The Turing Test Track of the 2012 Mario AI Championship:
Entries and Evaluation

Noor Shaker, Julian Togelius, Georgios N. Yannakakis,
Likith Poovanna, Vinay S. Ethiraj, Stefan J. Johansson, Robert G. Reynolds,
Leonard K. Heether, Tom Schumann, Marcus Gallagher

Abstract—The Turing Test Track of the Mario AI Champi-
onship focused on developing human-like controllers for a clone
of the popular game Super Mario Bros. Competitors participated
by submitting AI agents that imitate human playing style.
This paper presents the rules of the competition, the software
used, the voting interface, the scoring procedure, the submitted
controllers and the recent results of the competition for the year
2012. We also discuss what can be learnt from this competition
in terms of believability in platform games. The discussion is
supported by a statistical analysis of behavioural similarities
and differences among the agents, and between agents and
humans. The paper is co-authored by the organizers of the
competition (the first three authors) and the competitors.

I. INTRODUCTION

The creation of bots that play a game as well as possible
has long been a main focus of research in the Computational
Intelligence and Games community. Less emphasis has tradi-
tionally been given to constructing human-like agents, even
though the literature contains several interesting attempts [1],
[2], [3], [4]. Successfully imitating human behaviour is
important for many reasons [5]. Several authors have ar-
gued that the appearance of human intelligence and human-
likeness increases the quality of gameplay [6], [7], [8].
This goes both for enemies and collaborators or “sidekicks”
in games, and for various demonstration modes. Another
interesting direction is the construction of Al bots that act in
a human-like manner when they stand to play on behalf of
the player. These Al bots are important for several problems
such as procedural content generation and player experience
modeling [9], [10], [11] where these bots can be employed
for training models and testing the quality of both learned
models and generated content [12]. While we are far from
a good understanding of how to achieve believability in
bot behaviour, suggestions for characteristics of believable
behaviour include variability [13], unpredictability and ex-
hibiting non-repetitive behavior [14].

In the last few years, a number of game AI competi-
tions have been run in association with major international

NS and JT are with the Center for Computer Games Research,
IT University of Copenhagen, Denmark. GNY is with the
Department of Digital Games, University of Malta, Malta. LP,
VSE and SJ are with Blekinge Institute of Technology, Sweden.
RGR and LKH are with the Department of Computer Science,
Wayne State University, USA, TS and MG are with University of
Queensland, Australia. emails: nosh@itu.dk, julian@togelius.com,
georgios.yannakakis @um.edu.mt, {likithpoovanna.5238,
s.e.vinay9986} @ gmail.com, stefan.johansson @bth.se, {reynolds,
Ikinnaird } @cs.wayne.edu, thomas.schumann @ugqconnect.edu.au,
marcusg @uq.edu.au.

conferences. Several of these competitions have spurred
valuable research contributions as reported in [15], [16], [5],
[17] (among others). Most of them focus on competitors
submitting well-playing bots. One interesting exception is the
2k BotPrize, where the submitted entries are not supposed to
play the game as well as possible, but in an as human-like
manner as possible [18].

We created the Turing Test Track within the Mario Al
Championship to spur and benchmark development of be-
lievable bots. Our competition is obviously inspired by the
2k BotPrize, but differs from it both in the game domain
chosen and in the evaluation procedure. To the best of our
knowledge, ours is the first competition that focuses on
believability within the platform game genre, and where be-
lievability is judged by spectators. Competitors participated
in the competition by submitting an Al agent that is created
to play as if it was controlled by a human player, and the
human-likeness was assessed by human spectators. We use
Infinite Mario Bros', a clone of the classic platform game
Super Mario Bros, as a testbed for our competition. Our
hope is that this competition will spur research in methods of
creating believable bots for platform games. Many concerns
relevant to designing human-like bots recur in the creation
of the Non-Player Characters (NPCs) for other games such
as first-person shooters and it is likely that principles and
findings for generating believable agents carry over to other
game genres.

The analysis and results we present in this paper are
from the recent competition event held at CIG 2012 where
three competitors participated and 73 subjects evaluated
the submitted bots. This paper presents the first attempt
towards analysing believability in platform games by pre-
senting different techniques that can be employed to build
believable agents and shedding some light on the attributes
that contribute to our perception of a believable behaviour.

II. WHAT IS BELIEVABILITY?

Lankoski and Bjork [19] argue that a believable character
is one that behaves consistently with its environment in
the game, and that believable behaviour thus is context
dependent. According to this definition, NPCs are often more
believable than player characters, especially if the player
character is e.g. running into walls or constantly jumping.
This definition would be hard to apply to Super Mario Bros,

Uhttp://www.mojang.com/notch/mario

as Mario is designed as a player character whose “natural”
behaviour is to try to clear levels.

