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Abstract: Irrespective of the branch of constructivism they advocate, 
many constructivists argue that constructivism is a theory of learning, 
not of teaching, and therefore one cannot speak of such a thing as 
‘constructivist teaching’ (CT). Others equate CT with a student-centred 
teaching methodology such as teaching for inquiry-based learning. From 
a radical constructivist perspective, I argue that both of these views are 
only partially true. The former seems to disregard the fact that teaching 
and learning are so interlinked that it may be virtually impossible for a 
teacher who strongly believes in the constructivist notion of learning not 
to reflect some of that belief in her/his teaching approach. The latter 
does not seem to acknowledge that even the most traditional and 
teacher-directed teaching may bring about learning, and that if learning 
occurs, it happens through the active construction of knowledge in the 
minds of the learners. Drawing on a local case study of a group of six 
low-performing Year 7 students (i.e., 11-year-olds) to whom I taught 
mathematics, I show that CT is a possibility in any classroom where the 
teacher is sensitive to the constructivist notion of learning. The 
framework I used to investigate the data was the Mathematics-
Negotiation-Learner (M-N-L) framework. I devised this framework to 
help me to define CT and analyse the extent to which I maintain it in my 
lessons 
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Introduction 

 

Radical Constructivism (RC) is built on two sets of principles about 

knowledge and cognition which its founder, Ernst von Glasersfeld (1990) 
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claims to have surmised from Piaget’s theory of genetic epistemology1 (e.g., 

Piaget, 1985). These two sets of RC principles are that: 

 
1a.  Knowledge is not passively received either through the senses or 

by way of communication; 

  b.  Knowledge is actively built up by the cognizing subject. 

2a.  The function of cognition is adaptive, in the biological sense of the 

term, tending towards fit or viability; 

  b.  Cognition serves the subject’s organization of the experiential 

world, not the discovery of an objective ontological reality. 

(Glasersfeld, 1990, p. 22) 

 

Principles 1a and 1b are shared by all branches of constructivism. It is 

Principles 2a and 2b that distinguish RC from other strands of constructivism. 

Glasersfeld claims that “those who merely speak of the construction of 

knowledge, but do not explicitly give up the notion that our conceptual 

constructions can or should in some way represent an independent, 

‘objective’ reality, are still caught up in the traditional theory of knowledge” 

(Glasersfeld, 1991, p. 16). Riegler (2001) labels this latter type of 

constructivism trivial. 

 

Like all mathematics teachers who draw their epistemological beliefs from RC 

theory, I need to keep in mind these two sets of principles during my 

teaching. Like all constructivists, I maintain that knowledge is not ‘passed on’ 

by the teacher or ‘acquired’ by the learner. My standpoint is that knowledge 

is constructed by the learner and that this development is facilitated by 

environments conducive to this knowledge construction, or what Steinbring 

(1998, p. 158) refers to as “learning offers.” Being a radical constructivist, 

means that my understanding of ‘knowledge’ is not a mental representation 

                                                 
1 Piaget (1985) views intellectual growth as a process of adaptation to the experiential 
world. This happens through a process of assimilations and accommodations of 
perceived information to existing mental schemas. When humans use an established 
mental schema to deal with a new perception this is called assimilation. When 
existing schemas do not work and need to be adapted to deal with new phenomena, 
humans undergo a mental process called accommodation. When humans use 
assimilation to deal with their experiences, Piaget says that equilibrium has occurred. 
When existing mental schemas are not viable for new experiences, a mental 
perturbation occurs, creating a state of disequilibrium which humans feel the need to 
settle. The settlement of this perturbation is called equilibration. This occurs by 
modifying the existing schema to deal with the new experience through the process 
of accommodation, where a state of equilibrium is regained. 
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of an objective reality but a viable interpretation of a person’s experiential 

reality. This implies that the mathematics I intend to teach is my own 

construction and interpretation. It also implies that whatever mathematics is 

developed by the students is their own subjective interpretation of the 

mathematical realities that I coordinate and facilitate in the classroom.  

 

One of the main research questions in a case study I carried out with a group 

of Year 7 students was to analyse how these RC perspectives were reflected in 

my teaching approach. The outcome was the development of a framework 

which helped me analyse my constructivist teaching. 

 

 

Constructivist Teaching 

 

The argument that constructivism is a theory of knowledge construction and 

not of teaching has led constructivist researchers to disagree on the legitimacy 

of a label such as ‘constructivist teaching’ (CT). Usually, such a discord 

originates from what different people mean by the term. Engström (2014) 

objects to the term CT on the grounds that it is usually equated with 

progressive modes of teaching.  Simon (1994) says that CT is a myth because 

constructivism is a theory of learning and, irrespective of the teaching method 

being used, learners will learn by constructing concepts for themselves. 

Simon (1995) argues that sympathising with a constructivist notion of how 

one learns does not translate into a set notion of how to teach. I agree with 

both Simon (1995) and Engström (2014) that no particular teaching method or 

tools can, by themselves, constitute CT. 

