research questions are investigated in this paper:
(1) will the reduced approach allow existing algorithms for
sparse graphs to successfully identify communities in complete
networks? (2) will NicheShift provide tangible performance
benefits compared to the monolithic algorithm in complete
networks? (3) how well will NicheShift perform on sparse
graphs, compared to algorithms specifically designed for this
condition? We conducted several CSD experiments using
synthetic graphs/networks according to the procedure initially
proposed by Girvan and Newman [1]. We considered three
scenarios, based on the same size of |V | = 128 nodes, of
four, eight and sixteen communities. Moreover, the scenarios
incorporated noise, modelled as the number and weights of
the out-edges. The results gathered highlight the fact that
(1) the reduced approach fails to detect the true community
structures in complete networks independently of the scenario
under investigation; (2) NicheShift provides promising results
in both sparse graphs and complete networks, although its
performance could still conceivably be enhanced; (3) the
monolithic approach does not scale well with respect to the
size of the networks in any of the conditions investigated.

II. RELATED WORK

As a an exhaustive review of work in community structure
detection (CSD) is beyond the scope of this paper, this section
will discuss those studies which we consider to be the most
relevant to the research presented in this paper.

Unarguably, Newman and colleagues are among the key
contributors: their seminal work in detection of community
structures in unweighted and undirected graphs [1] led to the
investigation of weighted networks [7] and furthermore to the



investigation of directed networks [5]. The last two studies
have inspired work on CSD for directed weighted networks
via spectral partitioning [8] and studies on the detection of
community structures — based on a complete weighted and
directed collaboration networks — of the levels of altruism
existent among complex socially driven artificial agents [9].

Genetic search via evolutionary computation has proved
successful on undirected and unweighed networks (see [15]–
[21] among others). Among scenarios similar to those exam-
ined in our study, Gog et al. [22] use an algorithm based on
an information sharing mechanism between individuals in a
population, whilst Liu et al. [23], on the other hand, decide to
adopt an arguably more controlled genetic approach in which
a genetic algorithm repeatedly partitions a subset of nodes into
2 subsets. Similarly to Tasgin et al. [14], both studies share
the same fitness function and chromosome representation; both
algorithms are intended to be applied to sparse graphs.

Finally, with respect to research aims and approaches
similar to the one adopted in our paper, Lancichinetti and
Fortunato [24] performed a thorough comparison of several
algorithms for CSD, though none of them based on evo-
lutionary computation, on a benchmark graph model which
is a special case of the planted l-partition model. Another
benchmark model was proposed for weighted directed net-
works with overlapping communities [6]. While the benchmark
problem adopted there is rather different from the problems
addressed here, it would be interesting future work to apply
the algorithms presented here to that problem.

III. SYNTHETIC GRAPH GENERATION

This Section describes, in details, the steps needed in order
to build the sparse graph (see Subsection III-A), and the
counterpart complete networks (see Subsection III-B), given
a partition of nodes into true community structures, for the
experimental setups conducted in our research.

A. Sparse Graph Generation

This phase of the algorithm is implemented in accordance
to Girvan and Newman [1]. The 3-tuple

Gu = (Vu, E,Ku) (1)

represents a sparse graph, where Vu is the set of |Vu| = n
nodes, E is the set of edges, and Ku is the partition of Vu in
|Ku| = m community structures. We denote vi the i-th node
in Vu, ei,j ∈ E the edge between vi and vj , and ki ∈ Ku

the community structure identity of node vi. Given n and
m, the algorithm first generates Ku, by partitioning Vu into
communities of equal size n/m, assigns, to each node vi,
its community structure identity ki, and sets E = ∅. Then,
given the parameters, z (1 ≤ z ≤ n − 1) and z − out
(0 ≤ z − out ≤ z), the algorithm stochastically generates
z edges for each node, of which z − out edges connect
nodes belonging to different community structure identities.
Intuitively, the higher the z − out value, the more difficult
is the detection of Ku [1], [13], [14]. In our experiments,
we will consider 0 ≤ z − out ≤ z/2, since higher values for
z−out will lead to the generation of graphs in which the within
community connectivity is lower than the between community

connectivity, thus contradicting the assumptions made for the
solution of the CSD problem.

