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Abstract: In network science, the centrality, or importance, of a node in a network is of 
crucial importance, for instance to rank webpages or to measure the rate of the spread 
of news on a social network. Also of importance is measuring the communicability 
between two nodes in a network, which assesses how well the nodes can communicate 
between them. Two methods of calculating the centrality and communicability of nodes 
in a network, arising from the subgraph centrality approach utilizing walk of graphs 
are surveyed, with a focus on the more recently introduced of these two methods. A 
connection between the centrality and communicability scores produced by this scheme 
is presented. The question of how the centrality and communicability of nodes vary by 
the introduction of new links in the network is put forward. To answer this question, 
formulae that derive these centrality and communicability differences in terms of existing 
centralities of nodes within the network are presented.
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During the past decade, the study of the interactions existing in 
networks associated with the natural, social, and technological 
sciences gave rise to the field of network science. In this area of 

study, a network can represent websites linked together on the World Wide 
Web, the interconnections of neurons in a brain, people connected on a 
social network, individuals interacting with each other, the structure of a 
molecule or of a protein, the connections of power lines supplying various 
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buildings, and so on.1 Network science thus unifies the theories established 
in these different areas of study, and others, to be able to provide collective 
answers to questions related to the connectivity of such networks.

Mathematics allows the unification of such networks arising from 
different fields of study by representing a network as a graph. A graph is 
a collection of nodes and edges linking several of these nodes together. 
The area of graph theory in mathematics is thus essential to network 
science, in which the centrality and communicability of nodes in 
networks play an important role. Figure 1 shows an example of a graph, 
or network, having six nodes and eight edges. Throughout this paper, 
the number of nodes in the network shall be denoted by n. For instance, 
in the example of Figure 1, n = 6.

In network science, the centrality of a node in a network quantifies 
how well that node is connected to all others. On the other hand, the 
communicability between two distinct nodes in the network assigns a 
value according to how well those two nodes can communicate with 
each other.2 A node with high centrality is considered more important, or 
has more influence, over nodes having lower centrality. For example, in 
the World Wide Web, which can be considered as being a giant network 
linking websites together, a node with high centrality signifies a website 
that is more influential, or has overall more traffic, than others having a 
lower centrality score. On the other hand, in an epidemiology network 
representing the interactions between persons coming in contact with 
each other, two persons (nodes) having a low communicability score 
signifies that these persons have a low probability of transmitting 
potential contagious diseases to each other.

These two measures – centrality and communicability – are then 
combined to provide the betweenness centrality of a node, which is a 
measure of how the overall communicability of the network changes 
when that node is removed.3 The betweenness centrality of a node can 
also be understood as measuring how much information passes through 
that particular node in order to reach others.4

1 Ernesto Estrada and Desmond J. Higham, ‘Network Properties Revealed Through Matrix 
Functions’, SiaM Review, 52 (4) (2010), 696–714.

2 M.E.J. Newman, ‘A Measure of Betweenness Centrality Based on Random Walks’, Social 
Networks, 27 (1) (2005), 39–54.

3 Estrada and Higham, 698.
4 Newman, 40.
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The various ways by which these values may be produced is where 
mathematics comes to the fore.

Subgraph centrality

There are a multitude of methods used to calculate the centrality of nodes 
of networks. Benzi and Klymko provide an overview of these different 
methods.5 One of these methods, the eigenvector centrality, was made 
famous by the PageRank algorithm, on which the search algorithm 
used by Google is based.6 In this paper, the focus is on one method of 
calculating the centrality of nodes called the subgraph centrality, first 
put forward by Ernesto Estrada7 in 2000 and later refined by Estrada 
and Rodríguez-Velázquez.8

Pertinent to this method is the concept of a walk on a graph (network). 
A walk on a network that starts from node A and ends at node B is a 
sequence of nodes, having first node A and last node B, such that any 
two consecutive nodes in the sequence are linked together by an edge 
in the network. The length of the walk is one less than the number of 
nodes that its sequence of nodes possesses. The sequence may contain 
repeated nodes, or it may not; indeed, the starting and ending nodes 
might be the same, in which case the walk is closed. In Figure 1, the 
walk 1 → 2 → 4 → 6 → 4 → 5 → 4  is a walk of length six starting at 
node 1 and ending at node 4. An example of a closed walk on the same 
network that starts and ends at node 2 is the walk 2 → 1 → 2 → 4 → 3 
→ 2, having length five.