 

On the other hand, I do make a case that the term CT is legitimate if it is 

attributed instead to a constructivist teacher’s sensitivity towards individual 

students’ subjective and active constructions of knowledge. Being an avid 

promoter of CT, Steffe repeatedly stresses the importance of teachers’ learning 

about the mathematical realities of their students (for example, Steffe, 1991; 

Steffe & Wiegel, 1992). In the context of mathematics education, Steffe (1991) 

argues that RC teachers must view themselves as persons in pursuit of 

knowledge about bridging the mathematics of students (MoS), i.e., students’ 

constructions of mathematical concepts) and the mathematics for students 

(MfS), i.e., teachers’ mathematical ideas intended to be taught to a particular 

student or group of students. 
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RC teachers are concerned with building hypothetical models of students’ 

cognitive structures (Glasersfeld & Steffe, 1991). Based on this concern, Simon 

(1995) presents a practical working model of how a mathematics teacher can 

adopt a constructivist perspective whilst teaching. Simon (1995) explains how 

mathematics teaching develops from what he calls a hypothetical learning 

trajectory (HLT). This is the way teachers make hypothetical predictions of the 

path by which learning might proceed. Simon (1995) explains that HLT 

consists of the teacher’s: 

 

i. learning goal which defines the direction of the lesson, 

ii. plan of activities aimed to achieve the learning goal, and 

iii. hypothesis of the learning process, i.e., the predictions of how 

students’ thinking and understanding will evolve in the lesson. 

 

These actions are ‘hypothetical’ because the actual learning trajectory is not 

knowable in advance. Glasersfeld (1994) argues that to be able to orient 

students’ mental processes the teacher needs to have at least a hypothetical 

model of how the mind of a typical student operates at the outset of the 

lesson. I regard the use of the word ‘hypothetical’ (Glasersfeld & Steffe, 1991; 

Glasersfeld, 1994; Simon, 1995) as an acknowledgement of the fact that what 

learning outcomes the teacher may have in mind before the lesson starts may 

be changed in the course of the lesson. Such changes occur according to what 

the teacher learns from the students. Steffe (1991) argues that RC teachers 

should reflect and act upon models they build of their students’ mathematical 

knowledge. Both Simon (1995) and Steffe (1991) suggest that constructivist 

mathematics teachers should help their students create connections between 

their mathematics and the mathematics the teacher intends to teach them. 

This has much in common with the Constructivist Learning Design proposed 

by Gagnon and Collay (2006).  

 

Simon (1995) and Steffe (1991) have captured the attributes that are usually 

associated with fostering a mathematics teaching environment that is 

sensitive to constructivist notions of learning, namely to: 

 

i. encourage students to come to an answer in diverse ways and 

possibly obtain multiple correct responses, 

ii. appreciate and promote students’ interventions in the lesson and 

invite them to articulate their understandings of the problem at 

hand, 
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iii. allow students to describe their strategies and engage students in 

debates which help them refine and adjust their strategies and 

understandings, and  

iv. learn about students’ conceptual constructions and about students’ 

own mathematical understandings through reflection on classroom 

experiences. 

 

It seems, therefore, that there exists an approach, an attitude, and a 

standpoint in mathematics teaching which may be described as CT. This 

approach occurs when constructivist teachers, in their diverse preferred styles 

of teaching, make possible a two-way-traffic type of communication in their 

lessons, where both teacher and student are learners and both teacher and 

student are teachers (Freire, 1998). The relationship between the mathematical 

content, the learner, and the teacher is created by the need of learners to 

construct mathematical ideas and by the need of the teacher to learn about 

and orient students’ mathematical understandings. 

 

 

Mathematics, the Learner, and the Teacher 

 

The dynamics between mathematical content, learners, and the teacher 

(including teaching approaches), most commonly referred to as the didactic 

triangle (Figure 1), has been in the limelight of French educational research 

since Brousseau (1997) put forward his theory of les situations didactiques. The 

latter are the didactical situations formed by this interlinked triplet within the 

classroom ethos. 

 

Figure 1: Brousseau’s didactic triangle 
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This rather simplistic diagram highlights the relationships between the three 

factors that establish the situation of a mathematics classroom: the teacher, 

the student, and the mathematics being taught and learnt. Schoenfeld (2012) 

identifies seven questions regarding one or more nodes of the didactic 

triangle and the relationships between them: 

 

1) What is mathematics, and what version of it is the focus of 

classroom activities? 

2) Who is the teacher, what does he or she bring to the classroom? 

3) Who is the learner, what does he or she bring to the classroom? 

4) What is the teacher’s understanding (in a broad sense) of 

mathematics? 

5) What is the learner’s emerging understanding of mathematics? 

6) What is the relationship between learner and teacher? 

7) How does the teacher mediate between the learner and 

mathematics, shaping the learner’s developing understanding of 

mathematics? 

(Schoenfeld, 2012, p. 587) 
 

Question 7, which is most pertinent to the subject of this paper, deals with the 

way the three entities relate simultaneously to each other. This question could 

not be tackled without considering the three triangular nodes separately 

(questions 1-3) and the three triangular sides, each of which connects two 

entities of the didactic triplet (questions 4-6). The didactic triangle even 

allows researchers to isolate one of the nodes of the triangle in order to elicit 

and expand its meaning and clarify its links with other nodes. For example, 

Jaworski (2012) focuses on the teacher node and identifies three interlinked 

activities that constructivist mathematics teachers carry out in their lessons. 

She calls these the teaching triad.  

 

Management of Learning. This consists of the teacher’s administration of the 

classroom activities, the students’ participation in those activities, and 

the overall interactions fostered during the lesson. It also involves the 

teacher’s institutional obligations and standards, assessment practices, 

and, most importantly, the interpretation of mathematical content. 

 

Sensitivity to Students. This is the teacher’s effort to become aware of 

her/his students’ knowledge and thinking styles and tendencies. Such 

sensitivity makes students feel respected, included and cared for.  
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Mathematical Challenge. This is the way the teacher presents the 

mathematical problem to the students in a way that interests them, 

motivates them to learn, and promotes participation and cognitive 

engagement.  