According to Togelius et. al. [20], believability can be
viewed from two perspectives: character believability which
defines the character/bot as being real, i.e. an actual human
being and player believability which states that for a bot
to be believable, someone should believe that the player
controlling it is human. A similar distinction is proposed
by Johansson [21] who differentiates between “believabil-
ity” and “realism”. For Johansson, believability defines the
naturalness of a character behavior in terms of how far
the actions the character take align with the player believes
should happen. Realism is instead related to the appearance,
animations, textures and similar aspects of the NPC.

A thorough treatment of the issue and resolution of the
different concepts of believability would be both interesting
and useful, but will have to wait until another time. In this
paper, the term believability refers to player believability as
defined in [20], as this concept most closely aligns with the
original Turing test, and is identical to that used by Hingston
in the 2k BotPrize [18], [5]. We are not directly concerned
with the modelling or imitation of human cognitive abilities.

III. INFINITE MARIO BROS AND THE MARIO Al
CHAMPIONSHIP

The testbed game used for the competition is a modified
version of Markus Persson’s Infinite Mario Bros which is
a public domain clone of Nintendo’s classical 2D platform
game Super Mario Bros. The gameplay in Super/Infinite
Mario Bros takes place on two-dimensional levels in which
the player avatar (Mario) has to move from left to right
avoiding obstacles and interacting with game objects. Mario
can move left, right and duck. An additional two keys can
be used to allow Mario to run, jump, or fire (depending on
the state he is in). For more details about the game and our
modifications the reader may refer to [22].

The Mario Al Benchmark was developed for and used in
the Mario AI Championship®, a series of competitions that
have been running in association with international academic
conferences on games and Al since 2009. The Mario Al
Championship has four tracks: the Gameplay track [16], [23];
the Learning track [23]; the Level Generation track [22]; and
the Turing Test track, the subject of the current paper.

It should be noted that Infinite Mario Bros, like Super
Mario Bros, is a game where the seemingly best-performing
playing style (in the sense of achieving the highest score
or clearing the most levels) is not believable in any reason-
able sense of the word. The Gameplay track of the 2009
competition was won by Robin Baumgarten with an agent
built around the A* pathfinding algorithm [16],® which could
clear all levels used in that year’s competition; a video of that
agent has been watched a million times on YouTube precisely
because its playing style is so un-humanlike.

2http://www.marioai.org/
3http://www.youtube.com/watch?v=0s3d 1LfjWCI

IV. THE TURING TEST TRACK

While the Gameplay and Learning tracks focused on con-
trollers that could play Infinite Mario as well as possible, and
the Level Generation track focused on software that could
design personalised levels for human players, the Turing
Test track centred on constructing Al agents that could play
Infinite Mario Bros in a human-like manner. The software
designed for the learning track [23] is also used for the turing
test track. The difference is in the evaluation procedure.

A. Rules

The competition was open to individuals or teams from all
over the world without any limitations. The main technical
requirement was that the software should be able to interface
to an unmodified version of the Mario AI Benchmark. All
important information regarding the Mario AI Championship
including rules and software is posted on a dedicated website.
Prospective participants and other interested parties were en-
couraged to join a Google Group devoted to the competition*.

B. Competition Organization

Prior to the competition event, videos were recorded of
the Al contestants and two human players playing three
short levels of varying difficulty (difficulties 0, 1 and 2 in
the benchmark software). Levels with difficulty zero contain
only goombas (mushroom-like enemies that can easily be
killed by stomping) with no gaps. The challenge of the
levels increases when setting difficulty to 1 by introducing
koopas and placing gaps. The most difficult levels are those
of difficulty 2; these levels contain more enemies (mostly
koopas) including flying enemies (which are harder to kill)
and they also include more and wider gaps.

A web interface was designed that allowed viewing the
recorded videos and collecting the judgments’ evaluation.
The videos are hosted on a web server and the audience of
the CIG conference among others were invited through social
networks (Facebook and Twitter) to judge the human-likeness
of the controllers. A link to the evaluation interface was
provided with instructions on the evaluation procedure. When
accessing the evaluation web page, each judge was asked
to compare two pairs of videos of gameplay sessions for
different agents chosen randomly and presented in random
order. After watching each pair of two videos, the judge was
asked to answer a questionnaire.

C. Software and interface

We used the standard Mario Al Benchmark representation
of environments and actions. For more details, see [23].

1) The Environment interface describes the game state
to the agent at each time step. The main types of
information presented are:

o A 22x22 array that describes the world around
Mario with block resolution, and with Mario him-
self in the center. Figure 1 illustrates a small
receptive field around Mario,

“http://groups.google.com/mariocompetition

plipis Ler s el)
5)5)50515) 5550 a1 1—-1

=1
=]
=

080

Fig. 1. Mario grid representation. Both enemies and level grids contain the
information from the same area around Mario which appears marked.

« Exact positions of enemies on screen,
o State information: whether Mario is currently in
Fire mode, on the ground etc.

2) The Agent interface: This is the only interface that
needs to be implemented in order to create a functional
Mario-playing agent. The key method here is getAc-
tion, which takes an Environment as input and returns
a five-bit array specifying the action to perform. This
yields a total of 25 = 32 actions.