Figure 1(a) and Fig. 1(b) depict as a graph and as a matrix,
respectively, the representation of a sparse graph where n = 8,
m = 2, z = 3 and z − out = 1. The colours of the nodes
represent the partition Ku.

B. Complete Network Generation

The conversion of Gu (1) into a complete network is
organised in three sub-steps. First, the complete network,
represented by the following 3-tuple:

Gw = (Vw,W,Kw) (2)

is initialised as follows: Vw = Vu, Kw = Ku, and W = ∅.
Each weighted directed edge wi,j ∈ W , connecting node vi
to node vj , will be generated via Normal distribution, with
mean values dependent on E and Kw, and unique standard
deviation:

wi,j =


N(µin,1, σ) if ki = kj , ei,j ∈ E
N(µout,1, σ) if ki 6= kj , ei,j ∈ E
N(µin,0, σ) if ki = kj , ei,j /∈ E
N(µout,0, σ) if ki 6= kj , ei,j /∈ E

(3)

with wi,j bounded to the [0, 1] interval. In our experi-
ments, we will consider µin,1 = 0.8, µout,1 = 0.6, µin,0 = 0.4,
µout,0 = 0.2 and σ = 0.2. The choices of setting the µx,y

values equidistant from each other, and with values which
prioritise first the existence of edges in E, and second the
community structure identities, together with the choice of
setting σ equal across the four distributions, are motivated by
the willingness to generate complete networks for which the
underlying sparse graph can still be hinted. Figure 2(a) and
Fig. 2(b) depict a complete network (in both graph and matrix
form) obtained from the previous sparse graph (see Figure 1).

IV. COMMUNITY STRUCTURE DETECTION
VIA GENETIC ALGORITHMS

Given a sparse graph Gu = (Vu, E), or a complete network
Gw = (Vw,W ), the solution of the CSD problem is a partition
K̃ of the node set Vu (Vw), generally based on a metrics
function of E (W ), which would correspond to the unknown
partition Ku (Kw), see Eq. (1) and (2). In this paper we
consider four algorithms: Pizzuti’s GaNet [13] and Tasgin’s
et al. algorithm (Tasgin) [14], which were conceived to solve
the CSD problem for sparse graphs, a genetic algorithm mech-
anism we developed previously to detect community structures
in complete networks (Monolithic) [9], and finally NicheShift,
a modified version of the Monolithic algorithm based on the
concept of shifting niches. A quick recap of the differences and
similarities among the algorithms is presented in Table IV.
Subsections IV-B, IV-C and IV-D respectively describe the
main characteristics of GaNet, Tasgin and the Monolithic
algorithm, whilst subsection IV-E details NicheShift.
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(a) Sparse Graph — Graphical Rep-
resentation

0 1 2 3 4 5 6 7

0 1 1 0 0 1 0 0

1 1 0 1 1 0 0 0

2 1 0 1 0 0 0 1

3 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1

5 1 0 0 0 0 1 1

6 0 0 0 1 1 1 0

7 0 0 2 0 1 1 0

(b) Sparse Graph — Matrix Representation

Fig. 1. The graphical representation of a generated sparse graph for n = 8 nodes, m = 2 communities, z = 3 edges, and z − out = 1 out-edges.
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(a) Complete Network — Graphical
Representation

0 1 2 3 4 5 6 7

0 1.00 0.80 0.73 0.00 0.26 0.90 0.09

1 1.00 0.24 0.80 0.57 0.00 0.45 0.64

2 0.86 0.28 0.36 0.73 0.13 0.20 0.45

3 0.49 0.62 0.60 0.08 0.43 0.08 0.26

4 0.16 0.00 0.49 0.05 0.65 0.75 1.00

5 0.35 0.12 0.01 0.43 0.62 0.79 1.00

6 0.48 0.19 0.12 0.11 0.67 0.45 0.50

7 0.17 0.70 0.20 0.14 1.00 0.79 0.50

(b) Complete Network — Matrix Representation

Fig. 2. The conversion of the sparse graph depicted in Figures 1(a) and 1(b) into a complete network.