 

Jaworski’s (2012) triad has much in common with ideas discussed earlier. In 

particular, the teacher’s sensitivity to students is stressed by Steffe and Wiegel 

(1992) in their appeal to constructivist teachers and curriculum reformers to 

view mathematics knowledge as a human creation. The presentation of the 

‘mathematical challenge’ is necessarily derived from the teacher’s 

epistemological standpoint about the mathematical concepts she/he intends 

to communicate with the students. The RC teacher interprets and represents 

mathematical concepts as “more or less reliable ways of dealing with 

experiences, the only reality we know” (Glasersfeld, 1995, p. 117).  

 

The experiences of the teacher and the students are derived from an 

environment which goes beyond the classroom. Chevallard (1982) introduces 

the notion that a didactical situation does not operate in a vacuum but is 

embedded within, and affected by, external social and institutional forces. 

The latter include government educational directives, inspecting and testing 

regimes and parental and community pressures. The RC teacher may well 

reject the idea of an a priori curriculum but, as Chevallard (1988) observes, the 

very intention to teach is not so much a decision of the individual teacher as it 

is of the society in which that teacher operates. It is society which decides 

what part of mathematics can be regarded as teachable knowledge. Chevallard 

(1988) argues that knowledge is inherently a tool to be put to use rather than 

concepts to teach and learn. He claims that it is thus an artificial enterprise to 

‘teach’ a body of knowledge. In fact, curriculum planners need to find ways 

how to transform ‘knowledge’ from a tool to be put to use to something to be 

taught and learnt. He calls this the “didactic transposition of knowledge” 

(Chevallard, 1988, p. 6, original emphasis).  

 

Once mathematical content is transformed by curriculum designers from a 

viable tool to a set of teachable concepts, it is the constructivist teachers’ duty 

to “to recontextualize and repersonalize the knowledge taught to fit the 

student's situation” (Kang & Kilpatrick, 1992, p. 5). The RC teacher observes 

and reflects on the uniqueness of learners’ experiential worlds and tries to 

find connections between the mathematical content included in the syllabus 
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and the learners’ interpretations of that content with respect to their 

individual experiences.  

 

Negotiating a Link between Teachers’ and Learners’ Mathematics 

 

Literature about CT, or at least about teaching from a constructivist 

perspective, tends to focus mostly, if not only, on the learner. In his review of 

research related to CT, Gash (2014) states that the emphasis is “on the child’s 

learning rather than just focusing on what the teacher thought was important 

to teach” (Gash, 2014, p. 304). I agree with Gash’s argument only because his 

inclusion of the word ‘just’ implies that for a constructivist teacher both the 

child and the curriculum need to be kept in mind, for both of them constitute 

the didactical situation (Brousseau, 1997) which puts the teacher in the 

classroom in the first place. 

 

It was Dewey who was probably the first to think of the educative process as 

the interaction between these two factors. In The Child and the Curriculum, 

Dewey (1902, p. 2) points out that teaching is influenced by two forces: “an 

immature, undeveloped being; and certain social aims, meanings, values 

incarnate in the mature experiences of the adult. The educative process is the 

due interaction of these forces.” 
 

Although Dewey promotes the kind of education which allows learners to 

have control over their learning, he maintains that the teacher should focus 

on both the learner and the content to be taught. On the one hand, Dewey 

argues that it is unacceptable for a teacher to focus only on the content and 

forget about the needs of the learner. The teacher needs to draw attention to 

the viability of the subject content in the students’ experiential worlds, 

something which today may be identified with RC. On the other hand, 

Dewey (1902) claims that if teachers focus only on the learners they will easily 

lose sight of what knowledge they have been entrusted to teach. Hence, the 

teacher needs to strike a balance between providing opportunities for learners 

to acquaint themselves with the topics in the curriculum and being sensitive 

to learners’ individual interests and experiences. Dewey compares the learner 

and the learnt with two points and the teaching process with the 

interconnecting line drawn between those two points: 
 

The child and the curriculum are simply two limits which define a single process. Just 

as two points define a straight line, so the present standpoint of the child and the facts 

and truths of studies define instruction. 

(Dewey, 1902, p.16) 
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Figure 2 illustrates my understanding of Dewey’s (1902) analogy that links 

the subject matter, the learner, and the teaching process. Dewey stresses that 

any teaching programme needs to be defined by the needs of the learner and 

the subject matter intended to be taught. The teacher’s task is therefore to 

plan and proceed in assisting learners along their journey from their current 

situation to the state of developing knowledge about the subject matter. 

 

Figure 2: Teaching seen as the line drawn between subject matter and learner 

 

 

Dewey (1902) regards teaching as the negotiation process aimed at bringing 

together these two forces both of which demand the teacher’s attention. In 

doing so, he acknowledges teachers’ dual accountability to curricular and 

learners’ requirements. Dewey’s (1902) Curriculum-Teaching-Learner 

construct enriches constructivist frameworks such as those of Steffe (1991) 

and Simon (1995) because it takes into consideration the parameters within 

which school teachers operate, including, most importantly, the didactic 

contract between the teacher and the students (Brousseau, 1997). The 

constructivist frameworks proposed by Simon (1995), Steffe (1991), and 

Dewey (1902) were instrumental in my investigation of CT and the 

subsequent development of an analytic framework to investigate CT from a 

RC perspective. 