D. Evaluation Procedure

Believability can be assessed from a first- or third-person
perspective. An example of a first-person assessment of
believability is the 2k BotPrize where the assessment is
presented as part of the game; subjects are equipped with
a special weapon that can be used in-game to distinguish
between an Al bot and a human opponent [5].

In Infinite Mario Bros, first-person assessment is not
possible since we have only one player character in the game.
Moreover, assessing believability from a first-person perspec-
tive requires the judge to pay attention to the playing styles of
agents while being engaged in the gaming experience, which
is distracting. Therefore, in this paper, we follow the third-
person assessment approach [20]. We chose to let the judges
observe the game for an average duration of one minute,
which in the organisers’ opinion is enough to get an idea of
the playing style of the player. We implemented a subjective
assessment method where post-experience questionnaires are
presented to observers. The questionnaires are presented after
watching a pair of videos, with each video depicting one
player. The following two questions were asked:

o Which do you think plays in a more human-like man-

ner?

o Which do you think is more expert?

The possible answers were: Video A, Video B, both equally
and none of them, following the 4-AFC protocol [24].

V. THE COMPETITORS

Three bots and two human players competed in the Turing
Test track. The two human players are chosen based on their

expertise in the game. One is a skilled player with consider-
able experience of the game, and the other is a novice with
little experience of this game. In the following sections, we
present the participating controllers. Each section is written
by the authors of the controller.

A. Likith Poovanna, Vinay Sudha Ethiraj and Stefan Johans-
son

1) Idea and Architecture: The VLS bot (named after the
first names of its contributors Vinay, Likith, and Stefan)
is an artificial potential field-based bot that plays Infinite
Mario Bros. Artificial potential fields (APFs) is a reactive
technique that lets a unit make its decisions based on the local
impacts of attracting and repelling forces in its surroundings.
Based on the impacts on a number of lookahead positions,
the unit chooses the action that will take it to the most
attractive position. The technique originates from the field
of robotics [25], and is also related to the type of influence
maps described e.g. by Tozour [26]. For a closer description
of the two techniques and their use in game Al, see [27].
In all APF-based applications, there are a number of things
that need to be defined, such as the lookahead positions, the
potential fields and the sources of potentials in each field.

2) Development:

a) Lookahead positions:: In each frame, Mario looks
at each possible move, and where that move would take
him. The resulting states are then considered as lookahead
positions. Note that in the case of Mario, the actions may
be of different duration in time, e.g. a move to the right is
instant, whereas a jump takes several frames to execute.

b) Artificial potential fields:: By using different fields
for different objectives in the game, it becomes easier to tune
the balance of the solution. In VLS, we use four fields:

o The field of progression is slightly more attractive to
the right than to the left, making Mario prefer going in
the right direction. The more attractive the right side is,
the harder it will be for other attractive sources to gain
attention in the choice of action.

o The field of rewards makes coins, mushrooms, blocks,
and flowers attractive. The stronger this field is, the
more eager Mario will be to collect rewards.

o The field of opponents makes the positions of the oppo-
nents repelling. The more repelling they are, the harder
Mario will try to avoid their positions. The exception is
jumps that land on the monsters to kill them.

o The field of terrain will make sure that Mario avoids
gaps. It also identifies dead ends and makes these areas
slightly repelling, so that Mario turns to search for
another path. A slight reward is given for height, making
him want to jump up on platforms when applicable.
¢) The humanization of VLS:: To make the bot play as

humanly as possible, we first hand-tuned the parameters of
the solution (see Table I) to obtain a reasonably well playing
bot. We then set up an experiment in the following way:

1) Initially we picked five human players with various

playing styles, which we recorded while they played a

specific Mario level.

TABLE I
THE PARAMETERS TUNED IN THE EXPERIMENTS. v1-VALUES ARE THE
ORIGINAL VALUES AND v2-VALUES ARE THE RESULTS OF THE TUNING.

Name Detailed description V1 V9
Coins The attraction of coins 1 1.061
blocks The attraction of block-rewards. 1.1 1.33
Platforms | The attraction of platforms. 0.8 0.9522
Enemies | The likeliness of the bot trying to kill | 0.75 0.85
the enemy (rather than avoiding it).
Pipes The approximate distance at which to | -0.5 -0.832
react on the pipe.
Gaps The distance that the bot keeps to the | -0.3 | -0.5866
gap it is trying to cross.
Dead A parameter for how far the human -3 -3.093
ends player would move before realizing it
is a dead end and turn.

2) Then each of these players was asked to select the two
videos that they thought expressed the most human-
like behavior based on pair-wise comparisons of the
recorded games.

3) The two human players whose videos were selected in
the previous stage are asked to play the game again.
Each player was assigned to play different levels while
the data was recorded. These videos are the basis of
our tuning.