5 Michele Benzi and Christine Klymko, ‘On the Limiting Behavior of Parameter-Dependent 
Network Centrality Measures’, SiaM J. Matrix anal. appl., 36 (2), 686–706.

6 Sergey Brin and Lawrence Page, ‘The Anatomy of a Large-Scale Hypertextual Web Search 
Engine’, Computer Networks and ISDN Systems, 30 (1) (1998), 107–17.

7 Ernesto Estrada, ‘Characterization of 3D Molecular Structure’, Chem. phys. lett., 319 
(2000), 713–8.

8 Ernesto Estrada and Juan A. Rodríguez-Velázquez, ‘Subgraph Centrality in Complex 
Networks’, physical Review E, 71 (056103) (2005).
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Figure 1 A simple network having six nodes labelled 1, 2, 3, 4, 5 and 6

A node B is incident to another node A if they are linked by an edge. 
One simple way to describe the centrality of a node is to simply count 
the number of closed walks of length two starting and ending at this 
node. This will count the number of nodes incident to that node; this 
number is called the degree of the node. This simple measure, called 
the degree centrality, is also one of the earliest employed – indeed, it 
was introduced in 1954 by Shaw.9 However, a usually better measure 
of centrality of a node is obtained by counting all possible closed walks 
that start and end at that same node, and then weighting these walk 
counts according to their length. Applications usually dictate that the 
shorter a walk is, the more important it is deemed to be. This is how 
subgraph centrality works.

Of course, choosing different weights for the walk counts gives rise 
to different subgraph centrality measures. In Estrada’s original paper 
that introduced the concept of the subgraph centrality,10 he proposed 
to weigh the walk lengths as follows: a walk of length one is twice as 
important as a walk of length two, a walk of length two is three times 
as important as a walk of length three, a walk of length three is four 

9 Linton C. Freeman, ‘Centrality in Social Networks Conceptual Clarification’, Social 
Networks, 1 (1978/79), 215–39. 

10 Estrada., 715.
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times as important as a walk of length four, and so on. This is called 
exponential weighting. Walks of length zero, which are only possible in 
closed walks, are given a score of one, while longer walks are counted 
as fractions of zero-length walks. This weighting of subgraph centrality 
spurred a large amount of interest from several authors coming from a 
wide range of fields such as biochemistry (particularly in the study of 
protein folding),11 statistical thermodynamics,12 quantum chemistry,13 
network theory,14 and information theory.15 Indeed, nowadays, the 
sum of the subgraph centralities of all the nodes in the network, using 
this weighting, is known as the Estrada index.16 The communicability 
between two distinct nodes A and B in the network is also determined 
in the same way: walks starting at A and ending at B of various lengths 
are counted, then these counts are exponentially weighted as described 
above.

A second weighting, proposed by Estrada and Higham in 2010 is the 
following:17 assuming the network has n nodes, any walk of length k is 
(n – 1) times as important as a walk of length (k + 1). For example, the 
walks of a network with nine nodes would be weighted as follows: a 
walk of length one is eight times as important as a walk of length two, 
a walk of length two is eight times as important as a walk of length 
three, a walk of length three is eight times as important as a walk of 
length four, and so on. As before, walks of length zero are given a score 
of one. We shall call this the resolvent weighting, as it is related to 
the resolvent matrix in mathematics.18 It is important to note that the 
exponential weighting mentioned in the previous paragraph is related 
to a matrix in mathematics called the matrix exponential – hence its 
name.19 The centrality and communicability measures arising from the 