 

 

Context and Methodology 

 

The protagonists of my case study were six low-performing Year 7 students 

to whom I taught mathematics during the scholastic year 2014-15. Their 

pseudonyms were Dwayne, Dan, Jordan, Joseph, Omar, and Tony. The school 

had a policy of retaining mixed-ability classes for all subjects except for 

Mathematics, English, and Maltese. In these core subjects, students were 

divided according to their performance in the previous scholastic year. Those 

starting to attend the school at Year 7 were divided in these three subjects 

according to their performance in a national benchmark examination which 

Maltese students sit for at the end of Year 6.  
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The grades that my participants had obtained in the Year 6 benchmark exam, 

before entering the school, were between 1 and 3 standard deviations below 

the mean of the Year 7 cohort and hence they were in the lowest of three 

performance sets. The part of the Year 7 curriculum which featured in my 

research was that of introducing formal algebra by helping students to: 

 

i. develop meanings for numerical and algebraic expressions, 

ii. understand the use of letters as unknowns and variables, and 

iii. extend their interpretation of the equals sign. 

 

Qualitative data was collected by a number of methods, but the data 

concerned with CT was obtained by video-recording a series of twenty 

double lessons (80 minutes each) throughout the scholastic year. As Farrugia 

(2006) asserts, in Maltese mathematics classrooms, English is the language of 

written texts, while for spoken language, technical words are usually 

expressed in English.  The main communication medium in the lessons was 

Maltese and we used English to read written problems or task instructions, 

and to say technical words like ‘plus’ and ‘equals.’ Sometimes we code-

switched to English for short intervals. The transcripts were translated 

immediately to English and when English was used this was indicated in 

parenthesis.  

 

Throughout the lessons, I made use of the software package Grid Algebra2 

(GA). GA is a computer environment which is based on the multiplication 

grid. A typical GA interface3 is shown in Figure 3. Only multiples of a 

particular number are allowed in a row. For example, in R5C2 (Row 5 Column 

2), the number 30 is allowed because it is a multiple of 5.  

 

The content in one cell may be dragged into another cell and GA shows the 

corresponding expression. For example, dragging the 30 in R5C2  three cells to 

its right to R5C5 is equivalent to adding 5 three times and GA shows 30+15. 

Right and left movements correspond respectively to adding and subtracting 

multiples of the row number. Movement from one row to another row 

corresponds to multiplication or division. For example, movement from R2 to 

                                                 
2 Developed by Dave Hewitt and distributed by Association of Teachers of 
Mathematics. 
3 Arrows are added to show how numerical and algebraic expressions were obtained 
by moving the cells. 
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R6 corresponds to multiplication by 3. Similarly, movement from R5 to R1 

corresponds to division by 5 and hence, moving the expression 30+15 from 

R5C5 to R1C5 results in the expression (30+15)/5 as shown in Figure 3.  

 

Figure 3: A typical GA interface 

 

 

GA accepts the use of letters to represent variables or unknowns. Entering the 

letter   in R2C3 without the introduction of any other numbers in the grid, 

means that x represents a variable multiple of 2. However, if at least one 

number is present in the grid, that number determines the value of all the 

other cells in the grid. Hence, the x present in R2C3 in the grid shown in Figure 

3, represents a specific multiple of 2 since there are some numbers present in 

the grid. Hence, it is a representation of an unknown (constant) rather than a 

variable. Evaluating neighbouring cells in Figure 3, one can see that x=14. The 

movements and respective creation of expressions described earlier may be 

similarly done with cells containing letters. Hence, moving x from R2C3 to 

R2C1 results in x–4, since this movement corresponds to subtracting 4. The 

expression x–4 may, in turn, be dragged onto R6C1 and, since jumping from R2 

to R6 corresponds to a multiplication of 3, GA shows 3(x–4), and so on. 

 

In this way, GA enables users to create and build numerical and algebraic 

expressions either by moving a cell and its contents from one place to another 

or by typing it directly with respect to its place in the multiplication grid and 

in relation to other expressions existing in the grid. Furthermore, it gives 

students the possibility to trace the movements of expressions around the 

grid, such as the 1-2-3 journey shown in Figure 3. 
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GA also allows users to input more than one expression in a single cell. 

Figure 4 shows a grid in which 30 is entered in R5C2. As previously shown, 

the expression in R5C5 should have a value of 45. In Figure 4, GA allows users 

to enter a letter (say, p) inside R5C5, along with the number 45. A feature in 

GA, called a magnifier, reveals the contents of this cell. As shown in Figure 4, 

the magnifier displays p=45 when R5C5   is clicked upon. 

 

Figure 4: The magnifier feature of GA 

 

 

The expression resulting in the GA magnifier was the subject of an excerpt of 

a lesson presented later in this paper.  

 

The lessons were divided into two parts. The first part consisted of a class 

discussion about the topic at hand. The discussion was facilitated by the use 

of GA which was projected on the interactive whiteboard (used as a 

touchscreen). The second part of the lessons consisted of students working on 

GA tasks on their computers. While the latter was crucial in investigating 

students’ mathematical representations and interpretations (see Borg & 

Hewitt, 2015), the first part was used to define and analyse CT. The 

framework I developed as a result of this investigation is discussed in the 

section that follows. 
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The Mathematics-Negotiation-Learner Framework 

 

Analysing the lesson videos against the backdrop of Dewey’s (1902) 

Curriculum-Teaching-Learner construct, I observed that I was continuously 

changing my purpose in the lesson due to my need to keep in mind both the 

mathematics I intended to teach and the mathematics being constructed by 

the learners. These two forces, continuously calling for my attention, 

necessitated negotiations from my mathematics to the learners and from the 

learners to my mathematics. Further analysis led to the identification of four 

different shifts of teaching purpose: 

 

i. The M-N shift: from my mathematics to the negotiation process. 