4) In the tuning, we let 30 test persons each watch two
games, one played by our bot while the other is the
recording of a human player.

5) The testers are then asked to fill in a form with
one question for each parameter presented in Table I:
”Which player was better at collecting coins?”, or
”Which player was better at crossing gaps?”’. Answers
were given on an ordinal 11 step scale.

6) The results where then compiled to averages, a, be-
tween 0 and 1 and compared with the hand-coded val-
ues. The vy-values were calculated simply as the value
that would level out the differences, i.e. vo = v1/2a.

3) Evaluation: The performance of the tuned parameters
was validated in a second series of experiments (similar
approach but using the vo values), yielding a result where
only one parameter showed a significant difference (VLS was
significantly better at jumping on platforms). The rest of the
cases showed small or no differences between the human and
the bot as measured by the selected factors.

4) Strengths and Weaknesses: The strength of the con-
troller lies in its modularity. It is easy to add new fields,
representing new objectives, and it is relatively easy to tune
(e.g. to the skill level of a specific human style of playing).
The drawback is of course that it is fully reactive and thus
hard to tune in domains that require extensive planning.
However, through the use of A* as a distance measure in the
field of progression (instead of e.g. the Euclidean measure),
this issue may be addressed, see e.g. Hagelbick [28]. This
is (to our knowledge) the first documented use of potential
fields as a way to control characters in a platform game.

B. Tom Schumann and Marcus Gallagher

1) Idea and Architecture: TomAgent was built with the
intention of only using rule-based techniques [29]. It uses
a nearest neighbor classifier with Hamming distance on the
level area surrounding the controller [30]. This view was
then classified as one of a set of saved views. Each of
these views has associated sets of actions for the controller.
There were different sets of actions for each direction and
player mode. Influence maps were used to determine which
direction was most desirable for the player. The idea of using
influence maps came from the work of Wirth [31], Teed
[32] and Collett [33]. Although they applied the method
on Ms Pac-Man, the technique generalized well to Infinite
Mario Bros. The best direction to follow and the current
player mode were used to choose the action to be performed.
Additional desired behaviors such as shooting at enemies and
intermittent pausing supplemented these techniques [29].

2) Development: A set of saved level views was assem-
bled manually by testing the controller on random levels.
Whenever the controller got stuck during a test, the current
level view was added to the set of saved views along
with sets of actions to properly navigate that view. This
technique generalizes well to unseen situations with similar
characteristics to saved views to allow correct classification.
As more views are added to the set, the occurrence of
misclassifications increased which sometimes resulted in the
controller performing incorrect actions and being unable to
progress. To mitigate this, additional tests were added to
determine if the controller is stuck and a jump action is
performed to move away from the problematic situation.

The nearest neighbor classifier was accurate at selecting
correct actions for the controller. To make the controller
less expert, extra sets of ineffectual actions were added.
These sets include actions such as not jumping to the
correct height or jumping early/late resulting in inefficient
navigation. These sets of actions had a low probability of
being chosen but prevented the agent from playing perfectly
which is usually considered as a non-human behavior [20].

Fig. 2. Influence mapping around the controller. Backwards is the better
direction.

The influences of different entities were roughly prioritised
based on their perceived benefit to the controller [29]: the
Princess (which marks the end of the level) was given the
highest priority as reaching her means winning the level;
power-ups were given the next highest priority as they would
replenish Mario’s health; the areas around enemies come
next to encourage the controller to stomp on them while

coins were given the lowest priority as they only gave
points. Enemies themselves were given negative influences
to discourage contact. Flying and spiky monsters were given
much lower priorities and had extra checks so that they could
be bypassed without causing penalty.

3) Evaluation: The correctness and effectiveness of the
nearest neighbour classifier and influence maps were evalu-
ated by testing the controller on random levels. This form of
evaluation demonstrated that the techniques were reasonably
effective as the controller was able to competently complete
most random levels it was tested on.

The controller’s ability to play like a human was assessed
by testers who were asked to watch a video of it and another
one for a human player playing the same level and report
which they thought was more human and why, similar to the
evaluation procedure of the Turing Test Track. The feedback
collected was used to improve the sets of actions and to
tweak other aspect of the controller behaviour.

4) Effectiveness: The nearest neighboor classifier was ef-
fective as it easily allowed the controller to correctly navigate
levels. The influence maps were also effective as they made
the controller back-track and pick up coins and power-ups.
On rare occasions, the influence maps would conflict and
cause the controller to get stuck and we added checks to
handle this case. To minimise the occurrence of conflicting
influences the influence radii were kept small, but this meant
that the controller would sometimes “forget” about entities
it was seeking when the distance between them was large.

5) Generalizability: Both techniques used could be gen-
eralised to other 2D platform games. Influence maps can
generalize well as they are reasonably abstracted from any
sort of game-play and are only used to indicate the de-
sirability of areas adjacent to the player. Using a nearest
neighbour classifier for navigation could also be used in other
2D platform games, but its efficiency is limited to situations
that require complex navigation.