11 Ibid.,717.
12 Ernesto Estrada and Naomichi Hatano, ‘Statistical-mechanical Approach to Subgraph 

Centrality in Complex Networks’, Chem. phys. lett., 439 (2007), 247–51.
13 Ernesto Estrada, Juan A. Rodríguez-Velázquez and Milan Randić, ‘Atomic Branching in 

Molecules’, int. J. Quantum Chem., 106 (2006), 823–32.
14 Estrada and Rodríguez-Velázquez.
15 Ramon Carbó-Dorca, ‘Smooth Function Topological Structure Descriptors Based on Graph 

Spectra’, J. Math. Chem., 44 (2008), 373–8.
16 José Antonio de la Peña, Ivan Gutman and Juan Rada, ‘Estimating the Estrada Index’, lin. 

algebra appl., 427 (2007), 70–6.
17 Estrada and Higham.,702. 
18 Carl D. Meyer, Matrix analysis and applied linear algebra (Philadelphia, PA, USA, 2000).
19 Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd edn. (Cambridge, 2013).
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resolvent weighting are called the resolvent centrality and resolvent 
communicability respectively.20

Matrices

Matrices were briefly mentioned in the previous paragraph. In 
mathematics, a matrix is a two-dimensional array of numbers. We 
can neatly package all the centrality and communicability measures 
of a network in a matrix, such that the entries (numbers) on the main 
diagonal (the one starting from the top left corner and ending at the 
bottom right corner) of the matrix are the centralities of each node, 
while the entries off this diagonal are the communicability measures 
of the network. For example, the third diagonal entry of such a matrix 
would be the centrality measure of node 3 of the network, while the 
entry in the second row and fourth column of the matrix would be the 
communicability measure between node 2 and node 4 of the network.

The network depicted in Figure 1 has the following two matrices 
associated with it, both containing the centrality and communicability 
measures of the network. The first matrix E uses exponential weighting, 
while the second matrix R uses resolvent weighting.

Exponential Weighting: 

Resolvent Weighting: 

The following briefly describes how the numbers in the sixth row and 
sixth column of the above two matrices, namely 3.180 and 1.134, were 

20 Estrada and Higham, 702.
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produced. The other numbers were determined in a similar manner. The 
closed walks starting and ending at node 6 are counted. We notice that 
there is one walk of length zero, no walks of length one, two walks of 
length two, two walks of length three, eleven walks of length four, and 
so on. These can all be easily verified by inspection, except perhaps the 
last claim that there are eleven closed walks of length four starting and 
ending at node 6. These are listed below for confirmation:

6 → 4 → 6 → 4 → 6
6 → 4 → 6 → 5 → 6
6 → 4 → 5 → 4 → 6
6 → 4 → 2 → 4 → 6
6 → 4 → 3 → 4 → 6
6 → 4 → 3 → 5 → 6
6 → 5 → 6 → 5 → 6
6 → 5 → 6 → 4 → 6
6 → 5 → 4 → 5 → 6
6 → 5 → 3 → 5 → 6
6 → 5 → 3 → 4 → 6

Using the exponential weighting, the centrality of node 6 is thus

Using the resolvent weighting, the centrality of node 6 is

Thus, infinitely many numbers must be summed up in both cases. 
However, both summations can be proved to always converge to some 
particular values, and do not become infinitely large as more numbers 
are added. Indeed, this can be proved to be true for any network, for the 
centrality of any node, and for the communicability of any distinct pairs 
of nodes.21 Thus, the summation can be continued until the required 
degree of accuracy is achieved. In this case, the above summations 

21 Ibid.,700.
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converge to 3.180… and to 1.134… respectively. This explains why the 
matrix E has the value 3.180 at its sixth row and sixth column, while 
matrix R has the value 1.134 at the same position. Naturally, producing 
these numbers is the perfect job for a computer, and this is indeed the 
way that these numbers are usually produced.