This was the moment where I changed my focus from thinking 

about my mathematics to making hypothetical predications about 

the learning process (Simon, 1995). This led to interactions aimed 

at providing a learning offer (Steinbring, 1998) so that students 

could form concepts about the mathematics I intended to teach. 

ii. The N-L shift: from the negotiation process to the learner. Here 

my focus shifted from interacting with the students to assisting 

students in their experience of mathematical phenomena. This 

involved helping students to make reflective abstractions (Piaget, 

1985) of that mathematical experience.  

iii. The L-N shift: from the learner to the negotiation process. This 

refers to the moment where I learnt something about students’ 

mathematics (Steffe, 1991) and decided to do something about it. 

This negotiation was not an interaction with the students but an 

‘internal interaction’ with myself, which led to a review of the 

suitability of the learning offer. 

iv. The N-M shift: from the negotiation process to my mathematics. 

This was when I changed my focus from reviewing the learning 

offer to making associations or adaptations to my mathematics – 

the subset of my mental schema intended to be taught or shared 

with the students. 

 

Keeping Dewey’s (1902) Curriculum-Teaching-Learner construct as an 

overarching frame of reference, I used these shifts of focus to develop what I 

called the Mathematics-Negotiation-Learner (M-N-L) framework. The design 

and development of the M-N-L framework is discussed by Borg, Hewitt, and 

Jones (2016 a, b). The framework is illustrated in Figure 5. 
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Figure 5: The Mathematics-Negotiation-Learner framework 

 
 

M-N-L builds on Dewey’s (1902) Curriculum-Teaching-Learner construct by 

using the metaphor of two ‘roads’ that link (the teacher’s) mathematics and 

the learners. These roads represent the teacher’s negotiations during the 

lesson. The following is a description of the stages of the cycle shown in 

Figure 5, starting from the upper left-hand arrow that goes from mathematics 

to learner: 

 

1.  The Forward-negotiation Road 

 

The forward-negotiation road is formed of the teacher’s actions aimed at 

presenting a mathematical learning offer to the students: 

 

i. The teacher builds on models of the mathematics of the students 

(MoS) to anticipate possible didactic processes. The latter may help 

students to develop notions of the mathematics at hand, i.e., the 

mathematics for the students (MfS). Simon (1995) calls this a 

hypothetical learning trajectory since the teacher has no means of 

knowing in advance the actual didactic processes that may occur. 

ii. Then, the teacher interacts with students by making 

representations of MfS intended for students’ constructions of 

MoS. The teacher makes verbal, gestural, and written 

representations and coordinate goal-oriented activities and 

discussions. ‘Interaction’ includes teacher exposition and teacher-

coordinated activities. 

 

2.  Learner   

 

The ‘Learner’ section of Figure 5 shows how this forward-negotiation road 

leads to students’ experience of mathematical representations which the 

teacher encourages students to reflect upon and make abstractions. Students 

become learners by making abstract conceptualizations through an interplay 
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of experience and reflection. This is reminiscent of Kolb’s (1984) experiential 

learning construct but with an emphasis on how the teacher reacts to students 

representations. 

 

3.  Backward-negotiation Road  

 

i. The Learner-to-Mathematics arrow on the right shows that the 

teacher builds, experiential models of MoS. These models are 

experiential because they are built entirely on the experiences of 

the teacher and the students. Steffe emphasises that the 

constructivist teacher must be a keen observer in order “to 

construct the mathematical knowledge of his or her students.” 

(Steffe, personal communication, October 7, 2015). Models of MoS 

of individual students may serve the teacher to make inferences 

about the possibility of similar MoS for the rest of the class.  

ii. The arrow that follows on the left shows that the teacher uses 

these models of MoS to review MfS. This means that MoS serves as 

an assessment of whether the learning offer presented along the 

forward-negotiation road was appropriate for the students.  

 

Each activity involved in the backward-negotiation road is a learning 

experience for the teacher. 

 

4.  Mathematics 

 

The mathematics end of the M-N-L diagram shows that the teacher revisits 

her/his own mathematics, to decide whether MoS can be associated with it 

either directly or by going through some kind of adaptation or accommodation 

of her/his mental schema. The settlement of this perturbation leads to a 

renewed MfS and a revised anticipation of the didactic processes with which 

the teacher starts a new forward-negotiation road. 

 

I consider the teacher’s deliberate shifts of purpose between the four elements 

described above to be an indication of CT. Although some exponents of CT 

(e.g., Steffe et al., 1983; Steffe, 1991) tend to focus almost exclusively on the 

teacher’s learning from and about the students (backward-negotiation road), I 

argue that the teacher is duty-bound to teach and cannot learn about students’ 

construction of knowledge without intervening to facilitate it. Nevertheless, I 

argue that constructivist teachers cannot just present learning offers and, like 

Steinbring (1998), claim that mathematics teaching is an autonomous system. 
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That is, CT is dependent on students’ feedback and on the actions that the 

teacher takes based on that feedback.  

 

The teacher’s effort to balance forward- and backward-negotiations is key to 

sustain regular transitions from one stage to another of the M-N-L cycle, thus 

maintaining the two roads which bring together mathematics and learners. 

CT may be analysed by studying how the teacher makes transitions between 

successive stages of the M-N-L cycle through shifts of teaching purpose. The 

extent to which the teacher manages to start, maintain, and complete M-N-L 

cycles may be an indication of her/his success to engage in CT. When the 

teacher fails to complete M-N-L cycles it may indicate a failure to engage in 

CT. This happens when the teacher momentarily creates roadblocks in the 

negotiation process which hinder the shifts of teaching purpose necessary to 

complete M-N-L cycles. In my study, I have identified two such roadblocks; 

the reader is referred to Borg et al. (2016a) for a discussion of these 

roadblocks. In the following section, I demonstrate how I used the M-N-L 

framework to analyse my CT. 