C. Robert Reynolds and Leonard Heether

1) Idea and Architecture: WSU-Mario-CAT (WSU-M-C)
is a client designed for the Mario Gameplay and Turing
Test tracks. It was constructed using an artificial neural
network and trained using Cultural Algorithms [34]. Since
most human video game players see game completion as the
ultimate goal of any video game, the client was trained with
finishing a level as the primary goal.

2) Development: The WSU-M-C controller is designed to
take input, in the form of screen data, and provide appropriate
output based on that data. The controller accomplishes this
by passing this data through an artificial neural network. The
internal weights between the layers of the neural network are
decided by the Cultural Algorithm training process.

The neural network used by the WSU-M-C controller is
an Elman-type neural network, and consists of an input layer,
a directly-linked hidden layer, a recurrent hidden layer, and
an output layer. The input layer takes in screen data in a
grid based format and assigns values to the contents of the
each grid cell. An example of this can be seen in Figure 3,

however our updated controller consisted of 119 nodes on the
input layer, and 25 nodes on each hidden layer. The increase
in nodes corresponds to an increase in the size of the screen
grid (from 3x3 to 9x13.)

INPUTS

1.8: On-Screen Content
Example Values:

0 Emply

2t Enemy

-10: Static Terrain

16: Brick

21 7 Block

QUTPUTS
Controller Buttons:
1:Left

2:Up
3: Right
4: Run/Fireball
5: Jump

R I A

9: 1s Mario on the ground?
10: Can Mario jump?
Values

0 N

Values:
0: Not pressed
1: Pressed

L2000 TN T 2 2 I R B B B

1:Yes
11: NN Ground (Value = 1)

Fig. 3. WSU-Mario-CAT Overview.

3) Training: The controller training process involves de-
termining a set of weights for all the connections in the
neural network and then evaluating that set of weights based
on a multi-objective fitness function. During the learning
process, these weights are adjusted by the Cultural Algorithm
framework to improve the overall fitness as defined by this
multi-objective fitness function.

An example of the learning process can be seen in
Figure 4 as a function of the overall fitness, of the best
case in a given generation. This figure also defines several
key learning points. These learning points demonstrate how
the system learns to accomplish key tasks. There are clear
parallels to how inexperienced human players learn to play
platform style video games. This incremental learning path
has been demonstrated before in agents trained using Cultural
Algorithms [15], [35].

Fig. 4. Visual Example of the Mario Learning Process.

4) Evaluation: In creating the WSU-M-C agent for the
competition, it was tested against a multiple level combi-
nations. These level combinations involved different level
lengths, types (above ground/underground) difficulties and
time limits. After the training period was over, the best
derived weight set was hard coded into the agent prior to

submission. This weight set defined the agent’s behavior
during the competition.

5) Strengths and Weaknesses: The development of the
WSU-M-C agent has brought to light some interesting con-
clusions. The incremental learning path, demonstrated by the
agent, corresponds to the typical learning path shown by
novice human players. This human-like learning theoretically
can be used to create a better agent, more suitable for a
Turing test that looks specifically for human-like behavior.
However, due to the fact that the training process focuses
heavily on level completion, the agent can exhibit behavior
that, while very conducive to level completion, is not neces-
sarily viewed as human-like.

In the future, we believe that this system could be im-
proved by using a “network of networks” rather than a
single neural network. This would provide more flexibility to
approach different situations. Using the Cultural Algorithm
framework, one could train multiple different networks for
various in-game applications at the same time. In addition
to training the individual networks, the Cultural Algorithm
framework could be used to learn which network would be
best to use in a given situation. It would also be intriguing
to see if what has been learned in the Mario Al spectrum
could be transferred to other platform games that use similar
input/output schemas. We believe that since there are many
situations in platform games that are similar (i.e. jumping,
running, collecting) that any learning agent developed for one
platform game, could be used for another platform game with
a minimal amount of adjustment.

VI. RESULTS AND ANALYSIS

The human-likeness of the submitted agents and the two
human players was assessed by 73 participants who took
part in the evaluation process. In this section, we present the
results and analysis conducted to investigate the differences
between the agents and how those affect believability.

A. Results

Table— II presents the final results of the competition.
Each agent was presented 58 times on average. The score
for each agent is calculated as the percentage of times
the particular agent scores higher than another agent when
played in pair over the total number of times this agent
was presented. We chose to randomly select the agent and
present them in pairs since we are interested in comparing the
techniques used with each other as well as with actual human.
Since random selection is used, there was no guarantee that
all agents would be evaluated an equal number of times and it
was hard to know in advance whether we would have enough
participants to ensure a uniform distribution of votes along
all agents. Therefore, in order to allow a fair comparison, all
values obtained are normalised and the score for each agent,
1, is calculated according to the equation:

times_selected; /times_presented;

Score; =

o9 times_selected, [times_presented,

As can be seen from Table II, the winner of the competi-
tion was the VLS agent, with a considerable margin to the
other agents. This agent managed to convince 34 observers
that it was more human than other agents out of the 68
times this agent was presented. The VLS bot is also the
bot that comes closest to the human vote baseline of the
novice human player with around 5% difference. The other
two agents, on the other hand, fail to convince the majority of
the observers of being controlled by a human when compared
to other agents. The results show that 16 voters out of 54
believed that TomAgent is the more human-like while the
WSU-M-C agent was perceived as more human-like in 6
times only out of the 65 times this agent was compared. It
is worth noticing that the novice human player received the
most human votes (27/45) while the expert human received
more computer votes than the VLS bot.