TABLE I. OVERVIEW OF THE MAIN CHARACTERISTICS OF THE FOUR ALGORITHMS CONSIDERED IN THIS STUDY

GaNet Tasgin Monolithic NicheShift

Requires reduced approach for complete networks Yes No
Genetic Representation Subnetworks Community Structure Identities

Detection Approach n/a Agglomerative Divisive
Dependent on the graph structure Yes No

Termination Condition Fixed number of generations Un-improvement of fitness values
Optimisation Fitness Maximisation

A. Reduced Approach to CSD for Complete Networks

Given that GaNet and Tasgin are designed for sparse
graphs [13], [14], in order to be applied to complete networks
without any internal algorithmic changes, a reverse transforma-
tion from the complete network into a sparse graph is required.
We will hereafter refer to this transformation process as the
reduced approach. The assumption made by this approach is
that Gw represents a noised version of the original Gu; if it
were possible to filter out such noise, then the complexity of
the problem would be reduced, eventually making the correct
detection of K a simpler task as well. Hence, given Gw, the
output of the re-conversion is the following graph:

Ĝu = (V̂u, Ê) (4)

where V̂u = Vw is given, and Ê is the result of the trans-
formation of W , here described. The first step transforms Gw

into an undirected weighted graph; the result is an approximate
weighted edge set Ŵ , in which each edge ŵi,j is calculated
as follows:

ŵi,j = ŵj,i =
1

2
(wi,j + wj,i) (5)

finally, by defining µŴ as the average weight of Ŵ , each
approximated edge êi,j ∈ Ê is built as follows:

êi,j =

{
1 if ŵi,j > µŴ
0 if ŵi,j < µŴ

U(0, 1) if ŵi,j = µŴ

(6)

Clearly, the re-conversion introduces an approximation
error. Figure 3(a) and Fig. 3(b) depict, respectively as graph
and as matrix, the re-converted complete network depicted in
Fig. 2.

B. GaNet Algorithm

Beside its reported success on the sparse graph CSD
problem [13], the choice of GaNet as a baseline mechanism
for our study was mainly driven by the different genetic
representation held by its chromosomes. GaNet relies on the
locus-based adjacency representation: each chromosome has
length of n genes, and the allele value j of gene i represents
the edge ei,j . Its initialisation process takes in account the
effective connections of the nodes in E: allele value l of genes
i will be repaired, if ei,l /∈ E, by replacing it with an allele
value j for which ei,j ∈ E. This guided initialisation of safe
individuals biases the algorithm towards a decomposition of
the network in connected groups of nodes [13]. The algorithm
makes use of standard elitism, roulette wheel selection and
uniform crossover mechanisms, whilst its mutation operation
is dependent on the structure of E, similarly to the initialisation
process. GaNet identifies the subnetworks represented by the
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(a) Converted Graph — Network
Representation

0 1 2 3 4 5 6 7

0 1 1 1 0 0 1 0

1 1 0 1 0 0 0 1

2 1 0 1 1 1 1 1

3 1 1 1 0 0 0 0

4 0 0 1 0 1 1 1

5 0 0 1 0 1 1 1

6 1 0 1 0 1 1 1

7 0 1 1 0 1 1 1

(b) Reconverted Undirected Unweighted Graph — Ma-
trix Representation

Fig. 3. An example of re-conversion of the complete weighted digraph depicted in Fig. 2(a) and Fig. 2(b). Compared to the original sparse graph depicted in
Fig. 1(a) and Fig. 1(b), the reconversion created 8 new and omitted 3 old edges.

chromosomes, the subnetworks are then interpreted as com-
munity structures, and the fitness value of such subnetwork,
called community score, is an edge density measure, based
on volume and row/column means, of the subnetwork’s edges
extracted from E. The evolutionary process aims to maximise
the community score and is terminated after a fixed number of
generations.