 

 

Analysing CT through M-N-L Cycles 

 

In this section, I present a continuous transcript taken from the video 

recording of Lesson 13. This is divided into four excerpts which I use to show 

how I went through two successive M-N-L cycles. The main aim of the lesson 

was to introduce the use of letters in the GA grid. A letter in GA could 

represent a specific unknown or a variable quantity.  

 

This episode occurred just 2 minutes into the lesson. As usual, the first half of 

the double lesson consisted of a plenary discussion. The first few minutes of 

class discussions consisted mainly of a teacher exposition. This was necessary 

since I needed to demonstrate new features of the software. Nevertheless, 

students’ participations in such expositions were necessary since I needed 

students to reflect on their observations. In a typical lesson, as time went by, I 

usually relinquished more and more my ‘control’ over the discussion, where 

students came out to work on activities on the interactive whiteboard. This 

led to the second half of the double lesson where students worked in pairs on 

their computers. During this part of the lesson, I took on a more background, 

supervisory role where I assisted students only if required. 
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The reason for choosing this particular episode is to show that even during 

teacher exposition, when the teacher may be predisposed to focus more on 

the subject matter, CT can be achieved if the teacher is sensitive to students’ 

knowledge constructions. This sensitivity is required for the teacher to make 

the necessary shifts of focus between her/his subject matter (mathematics), 

the negotiation process, and the learner. In this episode, a number of 

mathematical concepts were discussed, namely: 

 

i. multiples of 3, 

ii. letters standing for numbers and values of numerical expressions, 

and 

iii. the meaning of the equals sign. 

 

Excerpt 1: M-N and N-L shifts (Cycle 1) 

 

PB: 

 

…I am going to place the number 18 here. [Drags 18 to R3C2 - 
#1.]  

 

… It [the software] will let me do it. 

Joseph: Because it is in the 3-times table. 

… 

PB: Well done! Well done! Now, if I picked a letter at random 
from here [picks the letter d and drags it to R3C4] and I place it 
over here [Joseph raises his hand], that d, first of all, what is it 
symbolising? [Pointing at Joseph…] Come, let’s see. 

Joseph: Uh, what it is, what the answer should be. Like if you do 18 
plus 3 plus 3, that is plus 6, which becomes 24, it is d equals 
24. 

 

#1

1 



 
 
 
 

80 

This excerpt shows the beginning of an M-N-L cycle (Cycle1). At the 

beginning of the discussion, my initial MfS was the appreciation of the 

difference between variables and as unknowns. I anticipated that the students 

were prepared to construct notions of letters as unknowns in the GA grid by 

referring to neighbouring cell values. This anticipation was expressed by 

phrases like “I am going to…”, and “…it will let me.”  

 

With this anticipation in mind, I changed my focus to start interacting with 

the students (M-N shift). This interaction was prompted by the fact that the 

number 18 could stay in cell R3C2.  I asked questions to help students reflect 

on why it was allowed by GA to be there. Joseph was quick to point out that 

this was accepted because it was a multiple of 3. This was a cue for me that I 

could place a letter in the grid and I inserted d in a neighbouring cell (R3C4) 

and asked the students what that letter symbolised.  

 

Here, I shifted my focus to another teaching purpose: encouraging students to 

reflect on mathematical phenomena (N-L shift). This reflection encouraged 

Joseph to suggest a meaning for d: “like if you do 18 plus 3 plus 3”. Placing d 

in the neighbourhood of 18 (Figure 6) helped Joseph to interpret the symbol d, 

aided by the representation of its ‘container’, the cell R3C4.4 Joseph’s 

interpretation of the symbol d in association with the values of the 

neighbouring cells is an example of Mercer’s (2000) claim that symbols (like 

words) gain meaning from their neighbourhood. 

 

Figure 6: Letter gaining meaning of from its neighbourhood  

 

 

The second part of the lesson episode resumes in the following excerpt. 

 

 

                                                 
4 The interplay between conceptual interpretations and pictorial, symbolical, and 
kinaesthetic representations are discussed by Borg and Hewitt (2015). 
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Excerpt 2: L-N shift (Cycle 1) 

 

PB: [Nodding…] All right, so what we’re saying here is that d is, 

like, the answer of when [points to respective cells] 18 makes 

plus 3 plus 3. In fact, if you do like this [drags the 18 to R3C3 to 

obtain 18+3] and like this [moves 18+3 to R3C4 obtaining 18+3+3 

on the same cell as d ] – all right? – we see d here and [choosing 

the magnifier icon] if we see … with the magnifier here, it is 

telling me exactly [pointing to Joseph - #2] like you told me that 

[pointing to d] d [points to equals sign ] is [points to respective 

numbers] 18 plus 3 plus 3. [Clicks on the cell to alter the 

expression.] If I alter here it will tell me that [points] 18 plus 3 

plus 3 equals d. 

 

 

In this excerpt, I changed my focus from encouraging reflection to forming a 

model of Joseph’s interpretation of the mathematics in question, i.e., his MoS 

(L-N shift). At first, I confirmed aloud what Joseph seemed to be thinking: 

“…so what we’re saying here is that…” I also made cell movements 

corresponding to Joseph’s calculation of 18+3+3 ending on the cell containing 

d, and used GA’s magnifier to help Joseph’s classmates observe that what he 

seemed to be implying was that d=18+3+3 or that 18+3+3=d. Building a model 

of Joseph’s and possibly other students’ MoS helped me review my original 

MfS, that of identifying the circumstances that made d an unknown.  

 

 

#2 
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Excerpt 3:  N-M shift (Cycle 1) and M-N and N-L shifts (Cycle 2) 

 

PB: 

 

But if I want, instead of doing 18 plus 3 plus 3, I can, if I want 
to, erase here [erases all expressions except 18 and d] – OK? – I 
can just bring up [pointing to the number menu] that unique 
number that can be here [the cell containing d], a single 
number… What is the number? 