The Mann-Whitney U Test (p < 0.01) was applied to the
results in order to calculate the significance of the difference
between each pair of controllers. In order to apply this
test, the ranks are calculated as zeros and ones, i.e. when
comparing the VLS agent with TomAgent, for example, the
VLS was selected nine times and TomAgent five times,
then VLS gets nine ones and five zero value, and the same
applies for the rest of controllers compared to VLS. Note that
to perform this test, only pairs with clear preference were
considered (the pairs where the spectators clearly reported
whether the first or the second agent is more human-like)
while other pairs are removed. This resulted in 37, 56, 48,
42, 36 pairs of clear preferences for the TomAgent, the VLS,
the WSU-M-C, the expert and the novice human player,
respectively. The results of this test are presented in Table III.

As expected, the novice human player is significantly
different from all Al controllers except the VLS agent. In
the comparison among the Al agents, WSU-M-C and VLS
are, respectively, the least and most human-like Al agents;
however, there is not a significant difference between VLS
and TomAgent. Somewhat unexpectedly, the expert human
player has no significant difference from any agents except
for the WSU-M-C agent.

The competition results illustrate the difficulty in assessing
believability even in a game as seemingly simple as Super
Mario Bros, with low control bandwidth, simple graphics
and easy overview of the play area. The results suggest
that it is easier to imitate the behaviour of an expert than
a beginner player and that expert players are more likely
to be mistaken for being an Al bot. In order to further
investigate the results obtained, we decided to mine the game
logs for relationships between the controllers’ playing styles
and perceived believability.

B. Feature Analysis

Several gameplay statistics were calculated from 60 levels
of low difficulty (difficulty is set to 0) generated and played
by the agents (20 levels for each agent) and 10 levels of
the same difficulty played by an expert and a novice human
players. The features are the following: the percentage of
time spent jumping, ducking, running, moving left, moving

TABLE II
THE RESULT OF THE TURING TEST TRACK FOR THE 2012 MARIO Al

CHAMPIONSHIP
Name [Agent [Presented | Selected [Score
Satish, Ethiraj VLS 68 34 25.79 %
and Johansson
Schumann TomAgent 54 16 15.28 %
and Gallagher
Heether WSU-M-C 65 6 4.76 %
and Reynolds
Expert human — 60 27 23.21 %
Novice human — 45 27 30.95 %
TABLE III

THE P-VALUES OBTAINED FROM APPLYING THE Mann-Whitney U Test ON
EACH PAIR OF CONTROLLERS. THE STATISTICALLY SIGNIFICANT
DIFFERENCES (p — value < 0.01) ARE PRESENTED IN BOLD.

Agents [[Expert Novice VLS Tom WSU-M-C

Expert — 0.31 0.72 0.06 4.35%x10 7

Novice — - 0.16 0.006 8.2x%10"°
VLS — — — 0.10 5.44%x1077
Tom — — — — 0.001

right, and standing still out of the total amount of time spent
playing each level, the percentage of coins collected out of
the total number of coins present in the level, the percentage
of all blocks smashed, the percentage of all enemies killed
and the percentage of all enemies killed by stomping.

Figure 5 presents a comparison between the average
and standard deviation values of the features extracted. All
feature values are uniformly normalised along all sessions
played by all controllers to the range [0,1] using max-min
normalisation. As seen from Figure 5, there are remarkable
differences between the behaviours observed. The three
agents differ clearly in terms of time spent jumping, ducking,
running, standing still, amount of coins collected and blocks
destroyed, number of enemies killed and percentage of
enemies killed by stomping.

The most believable agent, VLS, appears to be the one that
spends time moving left, collects most coins, and succeeds in
killing many enemies mostly by stomping. The least human-
like agent, WSU-M-C, spends a lot of time running in the
right direction, performs a lot of unnecessary ducking actions
(note that these levels contain no bill blasters nor flying ene-
mies which are the main reason for ducking), collects fewer
coins and kills fewer enemies. For the third agent, TomAgent,
who achieved an average score, the features extracted show
that this agent exhibits similar behaviour to the VLS agent
in terms of collecting coins and the percentage of time spent
ducking while the main differences between these two agents
are in the percentage of time spent jumping/running and the
number of enemies killed. When comparing this agent to the
WSU-M-C agent, the results illustrate dissimilarities along
the proportion of time running/jumping and standing, the
number of coins collected and the percentage of enemies
killed by stomping (since we observed similar percentages
of enemies killed between these agents, this suggests that

0: BVLS ®WSU-M-C OTomAgent | 9Expert H O Novice H.
0.8
0.7
0.6
0.5
0.4

0.3

0.2
bl il i
0
Jump time Duck time Run time Left time Right time Standing Coins Blocks Enemies Stomp
time collected destroyed killed Kills

Fig. 5. Average and standard deviation values of several statistical features
extracted from gameplay sessions.

this agents mostly kills enemies by shooting fire).