C. Tasgin Algorithm

The choice of Tasgin et al.’s algorithm as baseline mecha-
nism for our study was driven by its reported efficiency on
sparse network CSD [14] and the semantic differences of
the approach compared to the algorithms we propose. Tasgin
considers a population of chromosomes with length n; the
allele value j of gene i represents the community structure
identity ki = j of node vi. Similarly to GaNet, Tasgin
leverages on the given edge set E to initialise its genetic
population. Specifically, Tasgin first initialises each gene i with
allele value i, i.e. it starts by considering n communities;
subsequently, a refinement process reduces the number of
communities, by iteratively selecting a gene i and assigning
its allele value i to all the genes j for which ei,j ∈ E. In
other words, Tasgin can be interpreted as an agglomerative
algorithm. Tasgin implements elitism — i.e. the g-th best
chromosome mates with the g+1-th best chromosome realising
the one-way crossing over operation — which transfers entire
community structures from the first to the second parent,
and mutation defined as the swapping of the allele values
of two uniformly selected genes. The fitness function used
is the modularity measure initially proposed by Newman
and Girvan [4]. Evolution aims to maximise that modularity
measure and terminates after a fixed number of generations.

D. Monolithic Algorithm

This algorithm, which was designed to solve the CSD
problem directly on complete networks, is motivated by our
ongoing research aiming to computationally infer the existence
of collaborative group structures in complex artificial soci-
eties [9]. The algorithm provided promising results, though
for small scenarios, i.e. 20 and 50 nodes, which allowed us to
conclude that it is possible to solve the CSD problem without
reducing its complexity (direct approach).

Similarly to Tasgin, the Monolithic GA maintains a genetic
population of n-gene chromosomes, in which the allele value
j of gene i represents the community structure identity ki = j

of node vi ∈ V . The algorithm implements elitism, rank
selection, uniform crossover and standard mutation operations.
The peculiarity of the Monolithic algorithm resides on the way
the possible allele values are defined. More specifically, the
algorithm maintains an alphabet C, which holds the labels
of possible community structure identities and from which the
allele values are sampled. At the beginning of the evolutionary
run, C contains only two symbols and its genetic population
is initialised by sampling allele values uniformly within C.
If for l consecutive generations the average fitness of the
elite chromosomes does not improve then, (a) a new symbol
is added to C, (b) all but the most fit chromosomes are
thrown away, and (c) the non-elite population is re-initialised
by uniformly sampling allele values from the new alphabet
C. If, for g consecutive generations, the average fitness of
the elite population does not improve, independently of the
augmentation of C, the evolutionary process ends. The fitness
function under maximisation is defined as follows:

f(x) =
1

m

∑
i,j

(
Wi,j −

win
i wout

j

w

)
δ(ki, kj) (7)

where m =
∑

i,j Wi,j is the total sum the weights of the
given edge set W ; win

i is the in-degree of gene/node i; wout
j

is the out-degree of gene/node j; ki and kj are the allele
values/community structure identities of gene/nodes i and j,
respectively; and δ(ki, kj) is the Kronecker delta symbol,
for which δ(ki, kj) = 1 if ki = kj and δ(ki, kj) = 0
otherwise [8], [9]. While the algorithm relies on its ability
of finding sub-optimal solutions based on current C alphabet,
once a local optima is considered to be found — i.e. the
limit of l generations of fitness un-improvement is reached —,
the algorithm proceeds with deepening its search by adding a
new symbol to C — i.e. by considering |C| + 1 community
structures. Thus, opposed to Tasgin, the Monolithic approach
can be interpreted as a divisive algorithm.