Joseph: Twenty-four. 

PB: Do we agree that it is 24? 

Joseph: Yes [the others nodding]. 

 

When I drew students’ attention to the possibility of having a single number 

instead of 18+3+3, Joseph proposed the number 24. At that moment, it 

seemed to me that Joseph, and possibly other students who were nodding to 

his response, were thinking of the letter d as being the answer of 18+3+3, i.e., 

24. In the above excerpt, my focus changed again from reviewing the learning 

offer to associating Joseph’s (and possibly other students’) MoS with my 

mathematics (N-M shift). In order to do this, I had to make adaptations of my 

notion of unknown as a single fixed number to accommodate Joseph’s 

concept of unknown as ‘answer’.  

 

This shift prompted a new M-N-L cycle, with a renewed MfS: the connection 

between  

 a letter as a single (unknown) number due to its being the value of 

an expression (Joseph’s MoS) and  

 a letter as a single fixed (unknown) number due to its 

neighbourhood in the GA grid (the original MfS). 

 

I anticipated how students could make these connections as I started off a 

new M-N-L cycle (Cycle 2). 

 

My purpose shifted from anticipating these connections to interacting with 

students to help students develop mathematical appreciations of these 

connections (M-N shift). I erased all the expressions, except 18 and d (Figure 

6). While doing so I was hoping students would observe the link between 

what was in cell R3C4 a moment earlier (18+3+3) and the single number could 

be inserted in that cell. Previous lessons taught me that students were very 

competent in assigning the right numbers in GA cells, so I figured the empty 
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cell R3C4 could invoke the single number 24 in the minds of the students due 

to its position in relation to 18 in the 3-times table. 

 

Excerpt 4: L-N and N-M shifts (Cycle 2) 

 

PB: 

 

Because we’re in the 3-times table and we’re doing plus 3 plus 
3, all right? … I bring up the 24 … I’ll pick the 24 from here 
[drags 24 from the number menu to R3C4 containing d ] … And 
when I go with the magnifier there it is telling me d equals 24. 
… So, d equals 24 and [clicks on the cell to alter the order] 24 
equals d… 

Joseph: The same. 

PB: … As such, we are not seeing an answer. When you say 
‘answer’ it’s like you have done some calculation, some plus, 
minus… 

Joseph: 18 plus 3 plus 3. 

PB: We don’t have any calculation, nothing, here. So now, I 
cannot quite say that ‘equals’ is ‘answer.’ [Jordan shaking his 
head.] So what can I say that it means there [pointing to d=24 - 
#3]? 

  

The equals? 

Joseph: Equal to [in English]. 

Dwayne: They are the same in size. 

 

With this in mind, I asked students what was the “unique number that can 

be” in R3C4. Here my purpose had changed from interacting by erasing the 

expression 18+3+3 to encouraging students to reflect on the single number 

which could be entered in that empty cell (N-L shift). It was Joseph himself 

who mentioned the number   . He had already thought about it and even 

#3 
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mentioned it earlier (see end of Excerpt 1) where it seemed he was thinking of 

it as the answer to 18+3+3. 

 

In the above excerpt, I first wanted to orient students’ thinking (Glasersfeld, 

1991b) towards thinking of d as being 24 without having to think of it as the 

answer to a calculation. So during the experience-reflection stage, I confirmed 

Joseph’s statement by dragging 24 into the cell containing d and proceeded to 

help students to observe and consider the mathematical statement d=24 

which could be seen by clicking on the magnifier icon. 

 

I knew that for some students, the equals sign was still just a symbol showing 

the answer of a computation. So, during the reflection exercise, I focused on 

the meaning of the equals sign in the expression d=24. When I asked what d 

‘equals’ 24 meant, Joseph expressed his thinking by saying in English “equal 

to.” The change from ‘equals’ to the more exact ‘equal to’ and his emphasis of 

the word ‘to’ gave the equality symbol a more a relational meaning. Dwayne 

immediately picked up on this and gave the response I was aiming for: “They 

are the same in size.”  

 

Dwayne and Joseph’s feedback made me change my purpose from helping 

students to reflect on their mathematical observations to forming a model of 

these students’ MoS (L-N shift). I confirmed Dwayne’s response, and 

elaborated on his statement. I also said “Good”, indicating a favourable 

review of Dwayne’s statement. I was simultaneously making a favourable 

review of the outcome of my learning offer. In accepting that d=24 meant d “is 

the same size as” 24, Dwayne and possibly Joseph, seemed to have constructed 

an idea about the possibility of using the arbitrary letter d as a substitute for a 

constant number (unknown) irrespective of whether that number was the 

answer of a computation. 

 

This led to another shift of focus: from reviewing the outcome of the learning 

offer to reflecting on my mathematics, i.e., my interpretation of d=24 (N-M 

shift). I knew that the neighbouring 18 meant that d could not be anything but 

  . This concept was a subset of the original MfS. However, the original MfS 

included also the notion that without any other numbers in the grid, d would 

be a variable multiple of 3 and hence the statement d=24 would be viable if it 

were interpreted as in d=..., 21, 24, 27,... This prompted the onset a new M-N-

L cycle in which I anticipated that students could, in this way, construct the 

notion of d as a variable. 
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Table 1: Summary of two complete M-N-L cycles 

 

My concept of 
‘unknown’ 
represented by  
a letter in a GA 
environment. 

 

I anticipate 
students will 
develop the 
notion of 
unknown when 
this is contrasted 
with a variable. 