The novice and expert players show similar behaviour in
terms of interaction with items as can be seen from the
number of coins collected, the number of blocks destroyed
and the enemies killed by stomping. These two players differ
mainly in the amount of time spent jumping, running and
standing and the number of enemies killed.

The results show that the three agents show distinctive
behaviour compared to the novice and expert human players,
although there seems to be a number of similarities along
some dimensions. The winning agent, VLS, appears to
imitate the style of the expert player when it comes to amount
to time spent on movement actions and collecting items,
while dissimilarity has been obtained when interacting with
enemies.

The above-mentioned behavioural characteristics help us
draw a preliminary picture of what contributes to a believ-
able behaviour. Unnecessary ducking appears to be linked
to undesirable behaviour while humans seem to spend a
reasonable amount of time of standing, switching direction,
collecting items and stomping on enemies.

VII. CONCLUSIONS

In this paper, we presented the turing test track of Mario
Al Championship 2012. We described the competition or-
ganisation, rules and the submission interface and we further
discussed the architecture and techniques followed by com-
petitors to construct Al agents that play our testbed game,
Infinite Mario Bros, in a human-like manner. We described
the voting interface and the scoring procedure followed to
assess believability. Finally, we presented the results of the
competition and we run statistical analysis and conducted an
experiment to help us understand the factors that contribute
to believability in 2D platform games.

The turing test track was run for the first time in 2012
and this paper is the first to describe it. Accordingly, there
are a number of lessons that can be learned and many
future directions that can be pursued. In general, it appears
that assessing believability is not an easy task. The results
showed that a human player with an expert playing style can
easily mislead voters into being an Al bot while a beginner
human is easier to identify correctly. It also appears that

constructing an Al bot that imitates expert behaviour is easier
than imitating a beginner style.

The analysis presented in this paper focused on examining
the similarities and differences between the Al agents based
on several statistical features of gameplay. There are many
small differences, but one that stands out is that humans tend
to stand still and think now and then; Al agents don’t. There
were also differences between the different agents, and it
interesting to note the agent that was trained to reach the
end of the level as quickly as possible performed worst it
in terms of human-likeness. A more thorough analysis can
and will be performed to test correlations between gameplay
features and reported preferences that helps better understand
the factors that contribute to believable behavior.

Although gameplay features represented as frequencies of
actions give an indication of players’ behaviour, combining
these features with context information provides a better
alternative for understanding believability in situational con-
text. To this end, sequence mining techniques can be used to
extract multimodal patterns that combine information from
players’ behaviour and game content [11] and correlation
analysis can be used to relate these features to reported
believability.

The data collected and the experiments conducted can
potentialluy be used to construct models of believability;
levels and gameplay features can be fed into a pairwise
preference model that can be trained to predict the human-
likeness of an agent based on its individual playing style.
The features that correlate the most with believability can
be extracted and a similar framework to the one followed
in [10], [11] for player experience modelling can be followed
to train and evaluate the believability models.

REFERENCES

[1] B. Gorman, C. Thurau, C. Bauckhage, and M. Humphrys, “Believ-
ability testing and bayesian imitation in interactive computer games,”
From Animals to Animats 9, pp. 655-666, 2006.

[2] J. Laird and J. Duchi, “Creating human-like synthetic characters with
multiple skill levels: A case study using the soar quakebot,” Ann Arbor,
vol. 1001, pp. 48 109-2110, 2000.

[3] V. Tatai and R. Gudwin, “Using a semiotics-inspired tool for the
control of intelligent opponents in computer games,” in International
Conference on Integration of Knowledge Intensive Multi-Agent Sys-
tems. 1EEE, 2003, pp. 647-652.

[4] J. Ortega, N. Shaker, J. Togelius, and G. Yannakakis, “Imitating human
playing styles in super mario bros,” Entertainment Computing, 2012.

[5] P. Hingston, “A new design for a turing test for bots,” IEEE Transac-
tions on Computational Intelligence and Games (CIG), 2010.

[6] A. Champandard, Al game development. ~New Riders Publishing,
2003.

[7] C. Bateman and R. Boon, 21st century game design.
Media Hingham, MA, 2006.