Note also that if the degree centrality was used instead of these 
subgraph centralities, then nodes 2, 3 and 5 would have been given 
an equal score of 3, since these nodes all have three nodes incident to 
them. Using exponential weighting and resolvent weighting, however, 
these three nodes are given different scores, so that node 3 is deemed to 
be slightly more well-connected than node 5, which is, in turn, slightly 
more well-connected than node 2.

Relation between resolvent centrality and resolvent communicability 
of networks

In this paper, the focus is exclusively on the resolvent centrality and 
resolvent communicability, that is, on the numbers forming matrices 
akin to matrix R above. A method to determine the resolvent centrality 
of any node in a network in terms of each resolvent communicability 
measure between that node and any node incident to it is described. The 
question of how the resolvent centralities of nodes and the resolvent 
communicabilities of distinct pairs of nodes change by the introduction 
of a new link in the network is then posed. The answer to this question 
is shown to be surprisingly complicated.

The following results are presented:

Result 1: The resolvent centrality of node A in a network having n nodes 
is the sum of the resolvent communicabilities between a and each node 
incident to A, divided by (n – 1), plus one.

Result 2: If node A is not incident to node B, then the resolvent 
communicability between nodes A and B in a network having n nodes 
is the sum of the resolvent communicabilities between a and each node 
incident to B, divided by (n – 1). (Swapping a and B in this result is 
permissible.)
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Both of the above results are proved together, by first introducing 
the adjacency matrix of the network. The adjacency matrix has a ‘1’ at 
row A and column B if nodes A and B are linked by an edge; otherwise, 
it has a ‘0’. For example, the adjacency matrix of the network in Figure

It turns out that the matrix R containing the resolvent centralities and 
resolvent communicabilities of the network may be written in terms of 
the adjacency matrix a as the matrix (n – 1) ((n – 1) I – A) -1.22 Here, i is 
the identity matrix, which is the matrix whose entries (numbers) on its 
main diagonal are all ones and whose off-diagonal entries are all zeros.

By definition of the matrix inverse, we have

((n – 1)I – A) ((n – 1) I – A)-1 = i

Expanding,

(n – 1)((n – 1) I – A)-1  – a(n – 1)I – A)-1 = i

Rearranging,

(n – 1)((n – 1) I – A)-1  = I + A((n – 1) I – A)-1

But since R = (n – 1)((n – 1) I – A)-1 

 the above relation may be written as follows:

R = I +  __________  aR.

22 Alexander Farrugia, ‘The Increase in the Resolvent Energy of a Graph Due to the Addition 
of a New Edge’, applied Mathematics and Computation, 321, (2018) 25–36.

1
n – 1
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Results 1 and 2 are then proved by equating each entry of matrix R 
on the left hand side of the above relationship with its corresponding 
entry on the right hand side.

Result 1 is illustrated using the network in Figure 1. The resolvent 
centrality of node 6 is 1.134, according to matrix R. Since node 6 is 
incident to node 4 and node 5, this number should be equal to the sum 
of the communicability between nodes 4 and 6 and the communicability 
between nodes 5 and 6, divided by 5 (one less than the number of nodes 
in the network), plus one. Indeed,0.344+0.327 +1 is equal to 1.134.

Moving on to Result 2, according to the same matrix R, the resolvent 
communicability between nodes 3 and 1 is 0.068. Node 3 is incident to 
nodes 2, 4 and 5, so by Result 2, 0.068 should be one fifth of the sum of 
the communicabilities between nodes 1 and 2, nodes 1 and 4 and nodes 
1 and 5. We confirm that this is the case, since 0.238+0.072 + 0.032  = 0.068. The 
same result can also be obtained by noting that node 1 is only incident 
to node 2, so by swapping nodes 3 and 1 and reapplying Result 2, 0.068 
should also be equal to the communicability between nodes 3 and 2, 
divided by five. Indeed, 0.341  = 0.068.too.