E. NicheShift Algorithm

Although earlier studies have provided promising results
for 20-node complete networks, the Monolithic algorithm
showed some weaknesses in networks of 50 nodes [9]. A
thorough analysis of the generated evolutionary landscapes
and genetic population highlighted that despite Monolithic
was augmenting its alphabet C — and hence promoting
the exploration of the search space — eventually the elite



chromosomes were almost always filled with the same sub-
optimal solutions which were considering a lower number
of community structures with respect to the true ones. The
main reason for this unwanted behaviour appears to be that
Monolithic does not allow for a fair competition between
new unfit offspring — which could potentially lead to better
community structure partitions — and old fit individuals —
which already converged to suboptimal solutions. NicheShift
aims to overcome this drawback.

NicheShift is composed of h niches H1, H2, . . . Hh of
equal population size of p chromosomes of length n; similarly
to Monolithic and Tasgin, the allele value j of gene i represents
the community structure ki = j of node vi. Similarly to
Monolithic, NicheShift evaluates its chromosomes in order
to maximise the fitness function as defined in Eq. (7). Each
niche Hk is based on its own alphabet Ck; the peculiarity of
NicheShift resides on the existence of an incremental ordering
of the niches and thus their alphabets. We could imagine the
niches being horizontally aligned, as depicted in Figure 4: the
leftmost niche H1 has alphabet C1 = {x1}, the subsequent
niche H2 has alphabet C2 = C1 ∪ {x2}, and so on until the
rightmost niche, Hh, of alphabet Ch = Ch−1 ∪ {xh}.

Algorithm 1 presents the pseudocode of NicheShift’s main
loop. The initialisation of the algorithm (line 1) sets C1 to two
symbols, the other alphabets are initialised accordingly, and
each chromosome of each niche Hi is initialised by uniformly
sampling allele values based on its related alphabet Ci. Each
limmig generations (line 7) NicheShift performs chromosome
migrations (line 8). This operation — similar to the migration
of chromosomes adopted by the Island Models approach [25]
— aims to transfer, among the most fit chromosomes of niche
Hi, those who have not migrated yet, unidirectionally, to the
niche at its right Hi+1. Clearly, the unidirectional migration
policy has a direct relationship to Monolithic’s increase of
its alphabet; moreover, NicheShift’s strict migration to unique
chromosomes aims to tackle the stagnation of the population
diversity observed in Monolithic [9]. After the eventual mi-
gration operation, NicheShift performs the evolution of each
niche (row 11), by means of elitism, rank selection, uniform
crossover and standard mutation operations, similarly to the
Monolithic algorithm.

The most distinct and important feature of NicheShift is the
shift and merge policy. Each limsnm generations (line 13), the
algorithm retrieves the list of niches which score the highest
fitness (line 14, and line 4 for initialisation purposes); if no
changes occur since the last check (status quo, line 15), and
this is repeated (line 16) for maxStatusQuo times (line 17),
then NicheShift terminates its execution (line 18). On the other
hand, in case of new most fit niches, the shift and merge
operation is performed (line 21).

The purpose of the shift and merge operation is, similarly
to the approach adopted by the Monolithic algorithm, to
gradually move from candidate solutions with a low number of
community structures towards solutions with a higher number
of detected communities. The pseudocode for this operation
is listed in Algorithm 2. Given the list of most fit niches, the
algorithm starts by retrieving their related alphabets (line 1);
then it determines the median alphabet of this set, Cmed

(line 2). If |Cmed| is bigger than the size of the current central
alphabet Ch/2 (line 3), then we will assist to a leftward shift

Algorithm 1 NicheShift Main Loop
1: initialisePopulation()
2: g ← 1
3: nStatusQuo← 0
4: oldBest H ← getBestNiches()
5: loop← true
6: while loop do
7: if g mod limmig = 0 then
8: performMigration()
9: end if

10: for all niches do
11: performEvolution()
12: end for
13: if g mod limsnm = 0 then
14: newBest H ← getBestNiches()
15: if newBest H = oldBest H then
16: nStatusQuo← nStatusQuo+ 1
17: if nStatusQuo = maxStatusQuo then
18: loop← false
19: end if
20: else
21: shiftAndMerge(newBest H)
22: nStatusQuo← 0
23: oldBest H ← newBest H
24: end if
25: end if
26: g ← g + 1
27: end while