[8] D. Weibel, B. Wissmath, S. Habegger, Y. Steiner, and R. Groner,
“Playing online games against computer-vs. human-controlled oppo-
nents: Effects on presence, flow, and enjoyment,” Computers in Human
Behavior, vol. 24, no. 5, pp. 2274-2291, 2008.

[9] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player ex-

perience for content creation,” /IEEE Transactions on Computational

Intelligence and Al in Games, vol. 2, no. 1, pp. 54-67, 2010.

G. Yannakakis, M. Maragoudakis, and J. Hallam, “Preference learning

for cognitive modeling: a case study on entertainment preferences,”

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, vol. 39, no. 6, pp. 1165-1175, 2009.

Charles River

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]
[33]

[34]

[35]

N. Shaker, G. Yannakakis, and J. Togelius, “Crowd-sourcing the
aesthetics of platform games,” IEEE Transactions on Computational
Intelligence and Al in Games, 2013.

N. Shaker, M. Nicolau, G. Yannakakis, J. Togelius, and M. ONeill,
“Evolving levels for super mario bros using grammatical evolution,”
IEEE Transactions on Computational Intelligence and Games (CIG),
2012.

R. Wray and J. Laird, “Variability in human behavior modeling for
military simulations,” in In Proceedings of Behavior Representation in
Modeling and Simulation Conference (BRIMS. Citeseer, 2003.

J. Schaeffer, V. Bulitko, and M. Buro, “Bots get smart,” Spectrum,
IEEE, vol. 45, no. 12, pp. 48-56, 2008.

D. Loiacono, P. Lanzi, J. Togelius, E. Onieva, D. Pelta, M. Butz,
T. Lnneker, L. Cardamone, D. Perez, Y. Saez, et al., “The 2009 simu-
lated car racing championship,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 2, no. 2, pp. 131-147, 2010.

J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario Al
competition,” in Proceedings of the IEEE Congress on Evolutionary
Computation. Citeseer, 2010.

D. Perez, P. Rohlfshagen, and S. Lucas, “The physical travelling sales-
man problem: Weci 2012 competition,” in Evolutionary Computation
(CEC), 2012 IEEE Congress on. 1EEE, 2012, pp. 1-8.

P. Hingston, “A turing test for computer game bots,” Computational
Intelligence and Al in Games, IEEE Transactions on, vol. 1, no. 3,
pp. 169-186, 2009.

P. Lankoski and S. Bjork, “Gameplay design patterns for believable
non-player characters,” in Situated Play: Proceedings of the 2007
Digital Games Research Association Conference, 2007, pp. 416-423.
J. Togelius, G. Yannakakis, S. Karakovskiy, and N. Shaker, “Assessing
believability,” in Believable Bots: Can Computers Play Like People?,
P. Hingston, Ed. Springer, 2012.

A. Johansson, “Affective decision making in artificial intelligence:
Making virtual characters with high believability,” Ph.D. dissertation,
Linkoping, 2012.

N. Shaker, J. Togelius, G. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
et al., “The 2010 mario ai championship: Level generation track,”
IEEE Transactions on Computational Intelligence and Al in Games,
vol. 3, no. 4, pp. 332-347, 2011.

S. Karakovskiy and J. Togelius, “The mario Al benchmark and
competitions,” IEEE Transactions on Computational Intelligence and
Al in Games, vol. 4, no. 1, pp. 55-67, 2012.

G. N. Yannakakis and J. Hallam, “Real-time Game Adaptation for
Optimizing Player Satisfaction,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 1, no. 2, pp. 121-133, June 2009.
0. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90-98, 1986.

P. Tozour, “Influence mapping,” Game programming gems, vol. 2, pp.
287-297, 2001.

S. J. Johansson, “The use of artificial potential fields and influence
maps in game Al research,” in IEEE Transactions on Computational
Intelligence and Al in Games, 2013.

J. Hagelbick, “Multi-agent potential field based architectures for real-
time strategy game bots,” 2011.

T. Schumann, “Using nearest neighbour and influence maps to create
a human like agent to play infinite mario brothers,” Ph.D. dissertation,
2012.

S. Pogadaev, “Using nearest neighbour and genetic algorithms to
evolve an infinite mario bros. agent,” Ph.D. dissertation, 2011.

N. Wirth and M. Gallagher, “An influence map model for playing ms.
pac-man,” in IEEE Symposium On Computational Intelligence and
Games. 1EEE, 2008, pp. 228-233.

B. Teed, “Building an influence maps based agents ms pacman,” Ph.D.
dissertation, 2011.

C. Collett, “Combining techniques used by intelligent rule-based
agents to play ms. pacman,” Ph.D. dissertation, 2010.

R. Reynolds, “On modeling the evolution of hunter-gatherer decision-
making systems,” Geographical Analysis, vol. 10, no. 1, pp. 31-46,
1978.

——, “Networks do matter: The socially motivated design of a 3d race
controller using cultural algorithms,” International Journal of Swarm
Intelligence Research (IJSIR), vol. 1, no. 1, pp. 1741, 1993.