The change in the resolvent centrality and resolvent communicability 
caused by the introduction of a new link to the network

The centrality of each node and the communicability between any two 
nodes in the network must increase after any two nodes are joined by an 
edge. The reason for this is that this new link will increase the number 
of walks of various lengths in the network. This will, in turn, directly 
affect all centrality and communicability scores in the network, each 
ending up increasing slightly.

The problem, then, is to quantify this increase, because the centrality 
score of each node in the network will possibly be increased by different 
amounts. For the resolvent weightings of graphs, the change in the 
centrality of a node and the communicability of pairs of nodes have 
been quantified in the recent paper by Farrugia.23 Unfortunately, the 
equations that provide these changes are rather complicated.

Before proceeding, we denote the resolvent centrality at node A 

23 Ibid., 29.

5

5

5
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by Ca or by CA,A. Moreover, the resolvent communicability between 
the distinct nodes A and B is denoted by CA,B Furthermore, we assume 
that nodes A and B were not linked together by an edge prior to the 
introduction of the new link in the network.

Result 3: the resolvent centrality at node n after nodes a and B are 
linked together increases by

Result 4: The resolvent communicability between nodes M and N after 
nodes A and B are linked together increases by

Recall that if one (or both) of M or N is/are the same as one (or 
both) of A or B, then the notation CA,A may be simplified to Ca. For 
example, the resolvent communicability increase between nodes A 
and B themselves after they are linked together is the slightly simpler 
quantity

Again, we illustrate these results using the example network of 
Figure 1. Suppose nodes 1 and 6 are linked together by an edge. By 
Result 3, the increase in resolvent centrality of node 5 owing to the 
presence of this new link in the network amounts to
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This means that the effect on the resolvent centrality of node 5 after 
the new link between nodes 1 and 6 is introduced is an increase from 
1.220 to 1.220 + 0.009, or 1.229.

The increase in resolvent communicability between nodes 3 and 4 
caused by the introduction of the new link between nodes 1 and 6 is 
now investigated. By Result 4, this amounts to

Hence, connecting nodes 1 and 6 together increases the resolvent 
communicability between nodes 3 and 4 in the network from 
0.416 to 0.416 + 0.010 = 0.426.

These values may be confirmed by calculating them directly using 
the method described at the end of the ‘Matrices’ section of this paper.

Conclusion

This paper presented expressions for the resolvent centrality in terms 
of certain resolvent communicability scores in the network. Moreover, 
formulae for the difference in resolvent centrality and resolvent 
communicability of nodes because of the introduction of a new link in 
the network were revealed.

Similar expressions for the exponential centrality and 
communicability of nodes, rather than those with resolvent 
weightings as discussed in this paper, are much more difficult to 
derive. The main difficulty to overcome in such an endeavour is 
the noncommutativity of matrix multiplication. The rule ex ey = ex+y

 
for any numbers x and y is well-known, even by schoolchildren. 
Unfortunately, the corresponding law for matrix exponentials, that is 
exp(a) exp(B) = exp(A+B), only holds when aB = Ba. In fact, this is 
a necessary and sufficient condition, in the sense that if aB ≠ Ba, then 
exp(a) exp(B) and exp(A+B) are guaranteed to be different matrices.24

24 Cleve Moler and Charles Van Loan, ‘Nineteen Dubious Ways to Compute the Exponential 
of a Matrix, Twenty-Five Years Later’, SiaM Review, 45 (1) (2003), 3–49.
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Further research on this area is suggested. Indeed, it would be 
interesting to attempt to derive similar results to those presented in this 
paper for the exponential subgraph centrality of networks. After all, as 
mentioned earlier in this paper, the exponential subgraph centrality, on 
which the Estrada index is based, is already being utilized in plenty of 
important applications.
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