Algorithm 2 shiftAndMerge(best H)
1: best C ← getAlphabets(best H)
2: Cmed ← getMedianAlphabetIsland(best C)
3: if |Ch/2| > |Cmed| then
4: leftwardShiftAndMerge(. . . )
5: else
6: rightwardShiftAndMerge(. . . )
7: end if

and merge (line 4), otherwise we will assist to a rightward shift
and merge (line 6). The shift operation is the same for both
directions and has the duty to re-centre the niches and relative
alphabets with respect to C med. In other words, Cmed and
its relative niche Hmed will be shifted in order to become the
new, most central niches. This shifting operation is applied to
as many niches and relative alphabets as possible. The shifting
will lead, eventually, to a set of consecutive niches (alphabets),
either on the very right (for the leftward case) or very left (for
the rightward case); these will be merged, together with the
last (for the leftward case) or the first niche (for the rightward
case). Finally, a set of new niches and relative alphabets,
either at the left (for leftward operation) or at the right (for
rightward operation) will be required to be initialised. In
case of leftward shiftAndMerge, the chromosomes of the new
niches will be initialised by sampling allele values uniformly
within their new alphabet. In case of rightward shiftAndMerge,
instead, each new niche Hi will first clone the niche on its
left Hi−1, then its chromosomes will be re-initialised: each
gene has now probability 50% to change into the niche’s new
alphabet symbol xi. Figure 4 depict an example for leftward
and rightward shift and merge operations for h = 5 niches.
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(a) Leftward shift and merge

Niche H1
|C1| = 3

Niche H3
|C3| = 5

Niche H2
|C2| = 4

Niche H5
|C5| = 7

Niche H1
|C1| = 4

Niche H3
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Niche H2
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Niche H4
|C4| = 7

Niche H5
|C5| = 8

ShiftedMerged
Cloned 

and re-initilalised

Niche H4
|C4| = 6

(b) Righttward shift and merge

Fig. 4. An example of the Leftward (Fig. 4(a)) and Rightward (Fig. 4(b)) shift and merge operation. In Fig. 4(a), niche H2 scored the highest fitness; the shift
operation transfers it into the central position, i.e. H3 ← H2; its adjacent niches are shifted accordingly: H2 ← H1, H4 ← H3. The remaining niches H5

and H4 are merged in the new the last niche, H5 ← H4 + H5. Finally, the new niche H1 is initialised by assigning, to each gene of each chromosome of
its population, a symbol uniformly drawn within the new C1 alphabet. In Fig. 4(b), niche H4 scored the highest fitness; the shift operation transfers it into the
central position, i.e. H3 ← H4; its adjacent niches are shifted accordingly: H2 ← H3 and H4 ← H5. The remaining niches H1 and H2 are merged in the
new the last niche H1 ← H1 +H2. Finally, the new niche H5 is initialised: first, it clones the whole niche at its left, i.e. H4; then, for each chromosome it
re-initialises each of its gene, setting allele value x5, i.e. the new symbol of the alphabet C5, with probability 50%.

V. EXPERIMENTS AND RESULTS

GaNet, Tasgin, Monolithic and NicheShift were tested
across the sparse graph and complete network cases. For the
latter, GaNet and Tasgin were applied to the approximated
graphs obtained by means of the Reduced Approach. For each
case n = 128 and three scenarios were considered, namely
m = {4, 8, 16} communities; moreover, for each scenario,
z = n/2k and z − out ∈ [0, z/2]. In total, this paper presents
the results of 2 ∗ (9 + 5 + 3) = 34 experimental setups, each
of which is executed 30 times for a better approximation of
the performance of stochastic algorithms.

The performance measure we consider in this study is the
normalised mismatch error nme(K, K̂) [9], between the true
community structures K, and the detected ones K̂, calculated
as follows:

nme(K, K̂) =
n− h(K, K̂)

n
(8)

where h(K, K̂) is the maximum assignment score obtained by
running Kuhn’s Hungarian algorithm [9].