I interact by 
placing 18 in 
R3C2 and   in 
R3C4. I ask 
students what 
the letter d 
may stand for. 

  

Joseph says that 
18 was allowed 
since it was a 
multiple of 3. 
Then he says 
that d is the 
answer of a 
computation 
involving 18. 

The ‘answer’ 
of a calculation 
may also be 
thought of as 
an unknown. 
This holds also 
when the 
calculation is 
not expressed 
as a single 
number, 
e.g., x=1+√2 

 

I review my 
original MfS 
and find a way 
how to 
incorporate 
Joseph’s notion 
of an ‘answer’ 
within my 
notion of an 
unknown. 

I create an 
unexpected 
model of 
Joseph’s MoS 
concerning 
the letter d: a 
letter may 
stand for the 
‘answer’ of a 
calculation. 

 

 
 
 

 

I anticipate that 
students will 
link the notion 
of ‘answer’ and 
unknown if 
they can 
observe an 
example with 
the help of GA. 

I use Joseph’s 
explanation to 
show that   
may be seen as 
the ‘answer’ of 
18+3+3. Joseph 
says that d 
could be 24. 

 

I help students 
reflect on the 
statement       
d=24. Joseph and 
Dwayne 
elaborate on the 
meaning of of the 
equals sign, 
viewing it as a 
relational symbol 

I associate 
students’ 
interpretations  
of d to my 
notion d as a 
variable. 

 

I review the 
MfS. Dwayne 
and Joseph 
seem to 
interpret   as 
being equal to a 
constant. 

I build a 
model of 
Joseph’s and 
Dwayne’s 
interpretation 
of the equals 
sign as ‘same 
in size.’ 

 

 

Table 1 above summarises how these two successive M-N-L cycles occurred 

by mapping each event to the respective teaching purpose. This table shows 

 

 

 
 

Mathematics Negotiation Learner 
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the fast toing and froing between my mathematics and my learners’ 

knowledge constructions as I strived for CT. The arrows indicate shifts of 

teacher purpose. There was an average of one M-N-L cycle per 4 minutes of 

plenary discussion throughout the 20 lessons.  

 

 

Conclusion 

The M-N-L framework gives due importance to the three constituents of 

Brousseau’s (1997) didactic situation: the learner, the teacher, and the 

mathematics to be taught and learnt. Based on Dewey’s (1902) idea that 

teaching must be defined by both curriculum and learners, the M-N-L 

framework places the teacher as a negotiator between mathematics and the 

learner. The framework suggests that the main task of the constructivist 

teachers is to find ways how to bridge the knowledge she/he intends to teach 

with the knowledge being continuously constructed by the students during 

the lesson.  

 

Simon’s (1995) theory of teaching mathematics from a constructivist 

perspective was key in the formation of what I called the forward-negotiation 

road. The teacher’s sensitivity to students’ possible constructions of 

knowledge enables her/him to anticipate possible didactic processes and 

interact with students accordingly. Based on RC, M-N-L suggests that the 

teacher needs to make it her/his business to know whether and how the 

learning offer (Steinbring, 1998) makes sense to the students.  

 

The RC teacher gives much weight to the question of viability of mathematics 

as experienced by the students. In this regard, Steffe’s (1991) principles of 

(radical) CT were crucial for the formation of M-N-L’s backward-negotiation 

road. The teacher builds models of MoS and uses them to review MfS. The 

teacher synthesises students’ mathematics with her/his own, sometimes 

requiring accommodations of her/his own mathematical schema. This puts 

the teacher in a better position to go back to the students with a renewed MfS 

and a new M-N-L cycle may commence.  

 

The formation of the M-N-L framework, inspired chiefly by the works of 

Dewey (1902), Steffe (1991), Simon (1995), and Jaworski (2012), and drawing 

on Glasersfeld’s (1990) principles of RC, showed me that the idea of CT is 

indeed plausible. Rather than portraying it as one set notion of how to teach, 

the M-N-L framework presents CT as a teaching approach resulting from the 
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teacher’s sensitivity to RC notions of knowledge and learning. This sensitivity 

is the driving force behind the teacher’s changes of purpose during the lesson 

necessary to keep both mathematics and learners in mind. The M-N-L 

framework proposes that: 
 

i. Any learning offer presented to the students is regarded by the teacher as 

an attempt to facilitate students’ active and subjective construction of 

mathematics. The teacher anticipates the possible didactic situations 

which may lead to students’ developments of mathematical ideas. The 

teacher thus interacts with the students in order to orient their thinking 

processes. In this way, the teacher helps the students to make reflective 

abstractions of the mathematics in question. 

ii. The RC teacher is also a learner. She/he is invested in learning about the 

mathematics being constructed by the students. This helps the teacher to 

make inferences about the success or otherwise of the current learning 

offer, but this exercise does not only benefit the students. When the 

teacher takes up the challenge of linking students’ mathematics with 

her/his own, this enriches the teacher’s own mathematical content 

knowledge. 

 

The M-N-L framework is both conceptual and analytical. Besides defining CT, 

it also proved to be a viable tool in helping me to investigate CT in my 

mathematics lessons by analysing the extent to which I managed to generate 

and complete M-N-L cycles. It was also instrumental in identifying 

momentary flaws in my approach, when I created what I called ‘roadblocks’ 

(Borg et al., 2016a) that obstructed the negotiation between my mathematics 

and that of my students. Linking the generation and completion of M-N-L 

cycles with CT helped me to ascertain that these moments of failure did not 

render my teaching non-constructivist. Rather, such moments showed that, 

like anything which is not mythical, CT is not a perfect system but an 

endeavour of ordinary teachers who try to bring their constructivist beliefs to 

their daily teaching practices. 
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