After a quick fine parameter tuning experimental phase,
based on complete networks with parameters n = 128, m = 4,
z = 16, z − out = 0, the following parameters were setup for
NicheShift: population size is 200; h = 5 islands; migration
occurs each limmig = 30 generations only for unique individ-
uals selected among the 1% of fittest individuals; end condition
check occurs each limsnm = 30 generations with termination
occurring after maxStatusQuo = 4 status quo; finally, the
mutation probability is 0.8 and elite population is composed by
the first 50% fittest chromosomes. On the other hand, GaNet,
Tasgin, and Monolithic algorithms were executed, across each
of the 42 experimental setup, with their standard parameters
as those are retrieved from the corresponding studies [9], [13],
[14]. Even though GaNet and Monolithic present, with respect
to NicheShift, different parameter setups which ultimately lead
to a lower number of fitness evaluations, extensive parameter
tuning experiments suggested that the algorithm performances
are not sensitive to parameter change. We decided not to in-
clude the results of these experiments due to space constraints.

A. Analysis of Sparse Graphs

Figure 5 depicts the average performance and standard
deviation values of 30 experimental runs across three different
community structures (m ∈ {4, 8, 16}) for sparse graphs of
n = 128 nodes, z = {16, 8, 4} and z − out ∈ [0, z/2].
The first, remarkable finding, is that NicheShift appears to be
the most robust algorithm scoring the lowest average errors
excluding the z − out = 0 scenario in both k = 4 and k = 8
setups. What we thus conclude that NicheShift manages to
centre its islands around the alphabet of exact size |Ch/2| = k.
Figure 5(a) further supports this as NicheShift makes use of
k = 5 niches; since the initial alphabet for H1 is composed of
two symbols, then the third, central niche will have alphabet
size of C3 = |C1| + 2 = 4 symbols. This also means that its
modularity measure (7) can be applied to discrete networks.

On the other hand, the Monolithic algorithm performs
worst. This result is not unexpected, considering the algo-
rithm’s apparent difficulties in solving the CSD problem for
smaller networks [9]. The poor performance is probably due
to quick stagnation of the elites, as previously observed.

For the m = 4 scenario, GaNet and Tasgin manifest less
robustness with respect to increasing z − out values, which
aligns well with the findings highlighted in earlier studies [13],
[14]. Their performance is almost linearly dependent on the
z − out values for m = 8, whilst they outperform Monolithic
and NicheShift for m = 16. This result is not surprising,
considering that these graphs have n ∗ z/2 = 128 ∗ 4/2 = 256
out of n(n− 1)/2 = 8128 possible edges: GaNet and Tasgin
exploit their knowledge about the graph structure, which
allows them to focus on more effective candidate solutions.
In contrast, NicheShift and Monolithic do not rely on any
knowledge about the edge set since they are originally devised
to work on complete networks.

B. Analysis of Complete Weighted Digraphs

Similarly to Figure 5, Figure 6 depicts the average perfor-
mance and standard deviation values of 30 experimental runs
across three different community structures (m ∈ {4, 8, 16})
for complete networks of n = 128 nodes, z = {16, 8, 4} and
z − out ∈ [0, z/2]. As expected, GaNet and Tasgin score the
worst performance across all 17 setups. This highlights the
drastic impact the re-conversion process (implemented in the
reduced approach) has on the performance of these algorithms.
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Fig. 5. Sparse Graphs: Average performance and standard deviation values (30 runs) for GaNet, Tasgin, Monolithic and NicheShift, for sparse graphs of
n = 128 nodes, k ∈ {4, 8, 16}) community structures, z = n/2k, and z − out ∈ {0, z/2} edges.
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Fig. 6. Complete Networks: Average performance and standard deviation values (30 runs) for GaNet, Tasgin, Monolithic and NicheShift, for complete networks
of n = 128 nodes, k ∈ {4, 8, 16}) community structures, z = n/2k, and z − out ∈ {0, z/2} edges.

Strikingly, the NicheShift approach yields the lowest nme
errors. NicheShift appears to leverage on the information
relative to the edges, connecting nodes within the same com-
munity, for which the original undirected network would have
not registered an edge — i.e. most of the edges built with
N(µin,0, σ), see Eq. (3) —. These edges manage to empower
the connection among edges of the same community, and to
weaken the noise represented by the out-edges.

Finally, we observe that the four algorithms change their
nme trend, from being directly influenced by increasing values
of z−out, to their nearly complete independence. Although at
first hint the generation of normally distributed weights might
have an impact on such behaviour — e.g. by making the total
number of n(n − 1) = 16256 weights uniformly distributed
— an analysis of the weight distribution did not show any
significant changes across the different z−out configurations.

VI. DISCUSSION AND FUTURE WORK

When faced with a CSD problem on complete networks, at
least two possible approaches could be taken: trying to solve

them directly or reduce them to a simpler problem. This paper
has attempted both approached.

While the reduced approach allows algorithms such as
GaNet and Tasgin to work on a wider range of problems, it
has a dramatic impact on the efficacy of these algorithms. It
would therefore seem advisable to choose the direct approach
wherever possible. NicheShift shows that it is possible to
solve CSD problems without reducing their complexity. It also
shows very good results for sparse graphs, which suggest that
NicheShift would also work well for the intermediate cases
such as incomplete networks.

The drastic performance increase of NicheShift over the
Monolithic algorithm prompts us to ask what the core features
that allows this improvement are, and whether they can be
further improved. The key invention of NicheShift is the shift
and merge operation. Here, the correct number of niches
and the policy for when to shift and merge are important.
Remarkably, when m = 4 in both sparse and complete directed
digraph scenarios, NicheShift achieved nme = 0. This seems
to be because the central niche already has the right number of



groups. A faster adaptation of niches in order to replicate such
ideal conditions for other m might lead to even better results
under those conditions. Thus, future work will investigate other
policies for when to shift and merge, e.g. using techniques
from reinforcement learning. We also plan to analyse and
find ways of reducing the resources required by NicheShift to
compute its solutions, i.e. a memory space O(hmn2) quadratic
with respect to the problem size, for m,h� n, and its related
fitness evaluations for an undefined number of generations.

Future work will also consider the application of
NicheShift to dynamic networks [19], [26], being them related
to the original motivation for the current line of research [9].
We will even further investigate the performance of other
evolutionary approaches, e.g. those listed in the related work
section, and compare NicheShift with other non-evolution
algorithms, e.g. Ant Colony Optimisation [12] and spectral par-
titioning [8]. Another interesting line of research would be the
extension of NicheShift to multi-objective optimisation [15],
possibly based on multiplex networks [27], or even for the
detection of overlapping communities [6], [16], [28].

VII. CONCLUSIONS

We have investigated the possibility to solve the community
structure detection (CSD) problem, undirected and unweighed
(sparse) graphs, and in complete networks, by means of
evolutionary computation. We have considered four Genetic
Algorithms (GAs), two of them initially designed to work
for undirected and unweighted (sparse) graphs (GaNet and
Tasgin’s algorithm [13], [14]), and two specifically designed
for complete networks: one previously designed for another
line of research of ours [9], and another one, based on shifting
niches (NicheShift), which is first presented in this paper.

Experiments conducted on both sparse graphs and complete
network highlight the fact that NicheShift is extremely robust
across both sparse graph and complete network cases, under
three different scenarios (four, eight and sixteen communities),
and noise represented by the edges connecting nodes belonging
to different communities. On the other hand, the need for
the conversion from complete networks to sparse graphs,
in order to apply GaNet and Tasgin’s algorithm (reduced
approach), showed the potential drawbacks arising from the
reduction of complexity of the problem. This suggest thats
if the reduced approach is to be taken in further research,
extensive investigations should be made for the network-to-
graph conversion phase.
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